Contents VND7050AJ-E

Contents

1	Bloc	k diagram and pin description	6
2	Elec	trical specification	8
	2.1	Absolute maximum ratings	8
	2.2	Thermal data 9	9
	2.3	Main electrical characteristics	0
	2.4	Waveforms	2
	2.5	Electrical characteristics curves	5
3	Prot	ections	9
	3.1	Power limitation	9
	3.2	Thermal shutdown	9
	3.3	Current limitation	9
	3.4	Negative voltage clamp	9
4	App	lication information	0
	4.1	GND protection network against reverse battery 36	0
		4.1.1 Diode (DGND) in the ground line	1
	4.2	Immunity against transient electrical disturbances	1
	4.3	MCU I/Os protection	2
	4.4	Multisense - analog current sense	2
		4.4.1 Principle of Multisense signal generation	
		4.4.2 T _{CASE} and V _{CC} monitor	
		4.4.3 Short to VCC and OFF-state open-load detection	
	4.5	Maximum demagnetization energy (V _{CC} = 16 V)	8
5	Pack	rage and PCB thermal data	9
	5.1	PowerSSO-16 thermal data	9
6	Pack	rage information	2
	6.1	ECOPACK® 42	2
	6.2	PowerSSO-16 package information	2

Downloaded from Arrow.com.

VND70	050AJ-E	Contents
7	Order codes	44
8	Revision history	

List of tables VND7050AJ-E

List of tables

Table 1.	Pin functions	6
Table 2.	Suggested connections for unused and not connected pins	
Table 3.	Absolute maximum ratings	
Table 4.	Thermal data	9
Table 5.	Power section	
Table 6.	Switching (V _{CC} = 13 V; -40°C < T _i < 150°C, unless otherwise specified)	11
Table 7.	Logic inputs (7 V < V _{CC} < 28 V; -40°C < T _i < 150°C)	
Table 8.	Protections (7 V < V _{CC} < 18 V; -40°C < T _i < 150°C)	12
Table 9.	MultiSense (7 V < V_{CC} < 18 V; -40°C < T_i < 150°C)	
Table 10.	Truth table	21
Table 11.	MultiSense multiplexer addressing	21
Table 12.	ISO 7637-2 - electrical transient conduction along supply line	31
Table 13.	Multisense pin levels in off-state	36
Table 14.	PCB properties	39
Table 15.	Thermal parameters	41
Table 16.	PowerSSO-16 mechanical data	43
Table 17.	Device summary	44
Table 18	Document revision history	45

VND7050AJ-E List of figures

List of figures

Figure 1.	Block diagram	. 6
Figure 2.	Configuration diagram (top view)	
Figure 3.	Current and voltage conventions	. 8
Figure 4.	I _{OUT} /I _{SENSE} versus I _{OUT}	18
Figure 5.	Current sense accuracy versus I _{OUT}	
Figure 6.	Switching times and Pulse skew	
Figure 7.	MultiSense timings (current sense mode)	
Figure 8.	MultiSense timings (chip temperature and VCC sense mode)	20
Figure 9.	T _{DSTKON}	20
Figure 10.	Latch functionality - behavior in hard short circuit condition (T _{AMB} << T _{TSD})	
Figure 11.	Latch functionality - behavior in hard short circuit condition	22
Figure 12.	Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off)	23
Figure 13.	Standby mode activation	
Figure 14.	Standby state diagram	24
Figure 15.	OFF-state output current	25
Figure 16.	Standby current	25
Figure 17.	I _{GND(ON)} vs. I _{out}	25
Figure 18.	Logic Input high level voltage	25
Figure 19.	Logic Input low level voltage	26
Figure 20.	High level logic input current	26
Figure 21.	Low level logic input current	26
Figure 22.	Logic Input hysteresis voltage	26
Figure 23.	FaultRST Input clamp voltage	26
Figure 24.	Undervoltage shutdown	26
Figure 25.	On-state resistance vs. T _{case}	27
Figure 26.	On-state resistance vs. V _{CC}	27
Figure 27.	Turn-on voltage slope	27
Figure 28.	Turn-off voltage slope	27
Figure 29.	Won vs. Tcase	27
Figure 30.	Woff vs. Tcase	27
Figure 31.	I _{LIMH} vs. T _{case}	28
Figure 32.	OFF-state open-load voltage detection threshold	28
Figure 33.	V _{sense} clamp vs. T _{case}	
Figure 34.	V _{senseh} vs. T _{case}	28
Figure 35.	Application diagram	30
Figure 36.	Simplified internal structure	30
Figure 37.	Multisense and diagnostic – block diagram	33
Figure 38.	Multisense block diagram	
Figure 39.	Analogue HSD – open-load detection in off-state	35
Figure 40.	Open-load / short to VCC condition	
Figure 41.	GND voltage shift	
Figure 42.	Maximum turn off current versus inductance	
Figure 43.	PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)	
Figure 44.	PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)	
Figure 45.	R _{thi-amb} vs PCB copper area in open box free air condition (one channel on)	
Figure 46.	PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)	40
Figure 47.	Thermal fitting model of a double-channel HSD in PowerSSO-16	
Figure 48.	PowerSSO-16 package dimensions	42

1 Block diagram and pin description

FaultRST
INPUT,

Figure 1. Block diagram

Table 1. Pin functions

Name	Function
V _{CC}	Battery connection.
OUTPUT _{0,1}	Power output.
GND	Ground connection. Must be reverse battery protected by an external diode/resistor network.
INPUT _{0,1}	Voltage controlled input pins with hysteresis, compatible with 3 V and 5 V CMOS outputs. They control output switch state.
MultiSense	Multiplexed analog sense output pin; it delivers a current proportional to the selected diagnostic: load current, supply voltage or chip temperature.
SEn	Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense diagnostic pin.
SEL _{0,1}	Active high compatible with 3 V and 5 V CMOS outputs pin; they address the MultiSense multiplexer.
FaultRST	Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart.

7/

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

Connection/pin	MultiSense	N.C.	Output Input		SEn, SELx, FaultRST
Floating	Not allowed	X ⁽¹⁾	X	X	Х
To ground	Through 1 kΩ resistor	Х	Not allowed	Through 15 kΩ resistor	Through 15 kΩ resistor

1. X: do not care.

5//

DocID022469 Rev 10

2 Electrical specification

FaultRST OUTPUT_{0,1}

SEn

SEn

MultiSense

Vout

VSENSE

GAPGCFT00315

Figure 3. Current and voltage conventions

Note:

 $V_{En} = V_{OUTn} - V_{CC}$ during reverse battery condition.

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 3* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

Unit Symbol Value **Parameter** V DC supply voltage 38 V_{CC} 0.3 V -V_{CC} Reverse DC supply voltage Maximum transient supply voltage (ISO 16750-2:2010 Test B 40 V V_{CCPK} clamped to 40 V; $R_L = 4 \Omega$) Maximum jump start voltage for single pulse short circuit 28 **V_{CCJS}** protection DC reverse ground pin current 200 mΑ -I_{GND} OUTPUT_{0.1} DC output current Internally limited I_{OUT} Α Reverse DC output current 11 -lout INPUT_{0.1} DC input current I_{IN} SEn DC input current I_{SEn} -1 to 10 mΑ SEL_{0.1} DC input current ISEL I_{FR} FaultRST DC input current FaultRST DC input voltage 7.5 ٧ V_{FR}

Table 3. Absolute maximum ratings

Table 3. Absolute maximum ratings (continued)

Symbol	Parameter	Value	Unit
I _{SENSE}	MultiSense pin DC output current ($V_{GND} = V_{CC}$ and $V_{SENSE} < 0 V$)	10	mA
	MultiSense pin DC output current in reverse (V _{CC} < 0V)	-20	
E _{MAX}	Maximum switching energy (single pulse) (T _{DEMAG} = 0.4 ms; T _{jstart} = 150 °C)	30	mJ
V _{ESD}	Electrostatic discharge (JEDEC 22A-114F) - INPUT _{0,1} - MultiSense - SEn, SEL _{0,1} , FaultRST - OUTPUT _{0,1} - V _{CC}	4000 2000 4000 4000 4000	>
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
T _j	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Typ. value	Unit
R _{thj-board}	Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8) ⁽¹⁾⁽²⁾	6.4	
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-5) ⁽¹⁾⁽³⁾	59	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-7) ⁽¹⁾⁽²⁾	25	

- 1. One channel ON.
- 2. Device mounted on four-layers 2s2p PCB.
- 3. Device mounted on two-layers 2s0p PCB with 2 cm² heatsink copper trace.

2.3 Main electrical characteristics

7 V < V $_{CC}$ < 28 V; -40 °C < T $_{j}$ < 150 °C, unless otherwise specified.

All typical values refer to V_{CC} = 13 V; T_j = 25°C, unless otherwise specified.

