2. Internal peripheral resources

- · General-purpose ports : Maximum 108 ports
- DMAC (DMA Controller)

Maximum of 5 channels able to operate simultaneously

2 transfer sources (internal peripheral/software)

Activation source can be selected using software

Addressing mode specifies full 32-bit addresses (increment/decrement/fixed)

Transfer mode (demand transfer/burst transfer/step transfer/block transfer)

Transfer data size selectable from 8/16/32-bit

Multi-byte transfer enabled (by software)

DMAC descriptor in I/O areas (200_H to 240_H, 1000_H to 1024_H)

A/D converter (successive approximation type)

10-bit resolution: maximum 32 channels

Conversion time: minimum 1 µs

· External interrupt inputs : maximum 16 channels

3 channels shared with CAN RX or I2C pins

Bit search module (for REALOS)

Function to search the first bit position of "1", "0", "changed" from the MSB (most significant bit) within one word

• LIN-USART (full duplex double buffer): 4 or 7 channels

Clock synchronous/asynchronous selectable

Sync-break detection

Internal dedicated baud rate generator

• I2C* bus interface (supports 400 kbps): 2 channels

Master/slave transmission and reception

Arbitration function, clock synchronization function

· CAN controller (C-CAN): 1 channel

Maximum transfer speed: 1 Mbps

32 transmission/reception message buffers

Sound generator: 1 channel

Tone frequency: PWM frequency divide-by-two (reload value + 1)

· Alarm comparator : 1 channel

Monitor external voltage

Generate an interrupt in case of voltage lower/higher than the defined thresholds (reference voltage)

- 16-bit PPG timer : maximum 16 channels
- · 16-bit reload timer: 8 channels
- 16-bit free-run timer: 8 channels (1 channel each for ICU and OCU)
- Input capture: maximum 8 channels (operates in conjunction with the free-run timer)
- Output compare: maximum 8 channels (operates in conjunction with the free-run timer)
- Up/Down counter: 2 channels (2*8-bit or 1*16-bit)
- · Watchdog timer
- · Real-time clock
- · Low-power consumption modes : Sleep/stop mode function
- Low voltage detection circuit

(Continued)

(Continued)

- Clock supervisor
 - Monitors the sub-clock (32 kHz) and the main clock (4 MHz) , and switches to a recovery clock (CR oscillator, etc.) when the oscillations stop.
- · Clock modulator
- · Clock monitor
- Sub-clock calibration
 - Corrects the real-time clock timer when operating with the 32 kHz or CR oscillator
- Main oscillator stabilization timer
 Generates an interrupt in sub-clock mode after the stabilization wait time has elapsed on the 23-bit stabilization wait time counter
- Sub-oscillator stabilization timer

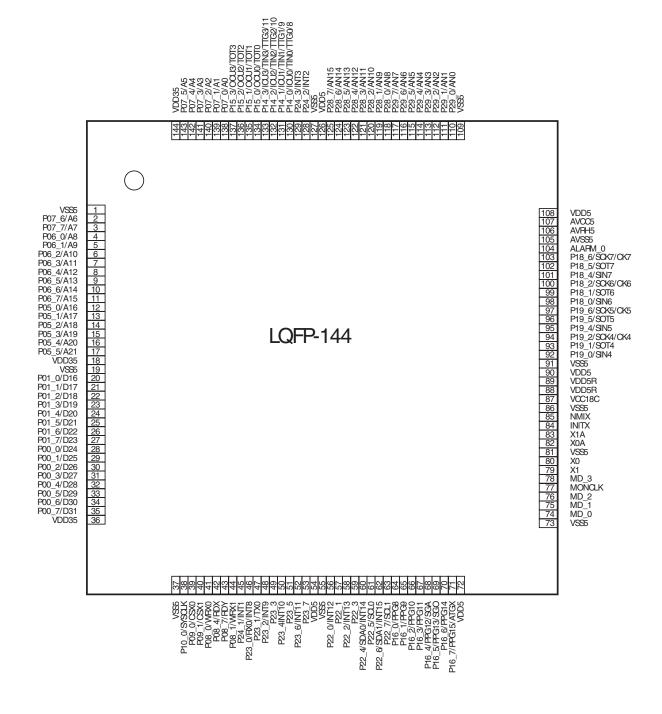
 Generates an interrupt in main clock mode after the stabilization wait time has elapsed on the 15-bit stabilization wait time counter

3. Package and technology

- Package : QFP-144
- CMOS 180 nm technology
- Power supply range 3 V to 5 V (1.8 V internal logic provided by a step-down voltage converter)
- Operating temperature range: between 40°C and + 125°C
- Note * Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system provided that the system conforms to the I²C Standard Specification as defined by Philips.

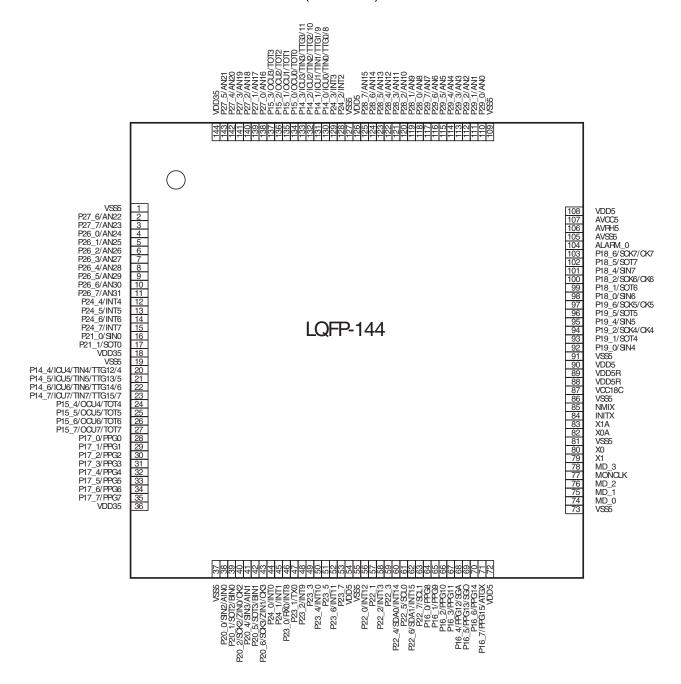
■ PRODUCT LINEUP

Feature	MB91FV460B	MB91F464HB	MB91F466HA
Max. core frequency (CLKB)	100 MHz	100 MHz	96 MHz
Max. resource frequency (CLKP)	50 MHz	50 MHz	48 MHz
Max. external bus frequency (CLKT)	50 MHz	50 MHz	48 MHz
Max. CAN frequency (CLKCAN)	50 MHz	50 MHz	48 MHz
Technology	0.18um	0.18um	0.18um
Watchdog	yes	yes	yes
Watchdog (RC osc. based)	yes (disengageable)	yes	yes
Bit Search	yes	yes	yes
Reset input (INITX)	yes	yes	yes
Clock Modulator	yes	yes	yes
Clock Monitor	yes	yes	yes
Low Power Mode	yes	yes	yes
DMA	5 ch	5 ch	5 ch
MMU/MPU	MPU (16 ch)*1	MPU (8 ch)*1	MPU (8 ch)*1
Flash memory	Internal Flash memory 2112KB + external emulation SRAM with 64bit read data	416 KByte	832 KByte
Flash Protection	yes	yes	yes
D-RAM	64 KByte	16 KByte	24 KByte
ID-RAM	64 KByte	16 KByte	16 KByte
Flash-Cache (Instruction cache)	16 KByte	8 KByte	8 KByte
Boot-ROM / BI-ROM	16 KByte Boot Flash + 1KB Boot ROM	4 KByte	4 KByte
RTC	1 ch	1 ch	1 ch
Free Running Timer	12 ch	8 ch⁴²	8 ch ⁺²
ICU	10 ch	MD_3=0: 8 ch MD_3=1: 4 ch*3	MD_3=0: 8 ch MD_3=1: 4 ch*3
OCU	8 ch	MD_3=0: 8 ch MD_3=1: 4 ch ⁻⁴	MD_3=0: 8 ch MD_3=1: 4 ch*4
Reload Timer	16 ch	8 ch⁺⁵	8 ch*5
PPG 16-bit	32 ch	MD_3=0: 16 ch MD_3=1: 8 ch ⁻⁶	MD_3=0: 16 ch MD_3=1: 8 ch ^{*6}
Sound Generator	1 ch (old) + 1 ch (new)	1 ch (old)	1 ch (old)
Up/Down Counter (8/16 bit)	4 ch (8-bit) / 2 ch (16-bit)	MD_3=0: 2 ch (8-bit) / 1 ch (16bit) MD_3=1: NA ⁻⁷	MD_3=0: 2 ch (8-bit) / 1 ch (16bit) MD_3=1: NA ⁻⁷
C_CAN	6 ch (128msg)	1 ch (32msg)	1 ch (32msg)
LIN-USART	16 ch (FIFO)	MD_3=0: 3 ch + 4 ch FIFO*8 MD_3=1: 4 ch FIFO	MD_3=0: 3 ch + 4 ch FIFO'8 MD_3=1: 4 ch FIFO
I ² C (400K)	8 ch	2 ch	2 ch


