8-bit serial-in/parallel-out shift register

Table 1: Quick reference data ...continued $GND = 0 \ V; T_{amb} = 25 \ ^{\circ}C; t_r = t_f \le 2.5 \ ns.$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{max}	maximum clock frequency	$V_{CC} = 3.3 \text{ V; } C_L = 15 \text{ pF}$		-	78	-	MHz
C _I	input capacitance			-	3.5	-	pF
C_{PD}	power dissipation capacitance per gate	V _{CC} = 3.3 V	[1] [2]	-	40	-	pF

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

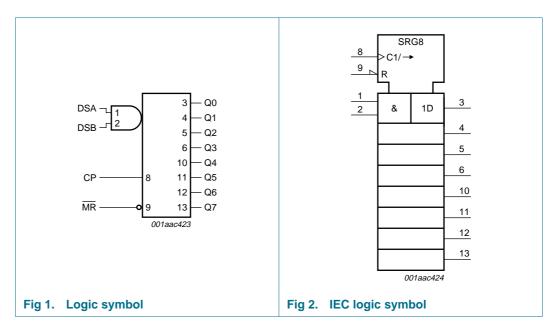
C_L = output load capacitance in pF;

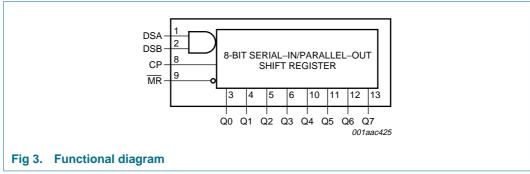
 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L\times V_{CC}{}^2\times f_o)$ = sum of the outputs.

[2] The condition is $V_I = GND$ to V_{CC} .

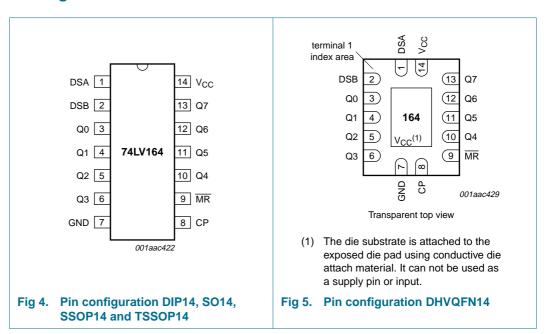

4. Ordering information


Table 2: Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74LV164N	–40 °C to +125 °C	DIP14	plastic dual in-line package; 14 leads (300 mil)	SOT27-1
74LV164D	–40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1
74LV164DB	–40 °C to +125 °C	SSOP14	plastic shrink small outline package; 14 leads; body width 5.3 mm	SOT337-1
74LV164PW	–40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1
74LV164BQ	–40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5\times3\times0.85$ mm	SOT762-1

8-bit serial-in/parallel-out shift register

5. Functional diagram



Downloaded from Arrow.com.

6. Pinning information

6.1 Pinning

8-bit serial-in/parallel-out shift register

6.2 Pin description

Table 3: Pin description

Symbol	Pin	Description
DSA	1	data input SA
DSB	2	data input SB
Q0	3	output 0
Q1	4	output 1
Q2	5	output 2
Q3	6	output 3
GND	7	ground (0 V)
CP	8	clock input (edge triggered LOW-to-HIGH)
MR	9	master reset input (active LOW)
Q4	10	output 4
Q5	11	output 5
Q6	12	output 6
Q7	13	output 7
V _{CC}	14	supply voltage

Product data sheet

8-bit serial-in/parallel-out shift register

7. Functional description

7.1 Function table

Table 4: Function table [1]

Operating	Input		Output			
mode	MR	СР	DSA	DSB	Q0	Q1 to Q7
Reset (clear)	L	X	X	X	L	L to L
Shift	Н	↑	I	I	L	q0 to q6
	Н	↑	I	h	L	q0 to q6
	Н	↑	h	I	L	q0 to q6
	Н	↑	h	h	Н	q0 to q6

^[1] H = HIGH voltage level;

8. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V_{CC}	supply voltage			-0.5	+7.0	V
I _{IK}	input diode current	$V_1 < -0.5 \text{ V or } V_1 > V_{CC} + 0.5 \text{ V}$		-	±20	mA
I _{OK}	output diode current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$		-	±50	mA
I _O	output source or sink current	$V_{O} = -0.5 \text{ V to } (V_{CC} + 0.5 \text{ V})$	[1]	-	±25	mA
I _{CC} , I _{GND}	V _{CC} or GND current			-	±50	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$				
	DIP14 package		[2]	-	750	mW
	SO14, (T)SSOP14 and DHVQFN14 packages		[3]	-	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9397 750 14501

L = LOW voltage level;

^{↑ =} LOW-to-HIGH clock transition;

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition;

I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition;

q = lower case letter indicates the state of referenced input one set-up time prior to the LOW-to-HIGH CP transition.

^[2] DIP14 package: P_{tot} derates linearly with 12 mW/K above 70 °C.

 ^[3] SO14 package: P_{tot} derates linearly with 8 mW/K above 70 °C.
 (T)SSOP14 package: P_{tot} derates linearly with 5.5 mW/K above 60 °C.
 DHVQFN14 package: P_{tot} derates linearly with 4.5 mW/K above 60 °C.

9. Recommended operating conditions

Table 6: Recommended operating conditions

		3				
Symbol	Parameter	Conditions	Mi	n Typ	o Max	Unit
V_{CC}	supply voltage		[<u>1</u>] 1.(3.3	5.5	V
VI	input voltage		0	-	V_{CC}	V
Vo	output voltage		0	-	V_{CC}	V
T _{amb}	ambient temperature	in free air	-4	0 -	+125	°C
t_r, t_f	input rise and fall times	$V_{CC} = 1.0 \text{ V to } 2.0 \text{ V}$	-	-	500	ns/V
		$V_{CC} = 2.0 \text{ V to } 2.7 \text{ V}$	-	-	200	ns/V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	100	ns/V
		$V_{CC} = 3.6 \text{ V to } 5.5 \text{ V}$	-	-	50	ns/V

8-bit serial-in/parallel-out shift register

10. Static characteristics

Table 7: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +85 °C [1]					
V_{IH}	HIGH-level input voltage	V _{CC} = 1.2 V	0.9	-	-	V
		V _{CC} = 2.0 V	1.4	-	-	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2.0	-	-	V
		V _{CC} = 4.5 V to 5.5 V	$0.7 \times V_{CO}$	c -	-	V
V_{IL}	LOW-level input voltage	V _{CC} = 1.2 V	-	-	0.3	V
		V _{CC} = 2.0 V	-	-	0.6	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	0.8	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	$0.3 \times V_{CC}$	V
V_{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = -100 \mu A; V_{CC} = 1.2 V$	-	1.2	-	V
		$I_O = -100 \mu A; V_{CC} = 2.0 V$	1.8	2.0	-	V
		$I_{O} = -100 \mu A; V_{CC} = 2.7 V$	2.5	2.7	-	V
		$I_{O} = -100 \mu A; V_{CC} = 3.0 V$	2.8	3.0	-	V
		$I_{O} = -6 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.40	2.82	-	V
		$I_O = -100 \mu A; V_{CC} = 4.5 V$	4.3	4.5	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.60	4.20	-	V

Product data sheet

^[1] The static characteristics are guaranteed from V_{CC} = 1.2 V to V_{CC} = 5.5 V, but LV devices are guaranteed to function down to V_{CC} = 1.0 V (with input levels GND or V_{CC}).