Table 5. Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		4	13	28	
V _{USD}	Undervoltage shutdown				4	v
V _{USDReset}	Undervoltage shutdown reset				5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.3		
		I _{OUT} = 2 A; T _j = 25 °C		50		
R _{ON}	R _{ON} On-state resistance ⁽¹⁾	I _{OUT} = 2 A; T _j = 150 °C			100	mΩ
		$I_{OUT} = 2 \text{ A}; V_{CC} = 4 \text{ V}; T_j = 25 \text{ °C}$			75	
V _{clamp} Clamp voltage		$I_S = 20 \text{ mA}; T_j = -40 \text{ °C}$	38			V
V _{clamp}	Clamp Voltage	$I_S = 20 \text{ mA}; 25^{\circ}\text{C} < T_j < 150^{\circ}\text{C}$	41	46	52	
		$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{FR} = V_{SEn} \text{ 0 V};$ $V_{SEL0,1} = 0 \text{ V}; T_j = 25 \text{ °C}$			0.5	μΑ
I _{STBY}	Supply current in standby at $V_{CC} = 13 V^{(2)}$	$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{FR} = V_{SEn} 0 \text{ V}$ $V_{SEL0,1} = 0 \text{ V}; T_j = 85 ^{\circ}\text{C}^{(3)}$			0.5	μA
		V _{CC} = 13 V; V _{IN} = V _{OUT} = V _{FR} = V _{SEn} 0 V V _{SEL0,1} = 0 V; T _j = 125 °C			3	μA
t _{D_STBY}	Standby mode blanking time	$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{FR} = V_{SEL0,1} = 0 \text{ V};$ $V_{SEn} = 5 \text{ V to 0 V}$	60	300	550	μА
I _{S(ON)}	Supply current	$\begin{split} &V_{CC} = 13 \text{ V;} \\ &V_{SEn} = V_{FR} = V_{SEL0,1} = 0 \text{ V;} \\ &V_{IN0} = 5 \text{ V;} V_{IN1} = 5 \text{ V;} I_{OUT0} = 0 \text{ A;} \\ &I_{OUT1} = 0 \text{ A} \end{split}$		5	8	mA
I _{GND(ON)}	Control stage current consumption in ON state. All channels active.	V _{CC} = 13 V; V _{SEn} = 5 V; V _{FR} = V _{SEL0,1} = 0 V; V _{IN0} = 5 V; V _{IN1} = 5 V; I _{OUT0} = 2 A; I _{OUT1} = 2 A			12	mA

	(**************************************						
ı	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
	Off-state output	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 25 \text{ °C}$	0	0.01	0.5	uА	
	$V_{CC} = 13 V^{(1)}$	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$	0		3	μΛ	

Table 5. Power section (continued)

1. For each channel.

Symbol

 $I_{L(off)}$

 V_{F}

- PowerMOS leakage included.
- 3. Parameter specified by design; not subject to production test.

Output - V_{CC} diode voltage $^{(1)}$

Table 6. Switching (V_{CC} = 13 V; -40°C < T_j < 150°C, unless otherwise specified)

 $I_{OUT} = -2 \text{ A}; T_j = 150 \text{ °C}$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} ⁽¹⁾	Turn-on delay time at T _j = 25°C	$R_1 = 6.5 \Omega$	10	60	120	116
t _{d(off)} ⁽¹⁾	Turn-off delay time at T _j = 25°C	NL = 0.3 22	10	40	100	μs
(dV _{OUT} /dt) _{on} ⁽¹⁾	Turn-on voltage slope at $T_j = 25$ °C	R _L = 6.5 Ω	0.1	0.3	0.7	V/µs
(dV _{OUT} /dt) _{off} ⁽¹⁾	Turn-off voltage slope at $T_j = 25$ °C		0.1	0.32	0.7	ν/μ5
W _{ON}	Switching energy losses at turn- on (t_{won})	$R_L = 6.5 \Omega$		0.25	0.33 ⁽²⁾	mJ
W _{OFF}	Switching energy losses at turn-off (t _{woff})	$R_L = 6.5 \Omega$	_	0.23	0.31 ⁽²⁾	mJ
t _{SKEW} ⁽¹⁾	Differential pulse skew (t_{PHL} - t_{PLH})	$R_L = 6.5 \Omega$	-80	-30	20	μs

- 1. See Figure 6: Switching times and Pulse skew.
- 2. Parameter guaranteed by design and characterization; not subject to production test.

Table 7. Logic inputs (7 V < V_{CC} < 28 V; -40°C < T_j < 150°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
INPUT _{0,1} ch	NPUT _{0,1} characteristics						
V _{IL}	Input low level voltage				0.9	V	
I _{IL}	Low level input current	V _{IN} = 0.9 V	1			μA	
V _{IH}	Input high level voltage		2.1			V	
I _{IH}	High level input current	V _{IN} = 2.1 V			10	μA	
V _{I(hyst)}	Input hysteresis voltage		0.2			V	
V.	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	V	
V_{ICL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V	
FaultRST c	haracteristics	•	•	•	•		

DocID022469 Rev 10

Table 7. Logic inputs (7 V < V_{CC} < 28 V; -40°C < T_i < 150°C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V_{FRL}	Input low level voltage				0.9	V	
I _{FRL}	Low level input current	V _{IN} = 0.9 V	1			μΑ	
V _{FRH}	Input high level voltage		2.1			V	
I _{FRH}	High level input current	V _{IN} = 2.1 V			10	μA	
V _{FR(hyst)}	Input hysteresis voltage		0.2			V	
\/	Input clamp voltage	I _{IN} = 1 mA	5.3		7.5	V	
V_{FRCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		v	
SEL _{0,1} chara	acteristics (7 V < V _{CC} < 18 V)						
V _{SELL}	Input low level voltage				0.9	V	
I _{SELL}	Low level input current	V _{IN} = 0.9 V	1			μΑ	
V _{SELH}	Input high level voltage		2.1			V	
I _{SELH}	High level input current	V _{IN} = 2.1 V			10	μΑ	
V _{SEL(hyst)}	Input hysteresis voltage		0.2			V	
V	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	V	
V _{SELCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		v	
SEn charact	teristics (7 V < V _{CC} < 18 V)						
V _{SEnL}	Input low level voltage				0.9	V	
I _{SEnL}	Low level input current	V _{IN} = 0.9 V	1			μΑ	
V _{SEnH}	Input high level voltage		2.1			V	
I _{SEnH}	High level input current	V _{IN} = 2.1 V			10	μΑ	
V _{SEn(hyst)}	Input hysteresis voltage		0.2			V	
V	Input alama valtaga	I _{IN} = 1 mA	5.3		7.2	V	
V_{SEnCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7			

Table 8. Protections (7 V < V_{CC} < 18 V; -40°C < T_j < 150°C)

	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ĺ	ı	DC short circuit	V _{CC} = 13 V	21	30	42	
	^{'LIMH} current		$4 \text{ V} < \text{V}_{\text{CC}} < 18 \text{ V}^{(1)}$			42	A
	I _{LIML}	Short circuit current during thermal cycling	$V_{CC} = 13 \text{ V};$ $T_R < T_j < T_{TSD}$		10		

47/

Table 8. Protections (7 V < V_{CC} < 18 V; -40°C < T_j < 150°C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{TSD}	Shutdown temperature		150	175	200	
T _R	Reset temperature ⁽¹⁾		T _{RS} + 1	T _{RS} + 7		
T _{RS}	Thermal reset of fault diagnostic indication	V _{FR} = 0 V; V _{SEn} = 5 V	135			°C
T _{HYST}	Thermal hysteresis $(T_{TSD} - T_R)^{(1)}$			7		
ΔT_{J_SD}	Dynamic temperature	$T_j = -40 ^{\circ}\text{C};$ $V_{CC} = 13 ^{\circ}\text{V}$		60		К
t _{LATCH_RST} ⁽¹⁾	Fault reset time for output unlatch ⁽¹⁾	$V_{FR} = 5 \text{ V to 0 V};$ $V_{SEn} = 5 \text{ V}; V_{IN} = 5 \text{ V};$ $V_{SEL0,1} = 0 \text{ V}$	3	10	20	μs
V	Turn-off output voltage	$I_{OUT} = 2 \text{ A}; L = 6 \text{ mH};$ $T_j = -40 \text{ °C}$	V _{CC} - 38			٧
V_{DEMAG}	clamp	$I_{OUT} = 2 \text{ A}; L = 6 \text{ mH};$ $T_j = 25 \text{ °C to +150 °C}$	V _{CC} - 41	V _{CC} - 46	V _{CC} - 52	
V _{ON}	Output voltage drop limitation	I _{OUT} = 0.2 A		20		mV

^{1.} Parameter guaranteed by design and characterization; not subject to production test.

Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_j < 150°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V	MultiSense clamp	V _{SEn} = 0 V; I _{SENSE} = 1 mA	-17		-12	٧
V _{SENSE_CL}	voltage	V _{SEn} = 0 V; I _{SENSE} = -1 mA		7		
Current Sense ch	aracteristics					
K _{OL}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.01 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	440			
dK _{cal} /K _{cal} ⁽¹⁾⁽²⁾	$dK_{cal}/K_{cal}^{(1)(2)} \begin{array}{l} \text{Current sense ratio} \\ \text{drift at calibration} \\ \text{point} \end{array} \begin{array}{l} I_{OUT} = 0.01 \text{ A to } 0.05 \text{ A}; \\ I_{cal} = 30 \text{ mA}; \\ V_{SENSE} = 0.5 \text{ V}; V_{SEn} = 5 \text{ V} \end{array} .$		-30		30	%
K _{LED}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	530	1450	2200	
$dK_{LED}/K_{LED}^{(1)(2)}$	Current sense ratio drift	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-25		25	%
Κ ₀	I _{OUT} /I _{SENSE}	I _{OUT} = 0.2 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	830	1400	1935	
$dK_0/K_0^{(1)(2)}$	Current sense ratio drift	I _{OUT} = 0.2 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-20		20	%
К ₁	K_1 I_{OUT}/I_{SENSE} $I_{OUT} = 0.4 \text{ A; } V_{SENSE} = 4 \text{ V; } V_{SEn} = 5 \text{ V}$		915	1300	1700	

Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_{j} < 150°C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
dK ₁ /K ₁ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 0.4 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-15		15	%
K ₂	I _{OUT} /I _{SENSE}	I _{OUT} = 1.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	980	1230	1470	
dK ₂ /K ₂ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 1.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-10		10	%
К ₃	I _{OUT} /I _{SENSE}	I _{OUT} = 4.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	1095	1215	1335	
$dK_3/K_3^{(1)(2)}$	Current sense ratio drift	$V_{SEn} = 5 \text{ V}$			5	%
		MultiSense disabled: V _{SEn} = 0 V;	0		0.5	μA
		MultiSense disabled: -1 V < V _{SENSE} < 5 V ⁽¹⁾	-0.5		0.5	μΑ
I _{SENSE0}		$\begin{split} &\text{MultiSense enabled:} \\ &\text{$V_{\text{SEn}} = 5$ V;} \\ &\text{All channel ON;} \\ &\text{$I_{\text{OUTX}} = 0$ A;} \\ &\text{Ch_X diagnostic selected;} \\ &-\text{E.g. Ch}_0: \\ &\text{$V_{\text{IN0}} = 5$ V; V_{\text{IN1}} = 5$ V;} \\ &\text{$V_{\text{SEL0}} = 0$ V; V_{\text{SEL1}} = 0$ V;} \\ &\text{$I_{\text{OUT0}} = 0$ A; I_{\text{OUT1}} = 2$ A} \end{split}$	0		2	μА
		$\begin{split} &\text{MultiSense enabled:} \\ &\text{V}_{\text{SEn}} = 5 \text{ V;} \\ &\text{Ch}_{\text{X}} \text{ channel OFF;} \\ &\text{Ch}_{\text{X}} \text{ diagnostic selected;} \\ &- \text{E.g. Ch}_{0}\text{:} \\ &\text{V}_{\text{IN0}} = 0 \text{ V; V}_{\text{IN1}} = 5 \text{ V;} \\ &\text{V}_{\text{SEL0}} = 0 \text{ V; V}_{\text{SEL1}} = 0 \text{ V;} \\ &\text{I}_{\text{OUT1}} = 2 \text{ A} \end{split}$	0		2	μΑ
V _{OUT_MSD} ⁽¹⁾	Output Voltage for MultiSense shutdown	$V_{SEn} = 5 \text{ V};$ $R_{SENSE} = 2.7 \text{ k}\Omega$ $- \text{ E.g. Ch}_0:$ $V_{IN0} = 5 \text{ V}; V_{SEL0} = 0 \text{ V};$ $V_{SEL1} = 0 \text{ V}; I_{OUT0} = 2 \text{ A}$		5		V
V _{SENSE_SAT}	Multisense saturation voltage	$\begin{split} &V_{CC} = 7 \text{ V;} \\ &R_{SENSE} = 2.7 \text{ k}\Omega; \\ &V_{SEn} = 5 \text{ V;} \text{ V}_{IN0} = 5 \text{ V;} \\ &V_{SEL0} = 0 \text{ V;} \text{ V}_{SEL1} = 0 \text{ V;} \\ &I_{OUT0} = 4.5 \text{ A;} \text{ T}_j = 150 ^{\circ}\text{C} \end{split}$	5			V
ISENSE_SAT ⁽¹⁾	CS saturation current	$\begin{aligned} &V_{CC} = 7 \text{ V; } V_{SENSE} = 4 \text{ V;} \\ &V_{IN0} = 5 \text{ V; } V_{SEn} = 5 \text{ V;} \\ &V_{SEL0} = 0 \text{ V; } V_{SEL1} = 0 \text{ V;} \\ &T_j = 150 ^{\circ}\text{C} \end{aligned}$	4			mA

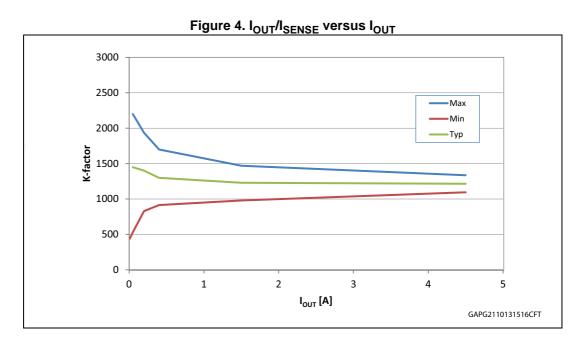
Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_{j} < 150°C) (continued)

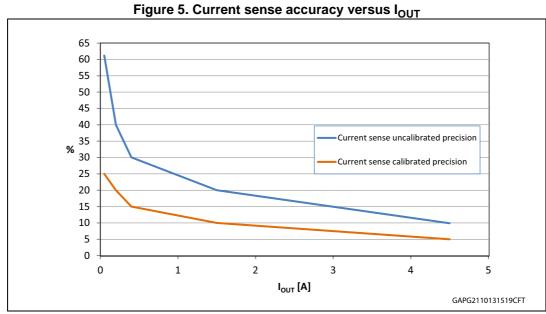
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{OUT_SAT} ⁽¹⁾	Output saturation current	$V_{CC} = 7 \text{ V; } V_{SENSE} = 4 \text{ V;}$ $V_{IN0} = 5 \text{ V; } V_{SEn} = 5 \text{ V;}$ $V_{SEL0} = 0 \text{ V; } V_{SEL1} = 0 \text{ V;}$ $T_j = 150^{\circ}\text{C}$	6			Α
Off-state diagnos	tic					
V _{OL}	Off-state open-load voltage detection threshold	$\begin{split} & V_{\text{SEn}} = 5 \text{ V; Ch}_{\text{X}} \text{ OFF;} \\ & \text{Ch}_{\text{X}} \text{ diagnostic selected} \\ & - \text{E.g: Ch}_{0} \\ & V_{\text{IN0}} = 0 \text{ V; V}_{\text{SEL0}} = 0 \text{ V;} \\ & V_{\text{SEL1}} = 0 \text{ V;} \end{split}$	2	3	4	V
I _{L(off2)}	Off-state output sink current	V _{IN} = 0 V; V _{OUT} = V _{OL}	-100		-15	μA
^t DSTKON	Off-state diagnostic delay time from falling edge of INPUT (see Figure 9)	$\begin{split} &V_{\text{SEn}} = 5 \text{ V; Ch}_{\text{X}} \text{ ON to OFF} \\ &\text{transition} \\ &Ch_{\text{X}} \text{ diagnostic selected} \\ &- \text{E.g. Ch}_{0} \\ &V_{\text{IN0}} = 5 \text{ V to 0 V;} \\ &V_{\text{SEL0}} = 0 \text{ V; V}_{\text{SEL1}} = 0 \text{ V;} \\ &I_{\text{OUT0}} = 0 \text{ A; V}_{\text{OUT}} = 4 \text{ V} \end{split}$	100	350	700	μs
t _{D_OL_V}	Settling time for valid OFF-state open load diagnostic indication from rising edge of SEn	$V_{IN0} = 0 \text{ V}; V_{IN1} = 0 \text{ V};$ $V_{FR} = 0 \text{ V}; V_{SEL0} = 0 \text{ V};$ $V_{SEL1} = 0 \text{ V}; V_{OUT0} = 4 \text{ V};$ $V_{SEn} = 0 \text{ V} \text{ to 5 V}$			60	μs
t _{D_VOL}	Off-state diagnostic delay time from rising edge of V _{OUT}	$\begin{split} &V_{\text{SEn}} = 5 \text{ V; Ch}_{\text{X}} \text{ OFF} \\ &Ch_{\text{X}} \text{ diagnostic selected} \\ &- \text{E.g: Ch}_{0} \\ &V_{\text{IN0}} = 0 \text{ V; } V_{\text{SEL0}} = 0 \text{ V;} \\ &V_{\text{SEL1}} = 0 \text{ V;} \\ &V_{\text{OUT}} = 0 \text{ V to 4 V} \end{split}$		5	30	μs
Chip temperature	analog feedback					
		$V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V}; V_{SEL1} = 5 \text{ V}; V_{IN0,1} = 0 \text{ V}; R_{SENSE} = 1 \text{ K}\Omega; T_j = -40 ^{\circ}\text{C}$	2.325	2.41	2.495	V
V_{SENSE_TC}	MultiSense output voltage proportional to chip temperature	$V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V}; V_{SEL1} = 5 \text{ V}; V_{IN0,1} = 0 \text{ V}; R_{SENSE} = 1 \text{ K}\Omega; T_j = 25 \text{ °C}$	1.985	2.07	2.155	٧
		$V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V}; V_{SEL1} = 5 \text{ V}; V_{IN0,1} = 0 \text{ V}; R_{SENSE} = 1 \text{ K}\Omega; T_j = 125 °C$	1.435	1.52	1.605	V
dV _{SENSE_TC} /dT ⁽¹⁾	Temperature coefficient	T _j = -40 °C to 150 °C		-5.5		mV/K
Transfer function		V_{SENSE_TC} (T) = V_{SENSE_TC} - T_0)	(T ₀) + c	IV _{SENS}	SE_TC / C	T) * Tk