Feature	MB91FV460B	MB91F464HB	MB91F466HA	
R external bus	yes (32bit addr, 32bit data)	MD_3=0: no MD_3=1: yes (22bit addr, 16bit data)	MD_3=0: no MD_3=1: yes (22bit addr, 16bit data)	
xternal Interrupts	32 ch	MD_3=0: 16 ch MD_3=1: 12 ch ^{*9}	MD_3=0: 16 ch MD_3=1: 12 ch ^{*9}	
MI Interrupts	1 ch	1 ch	1 ch	
DC (10-bit)	32 ch + 22 ch	MD_3=0: 32 ch MD_3=1: 16 ch	MD_3=0: 32 ch MD_3=1: 16 ch	
larm Comparator	2 ch	1 ch	1 ch	
upply Supervisor (low voltage detection)	yes	yes	yes	
lock Supervisor	yes	yes	yes	
lain clock oscillator	4 MHz	4 MHz	4 MHz	
ub clock oscillator	32kHz	32kHz	32kHz	
C oscillator	100kHz / 2MHz	100kHz / 2MHz	100kHz / 2MHz	
LL	x 25	x 25	x 25	
SU4	yes	no	no	
DSU	yes (32 BP)*1	yes (16 BP)*1	yes (16 BP)*1	
upply voltage	1.8V + 3V/5V	3V/5V	3V/5V	
egulator	no	yes	yes	
ower consumption	1.5 W	< 1.3 W	< 1.3 W	
emperature Range (Ta)	070 C	-40125 C	-40125 C	
ackage	BGA-896	QFP-144	QFP-144	
ower on to PLL run	< 20 ms	< 20 ms	< 20 ms	
ash Download Time	< 8 sec. typical	< 5 sec. typical	< 5 sec. typical	
ower on to PLL run	< 20 ms	< 20 ms	< 20 ms	

- *1: MPU channels use EDSU breakpoint registers (shared operation between MPU and EDSU).
- *2: Free Running Timer: MD3=0 : CH 1 and 0 cannot select external clock (bit7 of TCCS1,0) MD3=1: CH 3, 2, 1, and 0 cannot select external clock (bit7 of TCCS3,2,1,0)
- *3: ICU: MD3=1: Do not set PFR = 1 & EPFR = 1 (for LIN Synch Field detect).
- *4: OCU: MD3=1: You cannot use external out-port (but, OCU-function is active.)
- *5: Reload Timer: MD3=1: CH 7, 6, 5, and 4 cannot select external event
- *6: PPG: MD3=1: You can use CH15 to 8 of PPG. CH15 to12 cannot select external trigger.
- *7: Up/Down Counter: MD3=1: You can use Timer-mode only.
- *8: LIN-USART CH 0 (shared with external bus) can be used for asynchronous mode only.
- *9: External Interrupts: INT7 to INT4(shared with external bus) can be used for MD3=0 mode only. INT0 (shared with external bus) can be used for MD3=0 mode only.

■ PIN ASSIGNMENT


1. MB91F464HB, MB91F466HA with MD 3=1

(TOP VIEW)

2. MB91F46HB, MB91F466HA with MD_3=0

(TOP VIEW)

■ PIN DESCRIPTION

1. MB91F464HB, MB91F466HA with MD_3=1

Pin no.	Pin name	I/O	I/O circuit type*	Function
2, 3	P07_6, P07_7	I/O	В	General-purpose input/output port
2, 3	A6, A7			Signal pins of external address bus (bit6 to bit7)
4 to 11	P06_0 to P06_7	I/O	В	General-purpose input/output port
4 10 11	A8 to A15	1/0	Ь	Signal pins of external address bus (bit8 to bit15)
12 to 17	P05_0 to P05_5	I/O	Α	General-purpose input/output port
12 10 17	A16 to A21	1/0		Signal pins of external address bus (bit16 to bit21)
20 to 27	P01_0 to P01_7	I/O	Α	General-purpose input/output port
20 10 27	D16 to D23	1/0		Signal pins of external data bus (bit16 to bit23)
28 to 35	P00_0 to P00_7	1/0	Α	General-purpose input/output port
20 10 33	D24 to D31	I/O	A	Signal pins of external data bus (bit24 to bit31)
38	P10_0	I/O	^	General-purpose input/output port
30	SYSCLK		A	External bus clock output pin
39	P09_0	I/O	I/O A	General-purpose input/output port
39	CSX0			Chip select output pins
40	P09_1	I/O	А	General-purpose input/output port
40	CSX1			Chip select output pins
41	P08_0	I/O	А	General-purpose input/output port
41	WRX0	1/0		External write strobe output pins
42	P08_4	1/0	I/O A	General-purpose input/output port
42	RDX	1/0		External read strobe output pin
43	P08_7	1/0	А	General-purpose input/output port
43	RDY	I/O		External ready input pin
	P08_1			General-purpose input/output port
44	WRX1	I/O	A	External write strobe output pins
11	INT0	1/0		External interrupt input, can only be used in general-purpose IO port mode
45	P24_1	1/0	^	General-purpose input/output port
45	INT1	I/O	A	External interrupt input pins
	P23_0			General-purpose input/output port
46	RX0	I/O	Α	RX input pin of CAN0
	INT8			External interrupt input pins
47	P23_1	1/0	_	General-purpose input/output port
47	TX0	I/O	Α	TX output pin of CAN0