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Uni
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 100 \mu A; V_{CC} = 1.2 V$	-	0	-	V
		$I_O = 100 \mu A; V_{CC} = 2.0 \text{ V}$	-	0	0.2	V
		$I_O = 100 \mu A; V_{CC} = 2.7 V$	-	0	0.2	V
		$I_O = 100 \mu\text{A}; V_{CC} = 3.0 \text{V}$	-	0	0.2	V
		$I_{O} = 6 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	0.25	0.40	V
		$I_{O} = 100 \mu\text{A}; V_{CC} = 4.5 \text{V}$	-	0	0.2	V
		I_{O} = 12 mA; V_{CC} = 4.5 V	-	0.35	0.55	V
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	1.0	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	20.0	μΑ
ΔI_{CC}	additional quiescent supply current per input	$V_{I} = V_{CC} - 0.6 \text{ V}; V_{CC} = 2.7 \text{ V}$ to 3.6 V	-	-	500	μΑ
Cı	input capacitance		-	3.5	-	pF
T _{amb} = -	40 °C to +125 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 1.2 V	0.9	-	-	V
		V _{CC} = 2.0 V	1.4	-	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	V
		V _{CC} = 4.5 V to 5.5 V	$0.7 \times V_{CC}$	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 1.2 V	-	-	0.3	V
		V _{CC} = 2.0 V	-	-	0.6	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	V
		V _{CC} = 4.5 V to 5.5 V	-	-	$0.3 \times V_{CC}$	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -100 \mu A; V_{CC} = 1.2 V$	-	-	-	V
		$I_{O} = -100 \mu A; V_{CC} = 2.0 V$	1.8	-	-	V
		$I_{O} = -100 \mu A; V_{CC} = 2.7 V$	2.5	-	-	V
		$I_{O} = -100 \mu A; V_{CC} = 3.0 V$	2.8	-	-	V
		$I_{O} = -6 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.20	-	-	V
		$I_{O} = -100 \mu A; V_{CC} = 4.5 V$	4.3	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.50	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 100 \mu A; V_{CC} = 1.2 V$	-	-	-	V
		$I_O = 100 \mu A; V_{CC} = 2.0 \text{ V}$	-	-	0.2	V
		$I_O = 100 \mu A; V_{CC} = 2.7 V$	-	-	0.2	V
		$I_O = 100 \mu A; V_{CC} = 3.0 \text{ V}$	-	-	0.2	V
		$I_{O} = 6 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.50	V
		$I_O = 100 \mu A; V_{CC} = 4.5 V$	-	-	0.2	V
		$I_O = 12 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.65	V

9397 750 14501

 Table 7:
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	1.0	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	160	μΑ
ΔI_{CC}	additional quiescent supply current per input	$V_1 = V_{CC} - 0.6 \text{ V}; V_{CC} = 2.7 \text{ V}$ to 3.6 V	-	-	850	μΑ

^[1] All typical values are measured at T_{amb} = 25 °C.

11. Dynamic characteristics

Table 8: Dynamic characteristics

GND = 0 V; $t_r = t_f \le 2.5$ ns; $C_L = 50$ pF; $R_L = 1$ k Ω ; for test circuit see Figure 9.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +85 °C [1]					
t _{PHL} ,	propagation delay CP to Qn	see <u>Figure 6</u>				
t _{PLH}		V _{CC} = 1.2 V	-	75	-	ns
		V _{CC} = 2.0 V	-	26	39	ns
		V _{CC} = 2.7 V	-	19	29	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	14	23	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	12	19	ns
		$V_{CC} = 3.3 \text{ V}; C_L = 15 \text{ pF}$	-	12	-	ns
t _{PHL}	propagation delay MR to Qn	see <u>Figure 7</u>				
		V _{CC} = 1.2 V	-	75	-	ns
		V _{CC} = 2.0 V	-	26	39	ns
		V _{CC} = 2.7 V	-	19	29	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	14	23	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	12	19	ns
		$V_{CC} = 3.3 \text{ V}; C_L = 15 \text{ pF}$	-	12	-	ns
t _W	pulse width CP	see <u>Figure 6</u>				
		V _{CC} = 2.0 V	34	9	-	ns
		V _{CC} = 2.7 V	25	6	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	20	5	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	13	4	-	ns
t _W	pulse width MR	see Figure 7				
		V _{CC} = 2.0 V	34	10	-	ns
		V _{CC} = 2.7 V	25	8	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	20	6	-	ns
		V _{CC} = 4.5 V to 5.5 V	13	5	-	ns

9397 750 14501

GND = 0 V; $t_f = t_f \le 2.5$ ns; $C_L = 50$ pF; $R_L = 1$ k Ω ; for test circuit see Figure 9.