DocID022469 Rev 10

Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_{j} < 150°C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC} supply voltage	ge analog feedback					
V _{SENSE_VCC}	MultiSense output voltage proportional to V _{CC} supply voltage	$V_{CC} = 13 \text{ V}; V_{SEn} = 5 \text{ V};$ $V_{SEL0} = 5 \text{ V}; V_{SEL1} = 5 \text{ V};$ $V_{IN0,1} = 0 \text{ V};$ $R_{SENSE} = 1 \text{ K}\Omega$	3.16	3.23	3.3	V
Transfer function ⁽³⁾	3)	V _{SENSE_VCC} = V _{CC} / 4				
Fault diagnostic	feedback (see <i>Table 10</i>)				
V _{SENSEH}	MultiSense output voltage in fault condition	$\begin{split} &V_{CC} = 13 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega \\ &- \text{ E.g. Ch}_0 \text{ in open load} \\ &V_{IN0} = 0 \text{ V; } V_{SEn} = 5 \text{ V;} \\ &V_{SEL0} = 0 \text{ V; } V_{SEL1} = 0 \text{ V;} \\ &I_{OUT0} = 0 \text{ A; } V_{OUT} = 4 \text{ V} \end{split}$	5		6.6	V
I _{SENSEH}	MultiSense output current in fault condition	V _{CC} = 13 V; V _{SENSE} = 5 V	7	20	30	mA
MultiSense timin	gs (current sense mod	e - see <i>Figure 7</i>)				
^t DSENSE1H	Current sense settling time from rising edge of SEn	$\begin{aligned} &V_{\text{IN}} = 5 \text{ V; } V_{\text{SEn}} = 0 \text{ V to} \\ &5 \text{ V; } R_{\text{SENSE}} = 1 \text{ k}\Omega; \\ &R_{\text{L}} = 6.5 \Omega \end{aligned}$			60	μs
^t DSENSE1L	Current sense disable delay time from falling edge of SEn	V_{IN} = 5 V; V_{SEn} = 5 V to 0 V; R_{SENSE} = 1 k Ω ; R_L = 6.5 Ω		5	20	μs
^t DSENSE2H	Current sense settling time from rising edge of INPUT	$\begin{aligned} &V_{\text{IN}} = 0 \text{ V to 5 V;} \\ &V_{\text{SEn}} = 5 \text{ V; } R_{\text{SENSE}} = 1 \text{ k}\Omega; \\ &R_{\text{L}} = 6.5 \Omega \end{aligned}$		100	250	μs
$\Delta { m t}_{ m DSENSE2H}$	Current sense settling time from rising edge of I _{OUT} (dynamic response to a step change of I _{OUT})	$V_{\text{IN}} = 5 \text{ V}; V_{\text{SEn}} = 5 \text{ V};$ $R_{\text{SENSE}} = 1 \text{ k}\Omega;$ $I_{\text{SENSE}} = 90 \text{ % of }$ $I_{\text{SENSEMAX}}; R_{\text{L}} = 6.5 \Omega$			100	μs
t _{DSENSE2L}	Current sense turn-off delay time from falling edge of INPUT	$\begin{aligned} V_{\text{IN}} &= 5 \text{ V to 0 V;} \\ V_{\text{SEn}} &= 5 \text{ V; R}_{\text{SENSE}} = 1 \text{ k}\Omega; \\ R_{\text{L}} &= 6.5 \Omega \end{aligned}$		50	250	μs
MultiSense timin	gs (chip temperature s	ense mode - see <i>Figure 8</i>)				
^t DSENSE3H	V _{SENSE_TC} settling time from rising edge of SEn	$\begin{aligned} &V_{SEn} = 0 \text{ V to 5 V;} \\ &V_{SEL0} = 0 \text{ V; } V_{SEL1} = 5 \text{ V;} \\ &R_{SENSE} = 1 \text{ k}\Omega \end{aligned}$			60	μs
^t DSENSE3L	V _{SENSE_TC} disable delay time from falling edge of SEn	V_{SEn} = 5 V to 0 V; V_{SEL0} = 0 V; V_{SEL1} = 5 V; R_{SENSE} = 1 k Ω			20	μs
	•	•	•	•	•	


Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_i < 150°C) (continued)


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
MultiSense timin	gs (V _{CC} voltage sense	mode - see <i>Figure 8</i>)				
t _{DSENSE4H}	V _{SENSE_VCC} settling time from rising edge of SEn	$\begin{split} &V_{SEn} = 0 \text{ V to 5 V;} \\ &V_{SEL0} = 5 \text{ V; } V_{SEL1} = 5 \text{ V;} \\ &R_{SENSE} = 1 \text{ k}\Omega \end{split}$			60	μs
t _{DSENSE4L}	V _{SENSE_VCC} disable delay time from falling edge of SEn	$V_{SEn} = 5 \text{ V to 0 V;}$ $V_{SEL0} = 5 \text{ V; } V_{SEL1} = 5 \text{ V;}$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs
MultiSense timin	gs (Multiplexer transition	on times) ⁽⁴⁾				
t _{D_XtoY}	MultiSense transition delay from Ch _X to Ch _Y	$\begin{aligned} &V_{IN0} = 5 \text{ V; } V_{IN1} = 5 \text{ V;} \\ &V_{SEn} = 5 \text{ V; } V_{SEL1} = 0 \text{ V;} \\ &V_{SEL0} = 0 \text{ V to 5 V;} \\ &I_{OUT0} = 0 \text{A; } I_{OUT1} = 3 \text{ A;} \\ &R_{SENSE} = 1 \text{ k}\Omega \end{aligned}$			20	μs
t _{D_CStoTC}	MultiSense transition delay from current sense to T _C sense	$V_{IN0} = 5 \text{ V; } V_{SEn} = 5 \text{ V;}$ $V_{SEL0} = 0 \text{ V; } V_{SEL1} = 0 \text{ V to}$ $5 \text{ V; } I_{OUT0} = 1.5 \text{ A;}$ $R_{SENSE} = 1 \text{ k}\Omega$			60	μs
t _{D_TCto} CS	MultiSense transition delay from T _C sense to current sense	$V_{IN0} = 5 \text{ V; } V_{SEn} = 5 \text{ V; } V_{SEL0} = 0 \text{ V; } V_{SEL1} = 5 \text{ V to } 0 \text{ V; } I_{OUT0} = 1.5 \text{ A; } R_{SENSE} = 1 \text{ k}\Omega$			20	μs
t _{D_CSto} vcc	MultiSense transition delay from current sense to V _{CC} sense	$V_{IN1} = 5 \text{ V}; V_{SEn} = 5 \text{ V};$ $V_{SEL0} = 5 \text{ V}; V_{SEL1} = 0 \text{ V to}$ $5 \text{ V}; I_{OUT1} = 1.5A;$ $R_{SENSE} = 1 \text{ k}\Omega$			60	μs
t _{D_} vcctocs	MultiSense transition delay from V _{CC} sense to current sense	$V_{IN1} = 5 \text{ V}; V_{SEn} = 5 \text{ V};$ $V_{SEL0} = 5 \text{ V}; V_{SEL1} = 5 \text{ V to}$ $0 \text{ V}; I_{OUT1} = 1.5 \text{ A};$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs
^t D_TCtoVCC	MultiSense transition delay from T _C sense to V _{CC} sense	$V_{CC} = 13 \text{ V}; T_J = 125^{\circ}\text{C};$ $V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V to}$ $5 \text{ V}; V_{SEL1} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs
t _{D_} vcc _{to} Tc	MultiSense transition delay from V _{CC} sense to T _C sense	$V_{CC} = 13 \text{ V}; T_J = 125^{\circ}\text{C};$ $V_{SEn} = 5 \text{ V}; V_{SEL0} = 5 \text{ V to}$ $0 \text{ V}; V_{SEL1} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs
[†] D_CStoVSENSEH	MultiSense transition delay from stable current sense on Ch _X to V _{SENSEH} on Ch _Y	$V_{IN0} = 5 \text{ V}; V_{IN1} = 0 \text{ V};$ $V_{SEn} = 5 \text{ V}; V_{SEL1} = 0 \text{ V};$ $V_{SEL0} = 0 \text{ V} \text{ to 5 V};$ $I_{OUT0} = 3 \text{ A}; V_{OUT1} = 4 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs

- 1. Parameter guaranteed by design and characterization; not subject to production test.
- 2. All values refer to V_{CC} = 13 V; T_j = 25°C, unless otherwise specified.
- 3. V_{CC} sensing and T_{C} sensing are referred to GND potential.
- 4. Transition delay are measured up to +/- 10% of final conditions.

DocID022469 Rev 10

Downloaded from Arrow.com.