Pin no.	Pin name	I/O	I/O circuit type*	Function
48	P23_2	I/O	Δ.	General-purpose input/output port
40	INT9] 1/0	Α	External interrupt input pins
49	P23_3	I/O	Α	General-purpose input/output port
50	P23_4	I/O		General-purpose input/output port
50	INT10] 1/0	A	External interrupt input pin
51	P23_5	I/O	Α	General-purpose input/output port
50	P23_6	I/O		General-purpose input/output port
52	INT11] 1/0	A	External interrupt input pin
53	P23_7	I/O	Α	General-purpose input/output port
E.C.	P22_0	1/0	Λ.	General-purpose input/output port
56	INT12	I/O	A	External interrupt input pin
57	P22_1	I/O	Α	General-purpose input/output port
50	P22_2	1/0		General-purpose input/output port
58	INT13	I/O	A	External interrupt input pin
59	P22_3	I/O	Α	General-purpose input/output port
	P22_4	I/O	С	General-purpose input/output port
60	SDA0			I ² C bus DATA input/output pin (open drain)
	INT14			External interrupt input pin
61	P22_5	I/O	С	General-purpose input/output port
01	SCL0] 1/0		I ² C bus clock input/output pin (open drain)
	P22_6			General-purpose input/output port
62	SDA1	I/O	С	I ² C bus DATA input/output pin (open drain)
	INT15			External interrupt input pin
60	P22_7	1/0		General-purpose input/output port
63	SCL1	I/O	С	I ² C bus clock input/output pin (open drain)
0.4	P16_0	1/0		General-purpose input/output port
64	PPG8	I/O	A	Output pins of PPG timer
C.F.	P16_1	1/0		General-purpose input/output port
65	PPG9	I/O	Α	Output pins of PPG timer
66	P16_2	1/0	Δ.	General-purpose input/output port
66	PPG10	I/O	Α	Output pins of PPG timer
67	P16_3	1/0	Λ	General-purpose input/output port
67	PPG11	I/O	A	Output pins of PPG timer
	P16_4			General-purpose input/output port
68	PPG12	I/O	Α	Output pins of PPG timer
	SGA			SGA output pin of sound generator

Pin no.	Pin name	I/O	I/O circuit type*	Function
	P16_5			General-purpose input/output port
69	PPG13	I/O	Α	Output pins of PPG timer
	SGO			SG0 output pin of sound generator
70	P16_6	I/O	^	General-purpose input/output port
70	PPG14	1/0	A	Output pins of PPG timer
	P16_7			General-purpose input/output port
71	PPG15	I/O	Α	Output pins of PPG timer
	ATGX			A/D converter external trigger input pin
74 to 76	MD_0 to MD_2	I	G	Mode setting pins
77	MONCLK	0	М	Clock monitor pin
78	MD_3	I	Н	Mode setting pin
79	X1	_	J1	Clock (oscillation) output
80	X0	_	J1	Clock (oscillation) input
82	X0A	_	J2	Sub clock (oscillation) input
83	X1A	_	J2	Sub clock (oscillation) output
84	INITX	I	Н	External reset input pin
85	NMIX	I	Н	Non-maskable interrupt input pin
00	P19_0	I/O	А	General-purpose input/output port
92	SIN4			Data input pin of USART4
00	P19_1	I/O	А	General-purpose input/output port
93	SOT4	1/0		Data output pin of USART4
	P19_2		А	General-purpose input/output port
94	SCK4	I/O		Clock input/output pin of USART4
	CK4			External clock input pin of free-run timer 4
05	P19_4	1/0	^	General-purpose input/output port
95	SIN5	I/O	A	Data input pin of USART5
00	P19_5	1/0	_	General-purpose input/output port
96	SOT5	I/O	A	Data output pin of USART5
	P19_6			General-purpose input/output port
97	SCK5	I/O	Α	Clock input/output pin of USART5
	CK5			External clock input pin of free-run timer 5
00	P18_0	1/0		General-purpose input/output port
98	SIN6	I/O	A	Data input pin of USART6
00	P18_1	1/0	Δ.	General-purpose input/output port
99	SOT6	I/O	A	Data output pin of USART6

Pin no.	Pin name	I/O	I/O circuit type*	Function
	P18_2		А	General-purpose input/output port
100	SCK6	I/O		Clock input/output pin of USART6
	CK6			External clock input pin of free-run timer 6
101	P18_4	I/O	А	General-purpose input/output port
101	SIN7	1/0	A	Data input pin of USART7
102	P18_5	I/O	^	General-purpose input/output port
102	SOT7	1/0	A	Data output pin of USART7
	P18_6	I/O		General-purpose input/output port
103	SCK7		Α	Clock input/output pin of USART7
	CK7			External clock input pin of free-run timer 7
104	ALARM_0	0	N	Alarm comparator input pin
110 to 117	P29_0 to P29_7	I/O	В	General-purpose input/output port
110 10 117	AN0 to AN7			Analog input pins of A/D converter
118 to 125	P28_0 to P28_7	I/O	В	General-purpose input/output port
110 10 123	AN8 to AN15	1/0		Analog input pins of A/D converter
128	P24_2	I/O	А	General-purpose input/output port
120	INT2	1/0		External interrupt input pin
129	P24_3	I/O	Α	General-purpose input/output port
129	INT3	1/0		External interrupt input pin
	P14_0 to P14_3			General-purpose input/output port
130 to 133	ICU0 to ICU3	I/O	A	Input capture input pins
130 10 133	TIN0 to TIN3	1/0	_ ^	External trigger input pins of reload timer
	TTG0/8 to TTG3/11			External trigger input pins of PPG timer
	P15_0 to P15_3			General-purpose input/output port
134 to 137	OCU0 to OCU3	I/O	Α	Output compare output pins
	TOT0 to TOT3			Reload timer output pins
138 to 143	P07_0 to P07_5	I/O	В	General-purpose input/output port
130 10 143	A0 to A5	1/0	В	Signal pins of external address bus (bit0 to bit5)

[Power supply/Ground pins]

i ower suppriy/cround pinsj						
Pin no.	Pin name	I/O	Function			
1, 19, 37, 55, 73, 81, 86, 91, 109, 127	VSS5		Ground pins			
54, 72, 90, 108, 126	VDD5		Power supply pins			
88, 89	VDD5R		Power supply pins for internal regulator			
105	AVSS5	Supply	Analog ground pin for A/D converter			
107	AVCC5		Power supply pin for A/D converter			
106	AVRH5		Reference power supply pin for A/D converter			
87	VCC18C		Capacitor connection pin for internal regulator			
18, 36, 144	VDD35		Power supply pins for external bus part of I/O ring			