Symbol	Parameter	Conditions	Mir	т Тур	Max	Unit
rem	removal time MR to CP	see Figure 7				
		V _{CC} = 1.2 V	-	30	-	ns
		V _{CC} = 2.0 V	19	10	-	ns
		V _{CC} = 2.7 V	14	8	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	11	6	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	8	5	-	ns
t _{su}	set-up time Dn to CP	see Figure 8				
		V _{CC} = 1.2 V	-	15	-	ns
		V _{CC} = 2.0 V	22	5	-	ns
		V _{CC} = 2.7 V	16	4	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	13	3	-	ns
		V _{CC} = 4.5 V to 5.5 V	9	2	-	ns
t _h	hold time Dn to CP	see Figure 8				
		V _{CC} = 1.2 V	-	-10	-	ns
		V _{CC} = 2.0 V	5	-3	-	ns
		V _{CC} = 2.7 V	5	-2	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	5	-2	-	ns
		V _{CC} = 4.5 V to 5.5 V	5	-1	-	ns
f _{max}	maximum clock frequency	see Figure 6				
		V _{CC} = 2.0 V	14	40	-	MHz
	тахітит сюск пециенсу	V _{CC} = 2.7 V	19	58	-	MHz
		V _{CC} = 3.0 V to 3.6 V	24	70	-	MHz
		V _{CC} = 4.5 V to 5.5 V	36	100	-	MHz
		$V_{CC} = 3.3 \text{ V}; C_L = 15 \text{ pF}$	-	78	-	MHz
C _{PD}	power dissipation capacitance per gate	V _{CC} = 3.3 V	[2] [3]	40	-	pF
T _{amb} = -	40 °C to +125 °C					
t _{PHL} ,	propagation delay CP to Qn	see Figure 6				
t _{PLH}		V _{CC} = 1.2 V	-	-	-	ns
		V _{CC} = 2.0 V	-	-	49	ns
		V _{CC} = 2.7 V	-	-	36	ns
		V _{CC} = 3.0 V to 3.6 V	-	-	29	ns
		V _{CC} = 4.5 V to 5.5 V	-	-	24	ns
t _{PHL}	propagation delay MR to Qn	see Figure 7				
		V _{CC} = 1.2 V	-	-	-	ns
		V _{CC} = 2.0 V	-	-	49	ns
		V _{CC} = 2.7 V	-	-	36	ns
		V _{CC} = 3.0 V to 3.6 V	-	-	29	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$			24	ns

9397 750 14501

 Table 8:
 Dynamic characteristics ...continued

GND = 0 V; $t_r = t_f \le 2.5$ ns; $C_L = 50$ pF; $R_L = 1$ k Ω ; for test circuit see Figure 9.