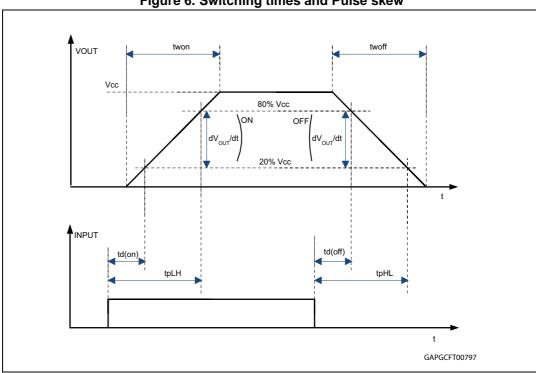
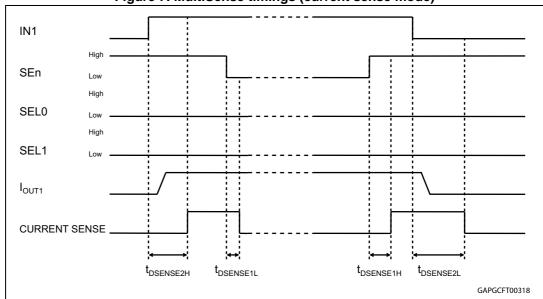



Figure 6. Switching times and Pulse skew

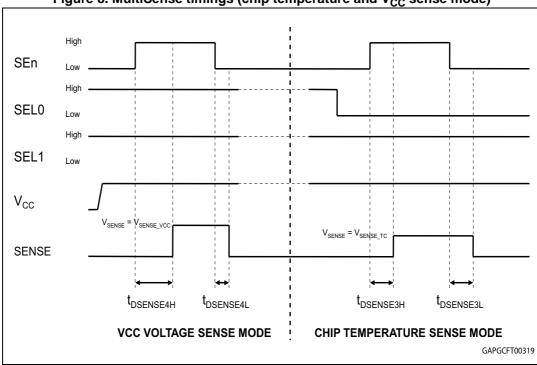
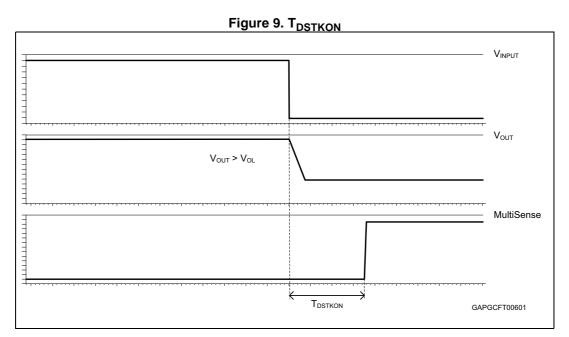



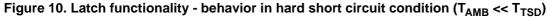
Figure 8. MultiSense timings (chip temperature and V_{CC} sense mode)

577

Table 10. Truth table

Mode	Conditions	IN _X	FR	SEn	SELX	OUT _X	MultiSense	Comments	
Standby	All logic inputs low	L	L	L	L	L	Hi-Z	Low quiescent current consumption	
	Nominal load connected; T _j < 150°C		L	Х			L		
Normal		Н	L		fer to	Н	Refer to	Outputs configured for auto-restart	
		Н	Н		Table 11			Outputs configured for latch off	
	O control on the out	L	Х			L			
Overload	$I_j > I_{TSD}$ or		L	Refer to Table 11		H ``	Refer to Table 11	Output cycles with temperature hysteresis	
	$\Delta T_j > \Delta T_{j_SD}$	Н	Н	•		L		Output latches off	
Under- voltage	V _{CC} < V _{USD} (falling)	Х	Х	Х	Х	L L	Hi-Z Hi-Z	Re-start when V _{CC} > V _{USD} + V _{USDhyst} (rising)	
Off-state	Short to V _{CC}	L	Х	Ref	er to	Н	Refer to		
diagnostics	Open-load	L	Х	Tab	ole 11	Н	Table 11	External pull up	
Negative output voltage	Inductive loads turn-off	L	х	_	fer to	< 0 V	Refer to Table 11		

Table 11. MultiSense multiplexer addressing


			MUX	MultiSense output					
SEn	SEL ₁	SEL ₀	channel	Normal mode	Overload	Off-state diag. ⁽¹⁾	Negative output		
L	Х	Х		Hi-Z					
Н	L	L	Channel 0 diagnostic	I _{SENSE} = 1/K * I _{OUT0}	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z		
Н	L	Н	Channel 1 diagnostic	I _{SENSE} = 1/K * I _{OUT1}	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z		
Н	Н	L	T _{CHIP} Sense	V _{SENSE} = V _{SENSE_TC}					
Н	Н	Н	V _{CC} Sense	V _{SENSE} = V _{SENSE_VCC}					

I. In case the output channel corresponding to the selected MUX channel is latched off while the relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic.

Example 1: FR = 1; IN₀ = 0; OUT₀ = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0 Example 2: FR = 1; IN₀ = 0; OUT₀ = latched, V_{OUT0} > V_{OL}; MUX channel = channel 0 diagnostic; Mutisense = V_{SENSEH}

2.4 Waveforms

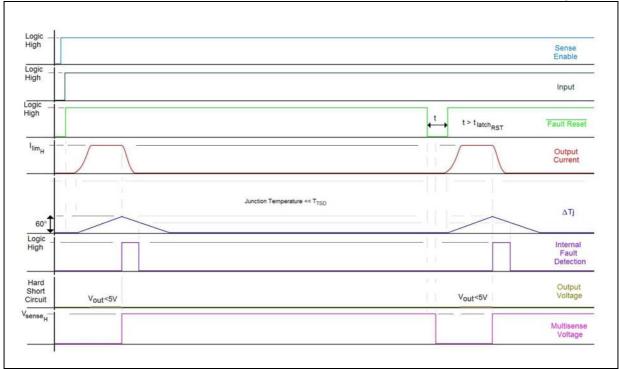
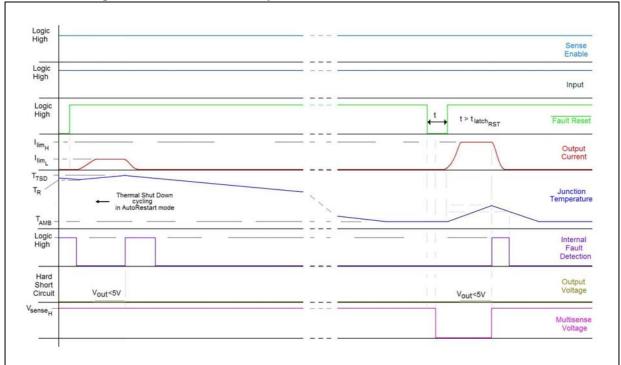



Figure 11. Latch functionality - behavior in hard short circuit condition

57

Figure 12. Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off)

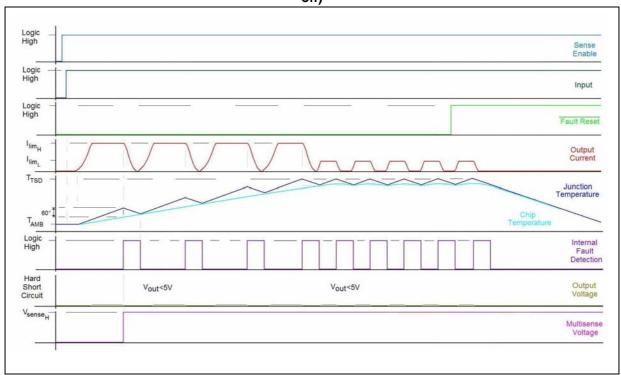
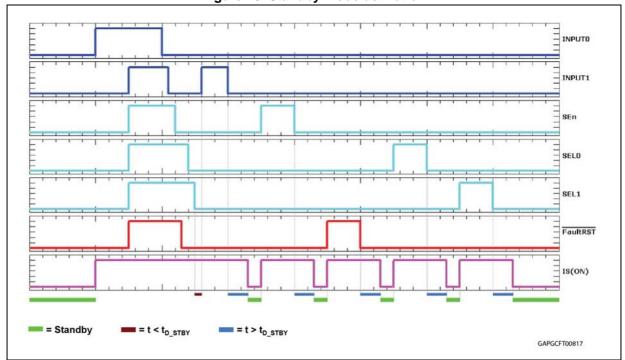
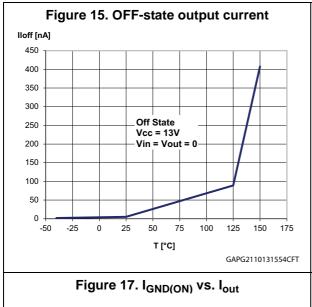