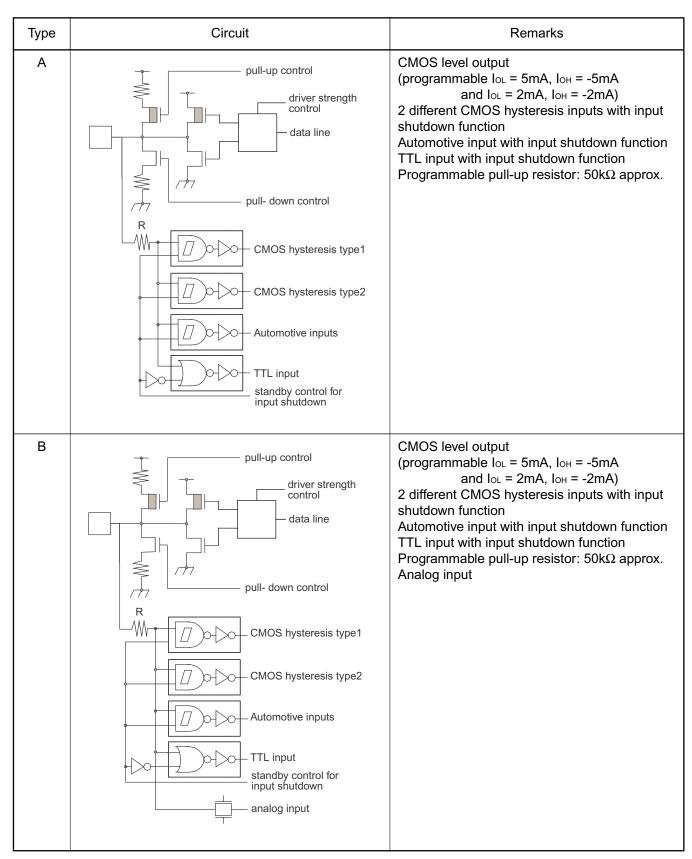
2. MB91F464HB, MB91F466HA with MD_3=0

Pin no.	Pin name	I/O	I/O circuit type*	Function
2 to 3	_6 to P27_7	I/O	В	General-purpose input/output ports
AN	22 to AN23	1/0		Analog input pins of A/D co
4 to 11	_0 to P26_7	I/O	В	General-purpose input/output ports
AN	24 to AN31		Ь	Analog input pins of A/D converter
12 to 15	_4 to P24_7	I/O	۸	General-purpose input/output ports
12 to 15	T4 to INT7	1/0	A	External interrupt input pins
16	P21_0	I/O	А	General-purpose input/output ports
10	SIN0	1/0	_ A	Data input pin of USART0
17	P21_1	I/O	۸	General-purpose input/output ports
	SOT0		Α	Data output pin of USART0
P14	_4 to P14_7			General-purpose input/output ports
20 to 23	U4 to ICU7	I/O	A	Input capture input pins
20 to 23	N4 to TIN7	1/0	_ A	External trigger input pins of reload timer
TTG4/	12 to TTG7/15			External trigger input pins of PPG timer
P15	_4 to P15_7	I/O		General-purpose input/output ports
24 to 27 OC	U4 to OCU7			Output compare output pins
ТО	T4 to TOT7			Reload timer output pins
28 to 35	_0 to P17_7	I/O) A	General-purpose input/output ports
28 to 33	G0 to PPG7	1/0		Output pins of PPG timer
	P20_0			General-purpose input/output ports
38	SIN2	I/O	A	Data input pin of USART2
	AIN0			Up/down counter input pin
	P20_1			General-purpose input/output ports
39	SOT2	I/O	Α	Data output pin of USART2
	BIN0			Up/down counter input pin
	P20_2			General-purpose input/output ports
40	SCK2	I/O	A	Clock input/output pin of USART2
40	ZIN0	1/0	_ A	Up/down counter input pin
	CK2			External clock input pin of free-run timer 2
	P20_4			General-purpose input/output ports
41	SIN3	I/O	Α	Data input pin of USART3
	AIN1			Up/down counter input pin
	P20_5			General-purpose input/output ports
42	SOT3	I/O	Α	Data output pin of USART3
	BIN1			Up/down counter input pin

Pin no.	Pin name	I/O	I/O circuit type*	Function
	P20_6			General-purpose input/output ports
43	SCK3	I/O	A	Clock input/output pin of USART3
43	ZIN1			Up/down counter input pin
	CK3			External clock input pin of free-run timer 3
44	P24_0	I/O	Α	General-purpose input/output ports
44	INT0			External interrupt input pin
45	P24_1	I/O	Α	General-purpose input/output ports
45	INT1	7 1/0	_ ^	External interrupt input pin
	P23_0			General-purpose input/output port
46	RX0	I/O	Α	RX input pin of CAN0
	INT8			External interrupt input pins
47	P23_1	1/0	^	General-purpose input/output port
47	TX0	I/O	A	TX output pin of CAN0
48	P23_2	I/O	А	General-purpose input/output port
40	INT9			External interrupt input pins
49	P23_3	I/O	А	General-purpose input/output port
50	P23_4	I/O	A	General-purpose input/output port
50	INT10	7 1/0		External interrupt input pin
51	P23_5	I/O	А	General-purpose input/output port
52	P23_6	I/O	А	General-purpose input/output port
52	INT11	7 1/0		External interrupt input pin
53	P23_7	I/O	А	General-purpose input/output port
56	P22_0	I/O	A	General-purpose input/output port
50	INT12	7 1/0		External interrupt input pin
57	P22_1	I/O	А	General-purpose input/output port
58	P22_2	I/O	^	General-purpose input/output port
36	INT13	7 1/0	A	External interrupt input pin
59	P22_3	I/O	А	General-purpose input/output port
	P22_4			General-purpose input/output ports
60	SDA0	I/O	С	I ² C bus DATA input/output pin (open drain)
	INT14			External interrupt input pin
61	P22_5	1/0	С	General-purpose input/output ports
61	SCL0	I/O		I ² C bus clock input/output pin (open drain)
	P22_6			General-purpose input/output ports
62	SDA1	I/O	С	I ² C bus DATA input/output pin (open drain)
	INT15			External interrupt input pin

Pin no.	Pin name	I/O	I/O circuit type*	Function
63	P22_7	I/O	С	General-purpose input/output ports
03	SCL1	1/0		I ² C bus clock input/output pin (open drain)
64 to 67	P16_0 to P16_3	1/0	^	General-purpose input/output ports
64 to 67	PPG8 to PPG11	I/O	A	Output pins of PPG timer
	P16_4			General-purpose input/output ports
68	PPG12	I/O	Α	Output pins of PPG timer
	SGA			SGA output pin of sound generator
	P16_5			General-purpose input/output ports
69	PPG13	I/O	Α	Output pins of PPG timer
	SGO			SG0 output pin of sound generator
70	P16_6	I/O	Δ.	General-purpose input/output ports
70	PPG14	1/0	A	Output pins of PPG timer
	P16_7			General-purpose input/output ports
71	PPG15	I/O	A	Output pins of PPG timer
	ATGX			A/D converter external trigger input pin
74 to 76	MD_0 to MD_2	I	G	Mode setting pins
77	MONCLK	0	М	Clock monitor pin
78	MD_3	I	Н	Mode setting pins
79	X1	_	J1	Clock (oscillation) output
80	X0	_	J1	Clock (oscillation) input
82	X0A		J2	Sub clock (oscillation) input
83	X1A	_	J2	Sub clock (oscillation) output
84	INITX	I	Н	External reset input pin
85	NMIX	I	Н	Non-maskable interrupt input pin
00	P19_0	1/0	Δ.	General-purpose input/output ports
92	SIN4	I/O	A	Data input pin of USART4
00	P19_1	1/0	Δ.	General-purpose input/output ports
93	SOT4	I/O	A	Data output pin of USART4
	P19_2			General-purpose input/output ports
94	SCK4	I/O	Α	Clock input/output pin of USART4
	CK4			External clock input pin of free-run timer 4
05	P19_4	1/0		General-purpose input/output ports
95	SIN5	I/O	A	Data input pin of USART5
00	P19_5	1/0	Δ.	General-purpose input/output ports
96	SOT5	I/O	A	Data output pin of USART5

Pin no.	Pin name	I/O	I/O circuit type*	Function
	P19_6			General-purpose input/output ports
97	SCK5	I/O	Α	Clock input/output pin of USART5
	CK5			External clock input pin of free-run timer 5
98	P18_0	I/O	^	General-purpose input/output ports
98	SIN6		A	Data input pin of USART6
00	P18_1	1/0	^	General-purpose input/output ports
99	SOT6	I/O	A	Data output pin of USART6
	P18_2			General-purpose input/output ports
100	SCK6	I/O	Α	Clock input/output pin of USART6
	CK6			External clock input pin of free-run timer 6
404	P18_4	1/0		General-purpose input/output ports
101	SIN7	I/O	A	Data input pin of USART7
400	P18_5	1/0		General-purpose input/output ports
102	SOT7	I/O	A	Data output pin of USART7
	P18_6	I/O	А	General-purpose input/output ports
103	SCK7			Clock input/output pin of USART7
	CK7			External clock input pin of free-run timer 7
104	ALARM_0	I	N	Alarm comparator input pin
440 +- 447	P29_0 to P29_7	1/0	В	General-purpose input/output ports
110 to 117	AN0 to AN7	I/O		Analog input pins of A/D converter
440 +- 405	P28_0 to P28_7	1/0		General-purpose input/output ports
118 to 125	AN8 to AN15	I/O	В	Analog input pins of A/D converter
400	P24_2	1/0		General-purpose input/output ports
128	INT2	I/O	A	External interrupt input pin
400	P24_3	1/0		General-purpose input/output ports
129	INT3	I/O	A	External interrupt input pin
	P14_0 to P14_3			General-purpose input/output ports
400 (400	ICU0 to ICU3			Input capture input pins
130 to 133	TIN0 to TIN3	I/O	A	External trigger input pins of reload timer
	TTG0/8 to TTG3/11			External trigger input pins of PPG timer
	P15_0 to P15_3			General-purpose input/output ports
134 to 137	OCU0 to OCU3	I/O	A	Output compare output pins
	TOT0 to TOT3			Reload timer output pins
400 + 440	P27_0 to P27_5	1/0		General-purpose input/output ports
138 to 143	AN16 to AN21	I/O	В	Analog input pins of A/D converter


^{* :} For information about the I/O circuit type, refer to "■ I/O CIRCUIT TYPES".