$t_{W} \begin{tabular}{lll} Pulse width CP & see Figure 6 \\ \hline $V_{CC} = 2.0 \ V$ & 41 & - & - \\ \hline $V_{CC} = 2.7 \ V$ & 30 & - & - \\ \hline $V_{CC} = 3.0 \ V$ to $3.6 \ V$ & 24 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 16 & - & - \\ \hline \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 16 & - & - \\ \hline \hline $V_{CC} = 2.0 \ V$ & 41 & - & - \\ \hline $V_{CC} = 2.7 \ V$ & 30 & - & - \\ \hline $V_{CC} = 2.7 \ V$ & 30 & - & - \\ \hline $V_{CC} = 3.0 \ V$ to $3.6 \ V$ & 24 & - & - \\ \hline $V_{CC} = 3.0 \ V$ to $5.5 \ V$ & 16 & - & - \\ \hline \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 16 & - & - \\ \hline \hline $V_{CC} = 1.2 \ V$ & - & - & - \\ \hline $V_{CC} = 2.7 \ V$ & 18 & - & - \\ \hline $V_{CC} = 2.7 \ V$ & 18 & - & - \\ \hline $V_{CC} = 2.7 \ V$ & 18 & - & - \\ \hline $V_{CC} = 3.0 \ V$ to $3.6 \ V$ & 14 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline \hline $V_{CC} = 2.0 \ V$ & 26 & - & - \\ \hline $V_{CC} = 2.7 \ V$ & 19 & - & - \\ \hline $V_{CC} = 2.7 \ V$ & 19 & - & - \\ \hline $V_{CC} = 2.7 \ V$ & 19 & - & - \\ \hline $V_{CC} = 2.7 \ V$ & 19 & - & - \\ \hline $V_{CC} = 3.0 \ V$ to $3.6 \ V$ & 15 & - & - \\ \hline $V_{CC} = 3.0 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline $V_{CC} = 3.0 \ V$ to $3.6 \ V$ & 15 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline $V_{CC} = 3.0 \ V$ to $3.6 \ V$ & 15 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline $V_{CC} = 4.5 \ V$ to $5.5 \ V$ & 10 & - & - \\ \hline \end{tabular}$	ns ns ns ns ns ns ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns ns ns ns ns ns ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns ns ns ns ns
$V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ t_W \\ It_W \\ It$	ns ns ns ns
$t_{W} \text{pulse width $\overline{\text{MR}}$} \frac{\text{see $\overline{\text{Figure 7}}$}}{V_{\text{CC}} = 2.0 \text{V}} \frac{41}{30} - - - - - - - - - $	ns ns ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns ns ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns ns ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns ns
$V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ t_{rem} \\ \hline \\ V_{CC} = 1.2 \ V \\ \hline \\ V_{CC} = 1.2 \ V \\ \hline \\ V_{CC} = 2.0 \ V \\ \hline \\ V_{CC} = 2.0 \ V \\ \hline \\ V_{CC} = 2.7 \ V \\ \hline \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \hline \\ V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline \\ V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline \\ V_{CC} = 2.0 \ V \\ \hline \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \hline \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \hline \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \hline \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \hline \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \hline \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \hline $	ns
$t_{rem} \text{removal time $\overline{\text{MR}}$ to CP} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns
$V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ t_{su} \qquad \text{set-up time Dn to CP} \qquad \frac{\text{see Figure 8}}{V_{CC} = 1.2 \ V} \\ \qquad - \qquad - \qquad - \\ \qquad V_{CC} = 2.0 \ V \\ \qquad V_{CC} = 2.7 \ V \\ \qquad V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \qquad 15 \qquad - \qquad - \\ \qquad - \qquad - \\ \qquad - \qquad - \\ \qquad - \qquad - \qquad$	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns
$V_{CC} = 1.2 \text{ V}$	ns
$V_{CC} = 2.0 \text{ V}$ 26 $V_{CC} = 2.7 \text{ V}$ 19 $V_{CC} = 3.0 \text{ V}$ to 3.6 V 15	
$V_{CC} = 2.7 \text{ V}$ 19 $V_{CC} = 3.0 \text{ V}$ to 3.6 V 15	ns
$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ 15	ns
	ns
$V_{00} = 4.5 \text{ V} + 0.5.5 \text{ V}$	ns
vCC = 4.5 v to 5.5 v	ns
t_h hold time Dn to CP see <u>Figure 8</u>	
$V_{CC} = 1.2 \text{ V}$	ns
$V_{CC} = 2.0 \text{ V}$ 5	ns
$V_{CC} = 2.7 \text{ V}$ 5	ns
$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ 5	ns
$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ 5	ns
f _{max} maximum clock frequency see <u>Figure 6</u>	
$V_{CC} = 2.0 \text{ V}$ 12	MHz
$V_{CC} = 2.7 \text{ V}$ 16	MHz
$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ 20	MHz
$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ 30	

^[1] Typical values are measured at nominal V_{CC} and T_{amb} = 25 $^{\circ}C.$

74LV164 **Philips Semiconductors**

8-bit serial-in/parallel-out shift register

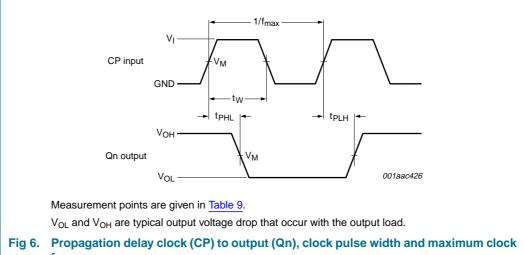
[2] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