Figure 13. Standby mode activation


DocID022469 Rev 10

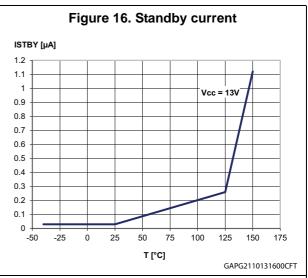
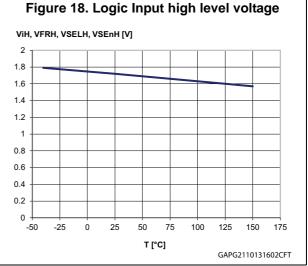
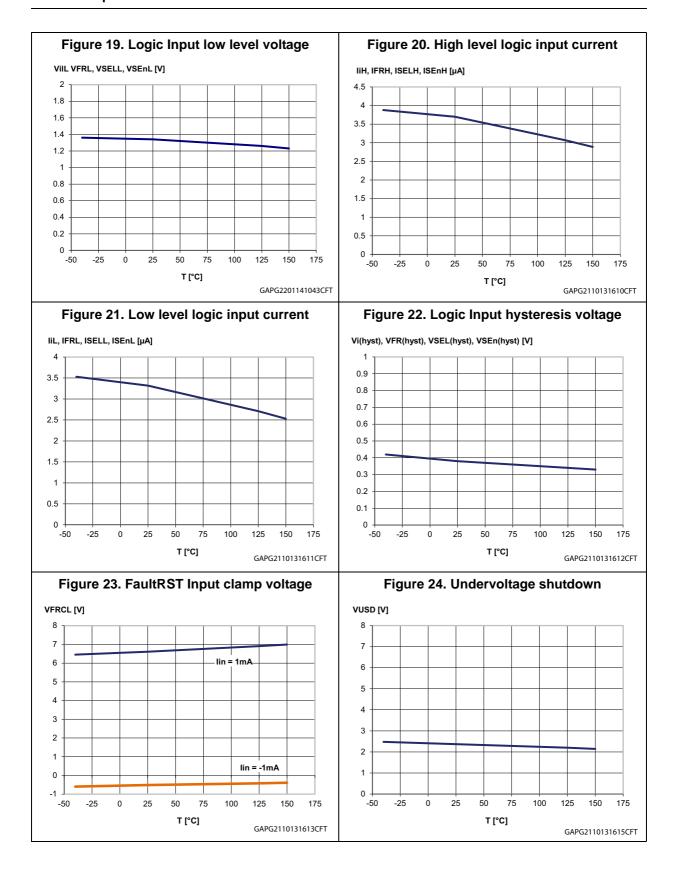
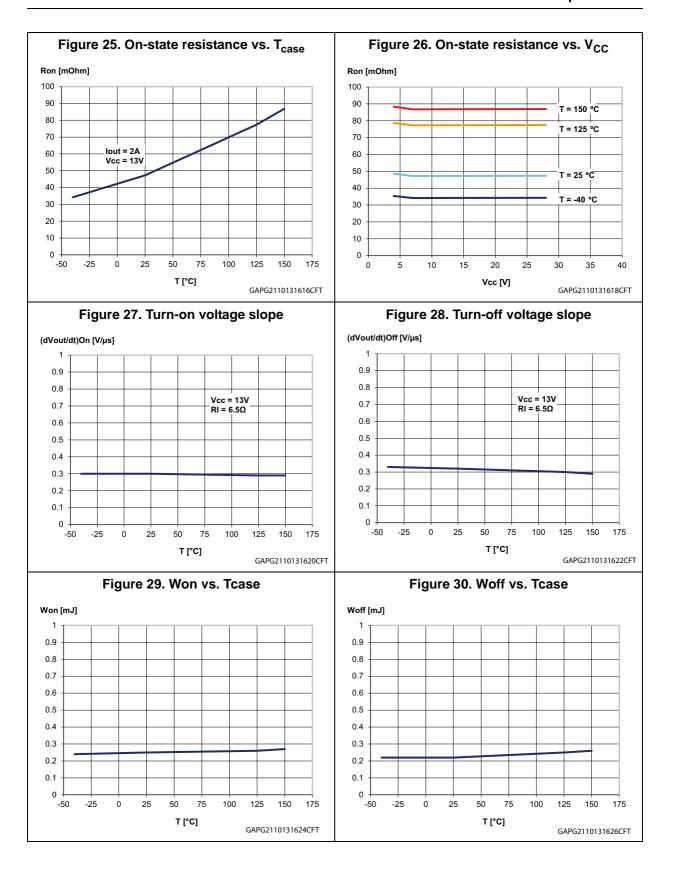
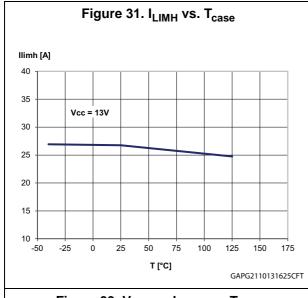

Normal Operation INx = LowINx = HighAND OR FaultRST = Low FaultRST = High t > t _{D_STBY} AND OR SEn = Low SEn = High AND OR SELx = LowSELx = High **Stand-by Mode** GAPGCFT00598

Figure 14. Standby state diagram




2.5 Electrical characteristics curves




IGND(ON) [mA] 9.0 8.0 7.0 6.0 Vcc = 13V lout = 2A 5.0 4.0 3.0 2.0 1.0 0.0 -25 50 75 150 T [°C] GAPG2110131601CFT

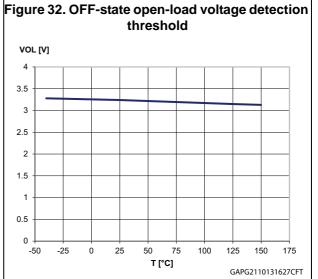
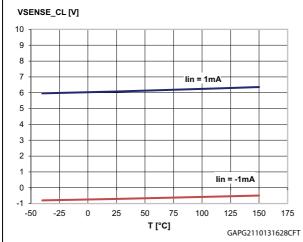
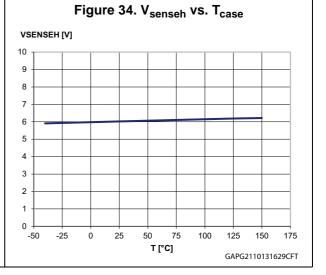




Figure 33. V_{sense} clamp vs. T_{case}

VND7050AJ-E Protections

3 Protections

3.1 Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue.

3.2 Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FaultRST pin, the device switches on again as soon as its junction temperature drops to T_R (see *Table 8*, FaultRST = Low) or remains off (FaultRST = High).

3.3 Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, I_{LIMH}, by operating the output power MOSFET in the active region.

3.4 Negative voltage clamp

In case the device drives inductive load, the output voltage reaches negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG} (see *Table 8*), allowing the inductor energy to be dissipated without damaging the device.

4 Application information

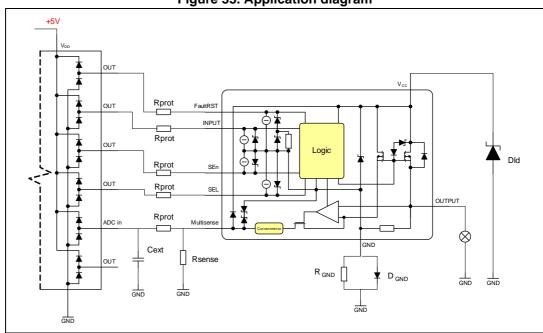


Figure 35. Application diagram

4.1 GND protection network against reverse battery

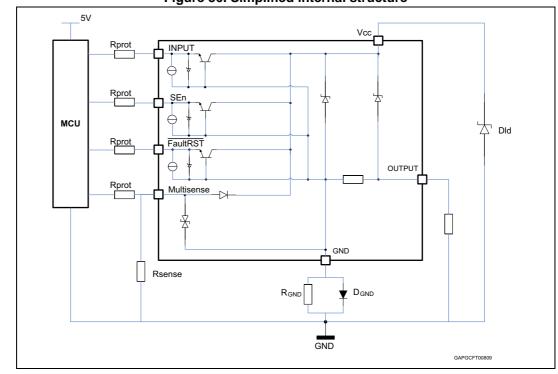


Figure 36. Simplified internal structure

30/48

DocID022469 Rev 10

4.1.1 Diode (D_{GND}) in the ground line

A resistor (typ. R_{GND} = 4.7 $k\Omega$) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (\approx 600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

4.2 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V_{CC} pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in *Table 12*.

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through $V_{\rm CC}$ and GND terminals.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Ta	able 12. ISO 7637-2 - el	ectrical transien	t conduction along	g supply line
	Test pulse severity			

Test Pulse 2011(E)	level with functional p	e severity n Status II performance itus	Minimum number of pulses or test time	Burst cycle / pulse repetition time		Pulse duration and pulse generator internal impedance			
	Level	U _s ⁽¹⁾	une						
1	III	-112V	500 pulses	0,5 s		2ms, 10Ω			
2a	III	+55V	500 pulses	0,2 s	5 s	50μs, 2Ω			
3a	IV	-220V	1h	90 ms	100 ms	0.1μs, 50Ω			
3b	IV	+150V	1h	90 ms	100 ms	0.1μs, 50Ω			
4 ⁽²⁾	IV	-7V	1 pulse			100ms, 0.01Ω			
Load dump according to ISO 16750-2:2010									
Test B ⁽³⁾		40V	5 pulse	1 min		400ms, 2Ω			

- 1. U_S is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.
- 2. Test pulse from ISO 7637-2:2004(E).
- 3. With 40 V external suppressor referred to ground (-40°C < T_i < 150°C).

4.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line both to prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

Equation 1

 $V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$

Calculation example:

For V_{CCpeak} = -150 V; $I_{latchup} \ge 20 mA$; $V_{OH\mu C} \ge 4.5 V$

 $7.5 \text{ k}\Omega \leq R_{prot} \leq 140 \text{ k}\Omega.$

Recommended values: $R_{prot} = 15 \text{ k}\Omega$

4.4 Multisense - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (Multisense) delivering the following signals:

- · Current monitor: current mirror of channel output current
- V_{CC} monitor: voltage propotional to V_{CC}
- T_{CASE}: voltage propotional to chip temperature

Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in *Table 11*.