[Power supply/Ground pins]

i ower suppry/Ground pinsj						
Pin no.	Pin name	I/O	Function			
1, 19, 37, 55, 73, 81, 86, 91, 109, 127	VSS5		Ground pins			
54, 72, 90, 108, 126	VDD5		Power supply pins			
88, 89	VDD5R		Power supply pins for internal regulator			
105	AVSS5	Supply	Analog ground pin for A/D converter			
107	AVCC5		Power supply pin for A/D converter			
106	AVRH5		Reference power supply pin for A/D converter			
87	VCC18C		Capacitor connection pin for internal regulator			
18, 36, 144	VDD35		Power supply pins for external bus part of I/O ring			

^{* :} For information about the I/O circuit type, refer to "■ I/O CIRCUIT TYPES".

■ I/O CIRCUIT TYPES

Туре	Circuit	Remarks
С	pull-up control data line pull- down control R CMOS hysteresis type1 CMOS hysteresis type2 Automotive inputs TTL input standby control for input shutdown	CMOS level output (Iol = 3mA, Ioh = -3mA) 2 different CMOS hysteresis inputs with input shutdown function Automotive input with input shutdown function TTL input with input shutdown function Programmable pull-up resistor: 50kΩ approx.
D	pull-up control data line pull- down control R CMOS hysteresis type1 CMOS hysteresis type2 Automotive inputs standby control for input shutdown analog input	CMOS level output (IoL = 3mA, IoH = -3mA) 2 different CMOS hysteresis inputs with input shutdown function Automotive input with input shutdown function TTL input with input shutdown function Programmable pull-up resistor: 50kΩ approx. Analog input

Туре	Circuit	Remarks
E	pull-up control driver strength control data line pull- down control R CMOS hysteresis type1 CMOS hysteresis type2 Automotive inputs TTL input standby control for input shutdown	CMOS level output (programmable IoL = 5mA, IoH = -5mA
F	pull-up control driver strength control data line pull- down control R CMOS hysteresis type1 CMOS hysteresis type2 Automotive inputs standby control for input shutdown analog input	CMOS level output (programmable Io _L = 5mA, Io _H = -5mA and Io _L = 2mA, Io _H = -2mA, and Io _L = 30mA, Io _H = -30mA) 2 different CMOS hysteresis inputs with input shutdown function Automotive input with input shutdown function TTL input with input shutdown function Programmable pull-up resistor: 50kΩ approx. Analog input

Туре	Circuit	Remarks
G	R Hysteresis inputs	Mask ROM and EVA device: CMOS Hysteresis input pin Flash device: CMOS input pin 12 V withstand (for MD [2:0])
Н	Pull-up Resistor Hysteresis inputs	CMOS Hysteresis input pin Pull-up resistor value: 50 kΩ approx.
J1	X1 R O Xout FCI or osc disable	 High-speed oscillation circuit: Programmable between oscillation mode (external crystal or resonator connected to X0/X1 pins) and Fast external Clock Input (FCI) mode (external clock connected to X0 pin) Feedback resistor = approx. 2 * 0.5 MΩ. Feedback resistor is grounded in the center when the oscillator is disabled or in FCI mode.
J2	X1A Xout R XOA Osc disable	 Low-speed oscillation circuit: Feedback resistor = approx. 2 * 5 MΩ. Feedback resistor is grounded in the center when the oscillator is disabled.

Туре	Circuit	Remarks
К	pull-up control driver strength control data line pull- down control R CMOS hysteresis type1 CMOS hysteresis type2 Automotive inputs standby control for input shutdown LCD SEG/COM	CMOS level output (programmable IoL = 5mA, IoH = -5mA
L	pull-up control driver strength control data line pull- down control R CMOS hysteresis type1 CMOS hysteresis type2 Automotive inputs standby control for input shutdown VLCD	CMOS level output (programmable IoL = 5mA, IoH = -5mA

Туре	Circuit	Remarks
М	tri-state control data line	CMOS level tri-state output (IoL = 5mA, IoH = -5mA)
N	analog input line	Analog input pin with protection

■ HANDLING DEVICES

1. Preventing Latch-up

Latch-up may occur in a CMOS IC if a voltage higher than ($V_{DD}5$, $V_{DD}35$ or $HV_{DD}5$ *1) or less than ($V_{SS}5$ or $HV_{SS}5$ *1) is applied to an input or output pin or if a voltage exceeding the rating is applied between the power supply pins and ground pins. If latch-up occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Therefore, be very careful not to apply voltages in excess of the absolute maximum ratings.

Note *1: HV_{DD}5, HV_{SS}5 are available only on devices having Stepper Motor Controller.

2. Handling of unused input pins

If unused input pins are left open, abnormal operation may result. Any unused input pins should be connected to pull-up or pull-down resistor ($2K\Omega$ to $10K\Omega$) or enable internal pullup or pulldown resisters (PPER/PPCR) before the input enable (PORTEN) is activated by software. The mode pins MD_x can be connected to Vss5 or VDD5 directly. Unused ALARM input pins can be connected to AVss5 directly.

3. Power supply pins

In MB91460 series, devices including multiple power supply pins and ground pins are designed as follows; pins necessary to be at the same potential are interconnected internally to prevent malfunctions such as latch-up. All of the power supply pins and ground pins must be externally connected to the power supply and ground respectively in order to reduce unnecessary radiation, to prevent strobe signal malfunctions due to the ground level rising and to follow the total output current ratings. Furthermore, the power supply pins and ground pins of the MB91460 series must be connected to the current supply source via a low impedance.

It is also recommended to connect a ceramic capacitor of approximately 0.1 μ F as a bypass capacitor between power supply pin and ground pin near this device.

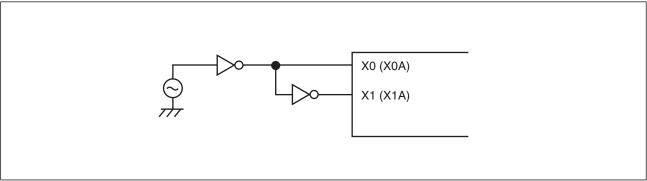
This series has a built-in step-down regulator. Connect a bypass capacitor of 4.7 μ F (use a X7R ceramic capacitator) to VCC18C pin for the regulator.

4. Crystal oscillator circuit

Noise in proximity to the X0 (X0A) and X1 (X1A) pins can cause the device to operate abnormally. Printed circuit boards should be designed so that the X0 (X0A) and X1 (X1A) pins, and crystal oscillator, as well as bypass capacitors connected to ground, are located near the device and ground.

It is recommended that the printed circuit board layout be designed such that the X0 and X1 pins or X0A and X1A pins are surrounded by ground plane for the stable operation.

Please request the oscillator manufacturer to evaluate the oscillational characteristics of the crystal and this device.


5. Notes on using external clock

When using the external clock, it is necessary to simultaneously supply the X0 (X0A) and the X1 (X1A) pins. In the described combination, X1 (X1A) should be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins. At X0 and X1, a frequency up to 16 MHz is possible.