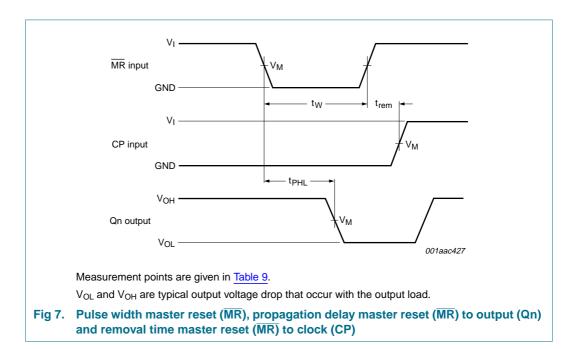
 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

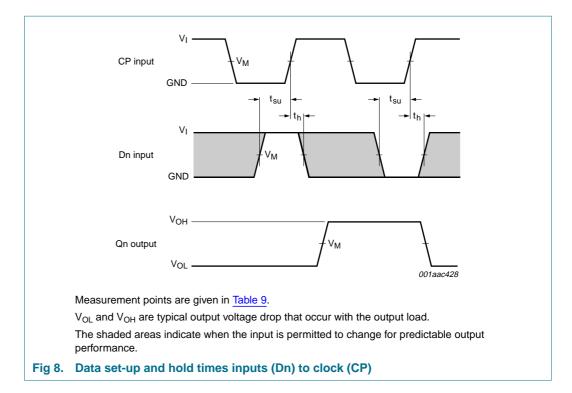

V_{CC} = supply voltage in V;

N = number of inputs switching;


 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

[3] The condition is $V_I = GND$ to V_{CC} .

12. Waveforms



frequency

9397 750 14501

8-bit serial-in/parallel-out shift register

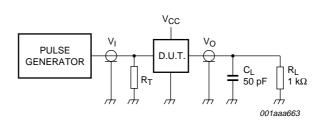


Table 9: Measurement points

Supply voltage	Input	Output
V _{CC}	V _M	V _M
1.2 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
2.0 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
2.7 V	1.5 V	1.5 V
3.0 V to 3.6 V	1.5 V	1.5 V
4.5 V to 5.5 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$

Product data sheet

8-bit serial-in/parallel-out shift register

Test data is given in Table 10.

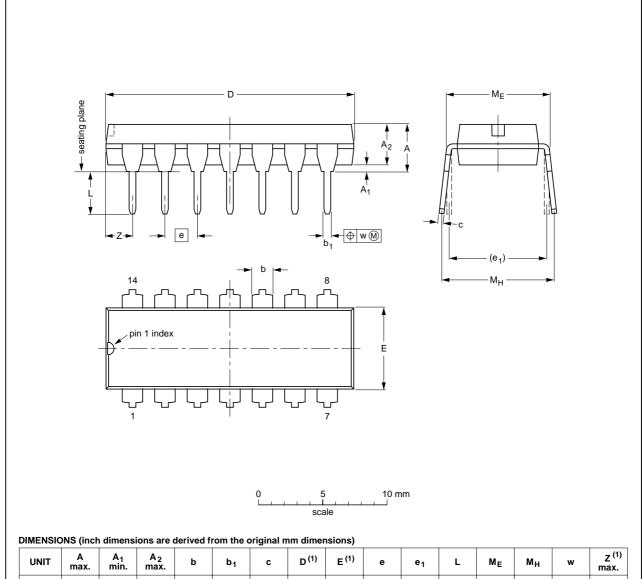
Definitions for test circuit:

 R_L = Load resistor.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

Fig 9. Load circuitry for switching times


Table 10: Test data

Supply voltage	Input		Load		Test
V _{CC}	VI	t _r , t _f	CL	R _L	
1.2 V	V _{CC}	≤ 2.5 ns	50 pF	1 kΩ	t _{PHL} , t _{PLH}
2.0 V	V_{CC}	≤ 2.5 ns	50 pF	1 kΩ	t _{PHL} , t _{PLH}
2.7 V	2.7 V	≤ 2.5 ns	50 pF	1 kΩ	t _{PHL} , t _{PLH}
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF, 15 pF	1 kΩ	t _{PHL} , t _{PLH}
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	50 pF	1 kΩ	t _{PHL} , t _{PLH}

13. Package outline

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

	•														
UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.02	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

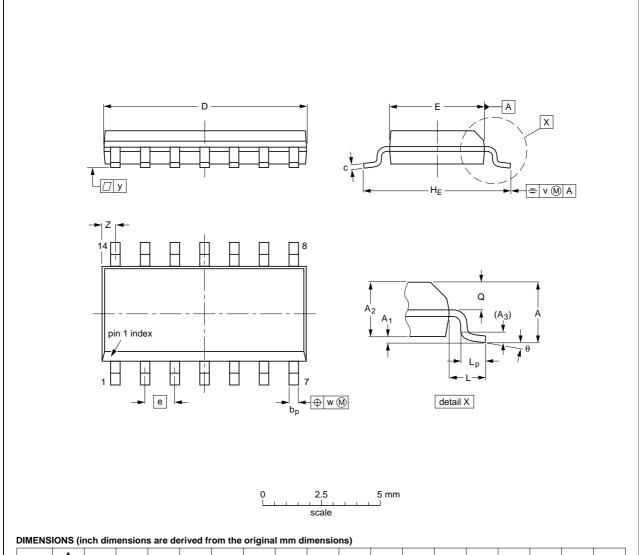

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT27-1	050G04	MO-001	SC-501-14		99-12-27 03-02-13

Fig 10. Package outline SOT27-1 (DIP14)

9397 750 14501

SOT108-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01	1	0.0100 0.0075	0.35 0.34	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

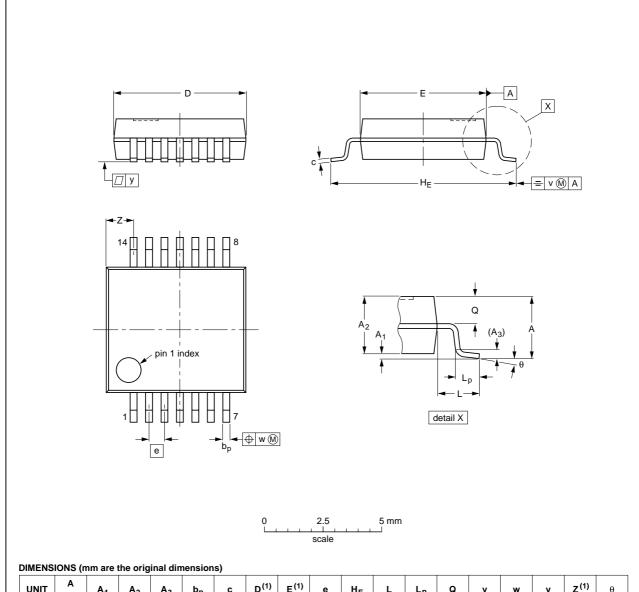

	KEFEK	ENCES		EUROPEAN	ISSUE DATE
IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
076E06	MS-012				99-12-27 03-02-19
	-	IEC JEDEC	IEC JEDEC JEITA	IEC JEDEC JEITA	IEC JEDEC JEITA PROJECTION

Fig 11. Package outline SOT108-1 (SO14)

9397 750 14501

SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm

SOT337-1

						-,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.4 0.9	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