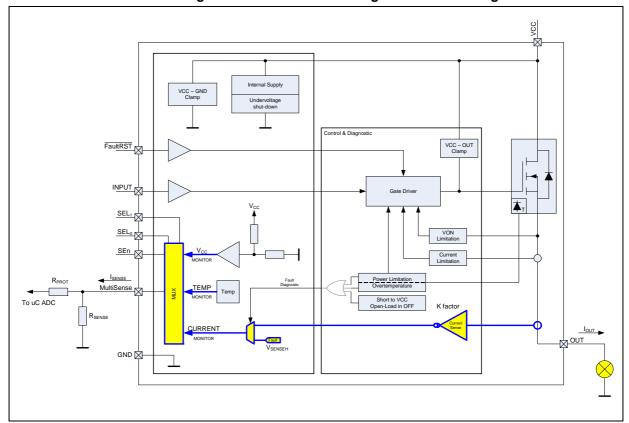


Figure 37. Multisense and diagnostic – block diagram

4.4.1 Principle of Multisense signal generation

Sense MOS

Main MOS

Voet Monitor

Temperature monitor

Multisense Switch Block

Fault

AULTISENSE

To uC ADC

Report

Figure 38. Multisense block diagram

Current monitor

When current mode is selected in the Multisense, this output is capable to provide:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage V_{SENSEH}

The current delivered by the current sense circuit, I_{SENSE} , can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE} , allowing continuous load monitoring and abnormal condition detection.

Normal operation (channel ON, no fault, SEn active)

While device is operating in normal conditions (no fault intervention), V_{SENSE} calculation can be done using simple equations

Current provided by Multisense output: I_{SENSE} = I_{OUT}/K

Voltage on R_{SENSE}: V_{SENSE} = R_{SENSE} · I_{SENSE} = R_{SENSE} · I_{OUT}/K

577

Where:

- V_{SENSE} is voltage measurable on R_{SENSE} resistor
- I_{SENSE} is current provided from Multisense pin in current output mode
- I_{OUT} is current flowing through output
- K factor represent the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying ratio between I_{OUT} and I_{SENSE}.

Failure flag indication

In case of power limitation/overtemperature, the fault is indicated by the Multisense pin which is switched to a "current limited" voltage source, V_{SENSEH} (see *Table 9*).

In any case, the current sourced by the Multisense in this condition is limited to I_{SENSEH} (see *Table 9*).

The typical behavior in case of overload or hard short circuit is shown in *Figure 10*, *Figure 11* and *Figure 12*.

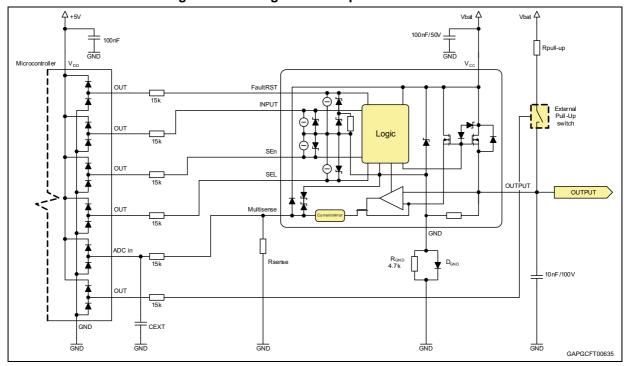


Figure 39. Analogue HSD - open-load detection in off-state

577

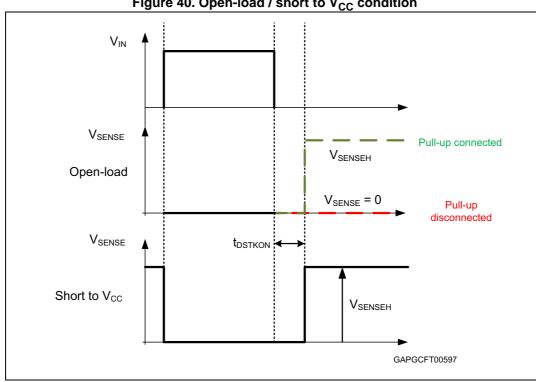


Figure 40. Open-load / short to V_{CC} condition

Table 13. Multisense pin levels in off-state

Condition	Output	Multisense	SEn		
	V SV	Hi-Z	Hi-Z L		
Open load	V _{OUT} > V _{OL}	V _{SENSEH}	Н		
Open-load	V • V	Hi-Z	L		
	V _{OUT} < V _{OL}	0	H .		
Charte V	V SV	Hi-Z	L		
Short to V _{CC}	$V_{OUT} > V_{OL}$	V _{SENSEH}	L H		
Nominal	V V .	Hi-Z L			
	V _{OUT} < V _{OL}	0	Н		

T_{CASE} and V_{CC} monitor 4.4.2

In this case, MultiSense output operates in voltage mode and output level is referred to device GND. Care must be taken in case a GND network protection is used, because of a voltage shift is generated between device GND and the microcontroller input GND reference.

Figure 41 shows link between $V_{MEASURED}$ and real V_{SENSE} signal.

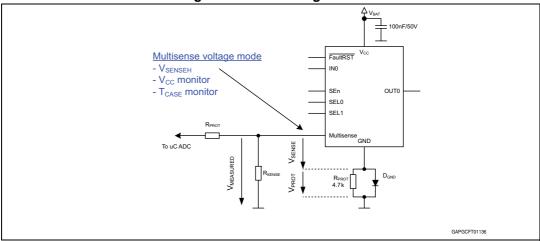


Figure 41. GND voltage shift

V_{CC} monitor

Battery monitoring channel provides V_{SENSE} = V_{CC} / 4.

Case temperature monitor

Case temperature monitor is capable to provide information about actual device temperature. Since diode is used for temperature sensing, following equation describe link between temperature and output V_{SENSE} level:

$$V_{SENSE_TC}\left(T\right) = V_{SENSE_TC}\left(T_{0}\right) + dV_{SENSE_TC} / dT * (T - T_{0})$$
 where $dV_{SENSE_TC} / dT \sim typically -5.5 mV/K (for temperature range (-40°C to +150°C).$

4.4.3 Short to V_{CC} and OFF-state open-load detection

Short to V_{CC}

A short circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit.

OFF-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU} .

It is preferable V_{PU} to be switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected.

 R_{PU} must be selected in order to ensure $V_{OUT} > V_{OLmax}$ in accordance with to following equation:

Equation 2

$$R_{PU} < \frac{V_{PU} - 4}{I_{L(off2)min @ 4V}}$$

DocID022469 Rev 10

4.5 Maximum demagnetization energy ($V_{CC} = 16 \text{ V}$)

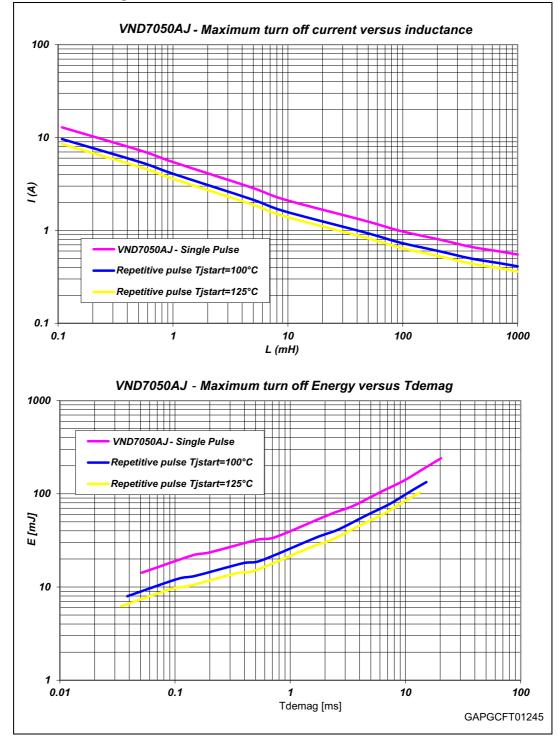


Figure 42. Maximum turn off current versus inductance

Note:

Values are generated with $R_L = 0 \Omega$.