(Continued)

(Continued)

Example of using opposite phase supply

6. Mode pins (MD_x)

These pins should be connected directly to the power supply or ground pins. To prevent the device from entering test mode accidentally due to noise, minimize the lengths of the patterns between each mode pin and power supply pin or ground pin on the printed circuit board as possible and connect them with low impedance.

7. Notes on operating in PLL clock mode

If the oscillator is disconnected or the clock input stops when the PLL clock is selected, the microcontroller may continue to operate at the free-running frequency of the self-oscillating circuit of the PLL. However, this self-running operation cannot be guaranteed.

8. Pull-up control

The AC standard is not guaranteed in case a pull-up resistor is connected to the pin serving as an external bus pin.

■ NOTES ON DEBUGGER

1. Execution of the RETI Command

If single-step execution is used in an environment where an interrupt occurs frequently, the corresponding interrupt handling routine will be executed repeatedly to the exclusion of other processing. This will prevent the main routine and the handlers for low priority level interrupts from being executed (For example, if the time-base timer interrupt is enabled, stepping over the RETI instruction will always break on the first line of the time-base timer interrupt handler).

Disable the corresponding interrupts when the corresponding interrupt handling routine no longer needs debugging.

2. Break function

If the range of addresses that cause a hardware break (including event breaks) is set to the address of the current system stack pointer or to an area that contains the stack pointer, execution will break after each instruction regardless of whether the user program actually contains data access instructions.

To prevent this, do not set (word) access to the area containing the address of the system stack pointer as the target of the hardware break (including an event breaks).

3. Operand break

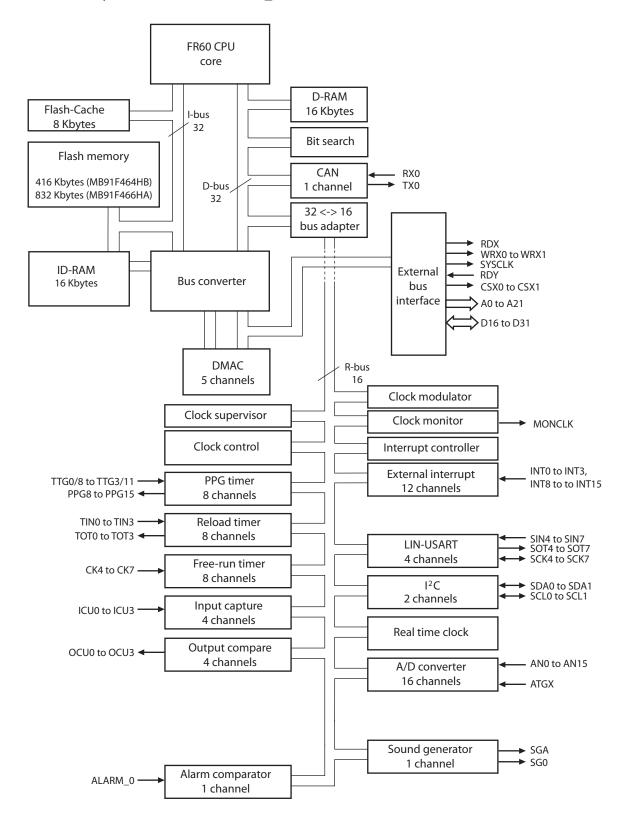
It may cause malfunctions if a stack pointer exists in the area which is set as the DSU operand break. Do not set the access to the areas containing the address of system stack pointer as a target of data event break.

4. Notes on PS register

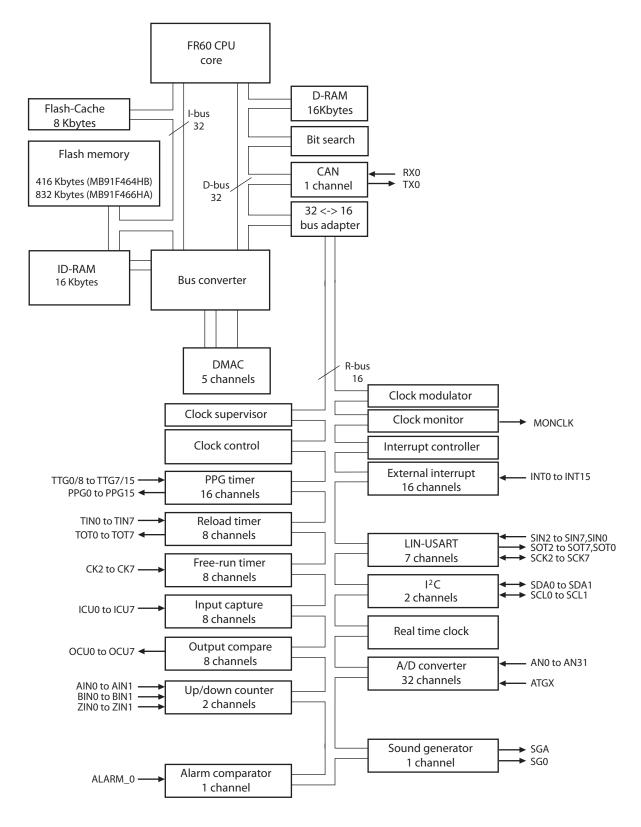
As the PS register is processed in advance by some instructions, when the debugger is being used, the exception handling may result in execution breaking in an interrupt handling routine or the displayed values of the flags in the PS register being updated.

As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event, the operation before and after the EIT always proceeds according to specification.

The following behavior may occur if any of the following occurs in the instruction immediately after a DIV0U/DIV0S instruction:


- (a) a user interrupt or NMI is accepted;
- (b) single-step execution is performed;
- (c) execution breaks due to a data event or from the emulator menu.
 - 1. D0 and D1 flags are updated in advance.
 - 2. An EIT handling routine (user interrupt/NMI or emulator) is executed.
 - 3. Upon returning from the EIT, the DIV0U/DIV0S instruction is executed and the D0 and D1 flags are updated to the same values as those in 1.

• The following behavior occurs when an ORCCR, STILM, MOV Ri,PS instruction is executed to enable a user interrupt or NMI source while that interrupt is in the active state.


- 1. The PS register is updated in advance.
- 2. An EIT handling routine (user interrupt/NMI or emulator) is executed.
- 3. Upon returning from the EIT, the above instructions are executed and the PS register is updated to the same value as in 1.

■ BLOCK DIAGRAM

1. MB91F464HB, MB91F466HA with MD_3=1

2. MB91F464HB, MB91F466HA with MD_3=0

■ CPU AND CONTROL UNIT

The FR family CPU is a high performance core that is designed based on the RISC architecture with advanced instructions for embedded applications.

1. Features

· Adoption of RISC architecture

Basic instruction: 1 instruction per cycle

- General-purpose registers: 32-bit 16 registers
- · 4 Gbytes linear memory space
- · Multiplier installed

32-bit 32-bit multiplication: 5 cycles

16-bit 16-bit multiplication: 3 cycles

· Enhanced interrupt processing function

Quick response speed (6 cycles)

Multiple-interrupt support

Level mask function (16 levels)

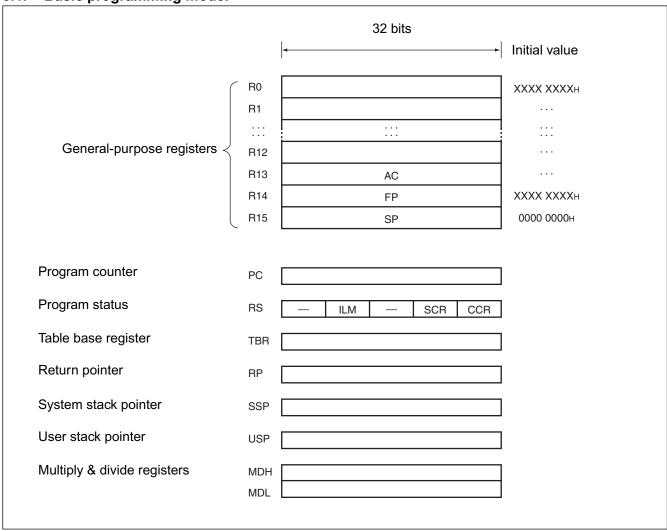
• Enhanced instructions for I/O operation