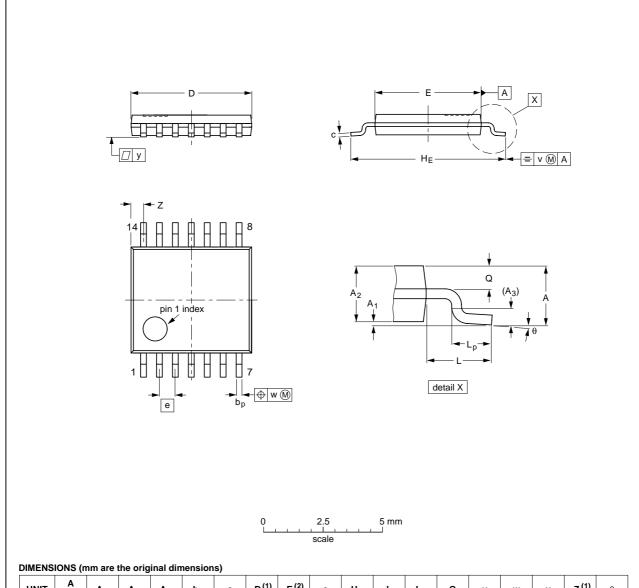

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT337-1		MO-150			99-12-27 03-02-19

Fig 12. Package outline SOT337-1 (SSOP14)

9397 750 14501

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

	(-,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

	REFER	ENCES		EUROPEAN	ISSUE DATE
IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
	MO-153				99-12-27 03-02-18
	IEC	IEC JEDEC	IEC JEDEC JEITA	IEC JEDEC JEITA	IEC JEDEC JEITA PROJECTION

Fig 13. Package outline SOT402-1 (TSSOP14)

9397 750 14501

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

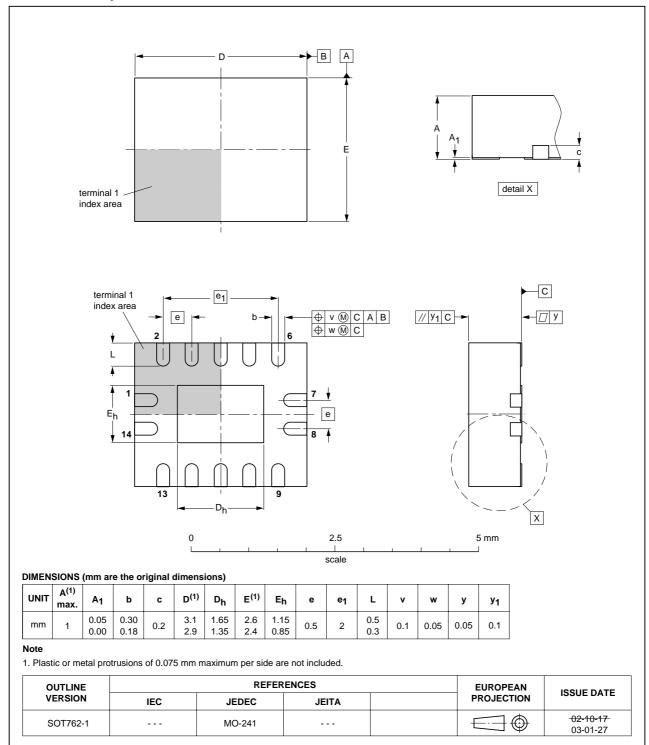


Fig 14. Package outline SOT762-1 (DHVQFN14)

9397 750 14501

Product data sheet

8-bit serial-in/parallel-out shift register

14. Revision history

Table 11: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74LV164_3	20050204	Product data sheet	-	9397 750 14501	74LV164_2
Modifications:	informatio	t of this data sheet has bo n standard of Philips Sem oe number 74LV164BQ ([iconductors	. ,	rent presentation and
74LV164_2	19980507	Product specification	-	9397 750 04431	74LV164_1
74LV164_1	19970328	Product specification		-	-

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

16. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

17. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

18. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

9397 750 14501

74LV164 **Philips Semiconductors**

8-bit serial-in/parallel-out shift register

19. Contents

1	General description
2	Features
3	Quick reference data
4	Ordering information
5	Functional diagram 3
6	Pinning information 4
6.1	Pinning 4
6.2	Pin description 4
7	Functional description 5
7.1	Function table
8	Limiting values 5
9	Recommended operating conditions 6
10	Static characteristics 6
11	Dynamic characteristics 8
12	Waveforms
13	Package outline
14	Revision history
15	Data sheet status
16	Definitions 20
17	Disclaimers
18	Contact information 20

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 4 February 2005 Document number: 9397 750 14501