In case of repetitive pulses, \bar{T}_{jstart} (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

5 Package and PCB thermal data

5.1 PowerSSO-16 thermal data

Figure 43. PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)

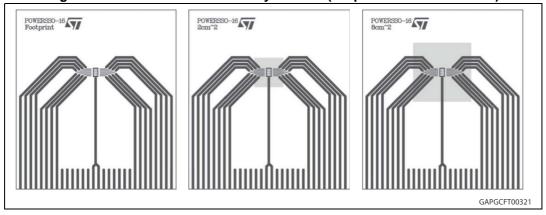
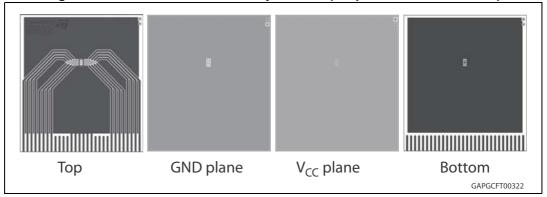



Figure 44. PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)

Table 14. PCB properties

Dimension	Value
Board finish thickness	1.6 mm +/- 10%
Board dimension	77 mm x 86 mm
Board material	FR4
Copper thickness (top and bottom layers)	0.070 mm
Copper thickness (inner layers)	0.035 mm
Thermal via separation	1.2 mm
Thermal via diameter	0.3 mm +/- 0.08 mm
Copper thickness on via	0.025 mm
Footprint dimension (top layer)	2.2 mm x 3.9 mm
Heatsink copper area dimension (bottom layer)	Footprint, 2 cm ² or 8 cm ²

DocID022469 Rev 10

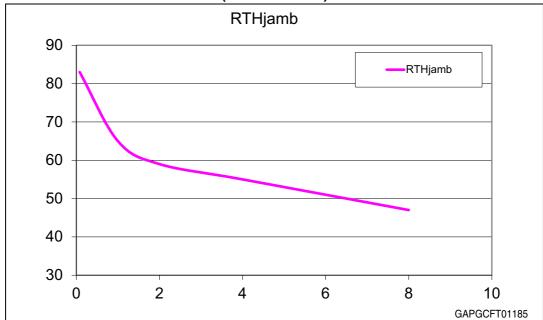
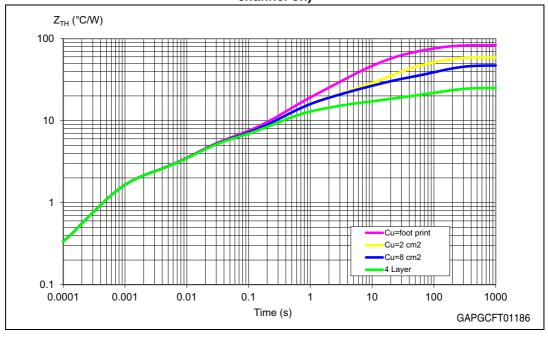



Figure 45. R_{thj-amb} vs PCB copper area in open box free air condition (one channel on)

Figure 46. PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)

Equation 3: pulse calculation formula

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$

where $\delta = t_P/T$

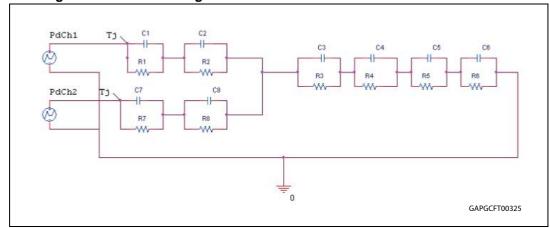


Figure 47. Thermal fitting model of a double-channel HSD in PowerSSO-16

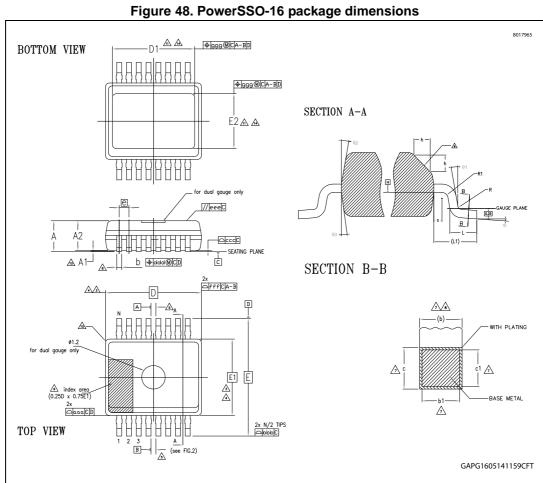
Note:

The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Table 15. Thermal parameters

Area/island (cm ²)	Footprint	2	8	4L
R1 = R7 (°C/W)	1.8			
R2 = R8 (°C/W)	3.2			
R3 (°C/W)	8	8	8	6
R4 (°C/W)	14	6	6	4
R5 (°C/W)	30	20	10	3
R6 (°C/W)	26	20	18	7
C1 = C7 (W.s/°C)	0.00035			
C2 = C8 (W.s/°C)	0.005			
C3 (W.s/°C)	0.05			
C4 (W.s/°C)	0.2	0.3	0.3	0.4
C5 (W.s/°C)	0.4	1	1	4
C6 (W.s/°C)	3	5	7	18

Package information VND7050AJ-E


Package information 6

ECOPACK® 6.1

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at www.st.com.

ECOPACK® is an ST trademark.

PowerSSO-16 package information 6.2

VND7050AJ-E Package information

Table 16. PowerSSO-16 mechanical data

Symbol		Millimeters		
	Min.	Тур.	Max.	
Θ	0°		8°	
Θ1	0°			
Θ2	5°		15°	
Θ3	5°		15°	
А			1.70	
A1	0.00		0.10	
A2	1.10		1.60	
b	0.20		0.30	
b1	0.20	0.25	0.28	
С	0.19		0.25	
c1	0.19	0.20	0.23	
D		4.90 BSC		
D1	2.90		3.50	
е		0.50 BSC		
E		6.00 BSC		
E1		3.90 BSC		
E2	2.20		2.80	
h	0.25		0.50	
L	0.40	0.60	0.85	
L1		1.00 REF		
N		16		
R	0.07			
R1	0.07			
S	0.20			
	Tolerance of form and position			
aaa		0.10		
bbb		0.10		
ccc	0.08			
ddd	0.08			
eee	0.10			
fff	0.10			
999		0.15		

Order codes VND7050AJ-E

7 Order codes

Table 17. Device summary

Package	Order codes		
Гаскауе	Tube	Tape and reel	
PowerSSO-16	VND7050AJ-E	VND7050AJTR-E	

VND7050AJ-E Revision history

8 Revision history

Table 18. Document revision history

Date	Revision	Changes
08-Nov-2011	1	Initial release.
09-Nov-2012	2	Updated <i>Table 1: Pin functions</i> and <i>Table 2: Suggested connections</i> for unused and not connected pins Table 3: Absolute maximum ratings: - V _{CCJS} : added row - I _{SENSE} : E _{MAX} , V _{ESD} : updated parameter and value V _{SENSE} : removed row Updated <i>Table 4: Thermal data</i> Table 5: Power section: - V _{USDReset} : I _{SND(ON)} : added row - V _{clamp} : updated test condition and values Updated <i>Table 6: Switching (VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified)</i> Table 7: Logic inputs (7 V < VCC < 28 V; -40°C < Tj < 150°C): - V _{ICL} , V _{SELCL} , V _{SENCL} : updated max value Table 8: Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C): - I _{LIMH} , T _R : added note - t _{LATCH_RST} : updated typ and max values - V _{ON} : updated test condition Table 9: MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C): - V _{SENSE_CL} , t _{DSENSE1L} , t _{DSENSE2H} , t _{DSENSE2H} , t _{DSENSE2L} , t _{DSENSE3H} , t
29-Nov-2012	3	Table 9: MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C): - K_{OL} , K_{LED} , K_0 , K_1 , K_2 , K_3 : updated values

Revision history VND7050AJ-E

Table 18. Document revision history (continued)

Date	Revision	Changes
05-Apr-2013	4	Updated Table 2: Suggested connections for unused and not connected pins Table 3: Absolute maximum ratings: - V _{CCPK} : updated parameter - E _{MAX} : updated parameter and value l _{OUT} I _{SENSE} : updated value V _{SENSE} : removed row Table 4: Thermal data: - R _{thj} -board, R _{thj} -amb: updated values Table 6: Switching (VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified): - W _{ON} , W _{OFF} : updated values Table 9: MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C): - dK _{Cal} /K _{Cal} : added row - K _{OL} , K _{LED} , K _O , K ₁ , K ₂ , K ₃ : updated values - VOUT_MSD, VSENSE_TC, VSENSE_VCC: updated test conditions Table 11: MultiSense multiplexer addressing: - updated negative output Removed Table: Electrical transient requirements (part 1/3), Table: Electrical transient requirements (part 2/3) and Table: Electrical transient requirements (part 3/3) Updated Section 3.2: Thermal shutdown, Section 3.4: Negative voltage clamp and Section 4.1.1: Diode (DGND) in the ground line Removed Section: Load dump protection Added Section 4.2: Immunity against transient electrical disturbances Updated Figure 39: Analogue HSD – open-load detection in off-state Updated Figure 41: GND voltage shift Added Section 4.5: Maximum demagnetization energy (VCC = 16 V) Updated Chapter 5: Package and PCB thermal data Updated Section 6.2: PowerSSO-16 package information
18-Sep-2013	5	Updated disclaimer.
21-Oct-2013	6	Updated Features list. Updated Table 6: Switching (VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified) Table 9: MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C): - K _{OL} , K _{LED} , K ₀ , K ₁ , K ₂ : updated value Added Figure 4: IOUT/ISENSE versus IOUT and Figure 5: Current sense accuracy versus IOUT Added Section 2.5: Electrical characteristics curves Updated Figure 42: Maximum turn off current versus inductance
20-Nov-2013	7	Table 6: Switching (VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified): - t _{SKEW} : updated values

VND7050AJ-E Revision history

Table 18. Document revision history (continued)

Date	Revision	Changes
22-Jan-2014	8	Updated Figure 19: Logic Input low level voltage and Figure 31: ILIMH vs. Tcase
05-Jun-2014	9	Updated Section 6.2: PowerSSO-16 package information
13-Oct-2014	10	Updated Table 16: PowerSSO-16 mechanical data

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

57