Memory-to-memory transfer instruction

Bit processing instruction

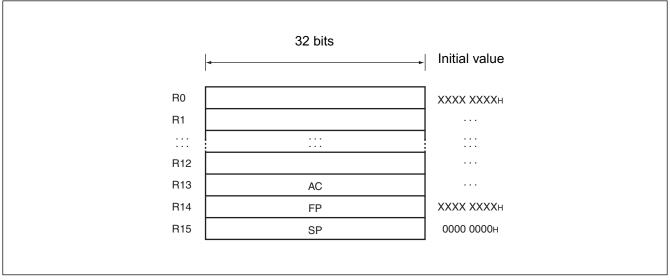
Basic instruction word length: 16 bits

 Low-power consumption Sleep mode/stop mode


2. Internal architecture

- The FR family CPU uses the Harvard architecture in which the instruction bus and data bus are independent of each other.
- A 32-bit

 ← 16-bit buffer is connected to the 32-bit bus (D-bus) to provide an interface between the CPU and peripheral resources.


3. Programming model

3.1. Basic programming model

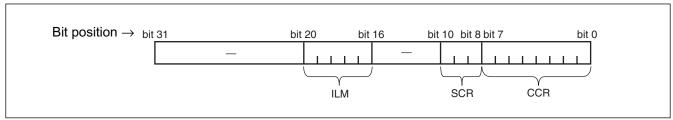
4. Registers

4.1. General-purpose register

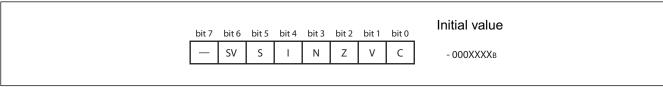
Registers R0 to R15 are general-purpose registers. These registers can be used as accumulators for computation operations and as pointers for memory access.

Of the 16 registers, enhanced commands are provided for the following registers to enable their use for particular applications.

R13: Virtual accumulator


R14 : Frame pointer R15 : Stack pointer

Initial values at reset are undefined for R0 to R14. The value for R15 is 00000000H (SSP value).


4.2. PS (Program Status)

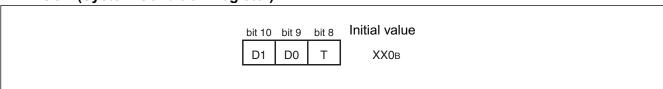
This register holds the program status, and is divided into three parts, ILM, SCR, and CCR.

All undefined bits (-) in the diagram are reserved bits. The read values are always "0". Write access to these bits is invalid.

4.3. CCR (Condition Code Register)

SV: Supervisor flag

S : Stack flag


I : Interrupt enable flagN : Negative enable flag

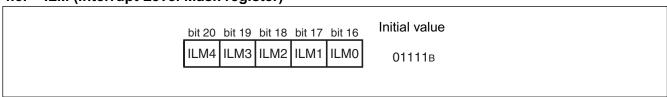
Z : Zero flag

V : Overflow flag

C : Carry flag

4.4. SCR (System Condition Register)

Flag for step division (D1, D0)


This flag stores interim data during execution of step division.

Step trace trap flag (T)

This flag indicates whether the step trace trap is enabled or disabled.

The step trace trap function is used by emulators. When an emulator is in use, it cannot be used in execution of user programs.

4.5. ILM (Interrupt Level Mask register)

This register stores interrupt level mask values, and the values stored in ILM4 to ILM0 are used for level masking. The register is initialized to value "01111_B" at reset.

4.6. PC (Program Counter)

bit 31	bit 0	Initial value

The program counter indicates the address of the instruction that is being executed.

The initial value at reset is undefined.

4.7. TBR (Table Base Register)	
bit 31 bit 0 Initial value	
000FFC00н	
The table base register stores the starting address of the vector table used in EIT processing	
The initial value at reset is 000FFC00н.	
4.8. RP (Return Pointer)	
bit 31 bit 0 Initial value	
XXXXXXXH	
AAAAAAAII	
The return pointer stores the address for return from subroutines.	
During execution of a CALL instruction, the PC value is transferred to this RP register.	
During execution of a RET instruction, the contents of the RP register are transferred to PC.	
The initial value at reset is undefined.	
4.9. USP (User Stack Pointer)	
la itial valva	
bit 31 bit 0 Initial value	
XXXXXXXH	
T	
The user stack pointer, when the S flag is "1", this register functions as the R15 register.	
 The USP register can also be explicitly specified. The initial value at reset is undefined. 	
This register cannot be used with RETI instructions.	
This register cannot be used with NETT instructions.	
4.10. Multiply & divide registers	
bit 31 bit 0 MDH	
MDL	

These registers are for multiplication and division, and are each 32 bits in length.

The initial value at reset is undefined.

■ EMBEDDED PROGRAM/DATA MEMORY (FLASH)

1. Flash features

- MB91F464HB: 416 Kbytes (6 × 64 Kbytes + 4 × 8 Kbytes = 3.25 Mbits)
- MB91F466HA : 832 Kbytes (12×64 Kbytes + 8×8 Kbytes = 6.5 Mbits)
- Programmable wait states for read/write access
- Flash and Boot security with security vector at 0x0014:8000 0x0014:800F
- Boot security
- Basic specification: Same as MBM29LV400TC (except size and part of sector configuration)

2. Operation modes:

- (1) 64-bit CPU mode (available on MB91F466HA only):
 - CPU reads and executes programs in word (32-bit) length units.
 - · Flash writing is not possible.
 - · Actual Flash Memory access is performed in d-word (64-bit) length units.

(2) 32-bit CPU mode:

- CPU reads and executes programs in word (32-bit) length units.
- Actual Flash Memory access is performed in word (32-bit) length units.

(3) 16-bit CPU mode:

- CPU reads and writes in half-word (16-bit) length units.
- Program execution from the Flash is not possible.
- Actual Flash Memory access is performed in word (16-bit) length units.
- (4) Flash memory mode (external access to Flash memory enabled)

Note: The operation mode of the flash memory can be selected using a Boot-ROM function. The function start address is 0xBF60. The parameter description is given in the Hardware Manual in chapter 54.6 "Flash Access Mode Switching".

3. Flash access in CPU mode

3.1. Flash configuration

3.1.1. Flash memory map MB91F464HB

Address										
0014:FFFFh 0014:C000h		SA6	(8KB)			SA7	(8KB)			
0014:BFFFh 0014:8000h		SA4	(8KB)			SA5	(8KB)		ROMS7	
0014:7FFFh 0014:4000h		SA2	(8KB)			SA3 (8KB)				
0014:3FFFh 0014:0000h		SA0	(8KB)		SA1 (8KB)					
0013:FFFFh 0012:0000h		SA22	(64KB)			SA23	(64KB)		DOMOS	
0011:FFFFh 0010:0000h		SA20	(64KB)		SA21 (64KB)				ROMS6	
000F:FFFFh 000E:0000h		SA18	(64KB)		SA19 (64KB)				ROMS5	
000D:FFFFh 000C:0000h		SA16	(64KB)		SA17 (64KB)				ROMS4	
000B:FFFFh 000A:0000h		SA14	(64KB)		SA15 (64KB)				ROMS3	
0009:FFFFh 0008:0000h		SA12	(64KB)		SA13 (64KB)				ROMS2	
0007:FFFFh 0006:0000h		(64KB)		SA11 (64KB)				ROMS1		
0005:FFFFh 0004:0000h		64KB)		SA9 (64KB)				ROMS0		
'	addr+0 ad	addr+2	addr+3	addr+4	addr+5	addr+6	addr+7			
16bit read/write	dat[31:16]		dat[1	5:0]	dat[31:16] dat[15:0]					
32bit read		31:0]		dat[31:0]						
Legend	Memor	ry not avai	lable in this are	a		Memory availa	ble in this area	1		

3.1.2. Flash memory map MB91F466HA

Addr									
0014:FFFFh 0014:C000h		SA6	(8KB)			SA7	(8KB)		
0014:BFFFh 0014:8000h		SA4	(8KB)		SA5 (8KB)				ROMS7
0014:7FFFh 0014:4000h		SA2	(8KB)		SA3 (8KB)				
0014:3FFFh 0014:0000h		SA0	(8KB)			SA1	(8KB)		
0013:FFFFh 0012:0000h		SA22	(64KB)			SA23	(64KB)		ROMS6
0011:FFFFh 0010:0000h		SA20	(64KB)		SA21 (64KB)				ROMSO
000F:FFFFh 000E:0000h		SA18	(64KB)		SA19 (64KB)				ROMS5
000D:FFFFh 000C:0000h		SA16	(64KB)		SA17 (64KB)				ROMS4
000B:FFFFh 000A:0000h		SA14	(64KB)		SA15 (64KB)				ROMS3
0009:FFFFh 0008:0000h		SA12	(64KB)		SA13 (64KB)				ROMS2
0007:FFFFh 0006:0000h		SA10	(64KB)		SA11 (64KB)				ROMS1
0005:FFFFh 0004:0000h		SA8 ((64KB)			SA9 ((64KB)		ROMS0
	addr+0	addr+1	addr+2	addr+3	addr+4	addr+5	addr+6	addr+7	
16bit read/write	dat[3	1:16]	dat[15:0]	dat[31:16] dat[15:0]			15:0]	
32bit read		dat[31:0]		dat[31:0]				
64bit read	dat[63:0]								
Legend	Memory not available in this area Memory available in this area								

3.2. Flash access timing settings in CPU mode

The following tables list all settings for a given maximum Core Frequency (through the setting of CLKB or maximum clock modulation) for Flash read and write access.

3.2.1. Flash read timing settings (synchronous read)

Core clock (CLKB)	ATD	ALEH	EQ	WEXH	WTC	Remark
to 24 MHz	0	0	0	-	1	
to 48 MHz	0	0	1	-	2	
to 96 MHz	1	1	3	-	4	
to 100 MHz	1	1	3	-	4	not available on MB91F466HA

3.2.2. Flash write timing settings (synchronous write)

Core clock (CLKB)	ATD	ALEH	EQ	WEXH	WTC	Remark
to 16 MHz	0	-	-	0	3	
to 32 MHz	0	-	-	0	4	
to 48 MHz	0	-	-	0	5	
to 64 MHz	1	-	-	0	6	
to 96 MHz	1	-	-	0	7	
to 100 MHz	1	-	-	0	7	not available on MB91F466HA

3.3. Address mapping from CPU to parallel programming mode

The following tables show the calculation from CPU addresses to flash macro addresses which are used in parallel programming.

3.3.1. Address mapping MB91F464HB

CPU Address (addr)	Condition	Flash sectors	FA (flash address) Calculation
14:8000h to 14:FFFFh	addr[2]==0	SA4, SA6 (8 Kbyte)	FA := addr - addr%00:4000h + (addr%00:4000h)/2 - (addr/2)%4 + addr%4 - 0D:0000h
14:8000h to 14:FFFFh	addr[2]==1	SA5, SA7 (8 Kbyte)	FA := addr - addr%00:4000h + (addr%00:4000h)/2 + 00:2000h - (addr/2)%4 + addr%4 - 0D:0000h
0A:0000h to 0F:FFFFh	addr[2]==0	SA14, SA16, SA18 (64 Kbyte)	FA := addr - addr%02:0000 + (addr%02:0000h)/2 - (addr/2)%4 + addr%4
0A:0000h to 0F:FFFFh	addr[2]==1	SA15, SA17, SA19 (64 Kbyte)	FA := addr - addr%02:0000h + (addr%02:0000h)/2 + 01:0000h - (addr/2)%4 + addr%4

Note: FA result is without 20:0000h offset for parallel Flash programming .

Set offset by keeping FA[21] = 1 as described in section "Parallel Flash programming mode".

3.3.2. Address mapping MB91F466HA

CPU Address (addr)	Condition	Flash sectors	FA (flash address) Calculation
14:0000h to 14:FFFFh	addr[2]==0	SA0, SA2, SA4, SA6 (8 Kbyte)	FA := addr - addr%00:4000h + (addr%00:4000h)/2 - (addr/2)%4 + addr%4 - 05:0000h
14:0000h to 14:FFFFh	addr[2]==1	SA1, SA3, SA5, SA7 (8 Kbyte)	FA := addr - addr%00:4000h + (addr%00:4000h)/2 + 00:2000h - (addr/2)%4 + addr%4 - 05:0000h
04:0000h to 0F:FFFFh	addr[2]==0	SA8, SA10, SA12, SA14, SA16, SA18 (64 Kbyte)	FA := addr - addr%02:0000 + (addr%02:0000h)/2 - (addr/2)%4 + addr%4 + 0C:0000h
04:0000h to 0F:FFFFh	addr[2]==1	SA9, SA11, SA13, SA15, SA17, SA19 (64 Kbyte)	FA := addr - addr%02:0000h + (addr%02:0000h)/2 + 01:0000h - (addr/2)%4 + addr%4 + 0C:0000h

Note: FA result is without 20:0000h offset for parallel Flash programming .

Set offset by keeping FA[21] = 1 as described in section "Parallel Flash programming mode".

MB91F466HA

FA[21:0]

4. Parallel Flash programming mode

4.1. Flash configuration in parallel Flash programming mode

Parallel Flash programming mode (MD[2:0] = 111):

MB91F464HB

FA[20:0]						
001F:FFFFh 001F:0000h	SA19	(64KB)				
001E:FFFFh 001E:0000h	SA18	(64KB)				
001D:FFFFh 001D:0000h	SA17	(64KB)				
001C:FFFFh 001C:0000h	SA16 (64KB)					
001B:FFFFh 001B:0000h	SA15	(64KB)				
001A:FFFFh 001A:0000h	SA14	(64KB)				
	SA13	(64KB)				
	SA12	(64KB)				
	SA11 (64KB)					
	SA10 (64KB)					
	SA9 (64KB)					
	SA8 (64KB)				
0017:FFFFh 0017:E000h	SA7 (8KB)					
0017:DFFFh 0017:C000h	SA6	(8KB)				
0017:BFFFh 0017:A000h	SA5	(8KB)				
0017:9FFFh 0017:8000h	SA4 (8KB)					
	SA3 (8KB)					
	SA2 (8KB)					
	SA1 (8KB)					
	SA0	(8KB)				
•	FA[1:0]=00	FA[1:0]=10				
6bit write mode	DQ[15:0]	DQ[15:0]				

	SA23	(64KB)		
	SA22	(64KB)		
	SA21	(64KB)		
	SA20	(64KB)		
003B:FFFFh 003B:0000h	SA19	(64KB)		
003A:FFFFh 003A:0000h	SA18	(64KB)		
0039:FFFFh 0039:0000h	SA17	(64KB)		
0038:FFFFh 0038:0000h	SA16	(64KB)		
0037:FFFFh 0037:0000h	SA15	(64KB)		
0036:FFFFh 0036:0000h	SA14	(64KB)		
0035:FFFFh 0035:0000h	SA13 (64KB)			
0034:FFFFh 0034:0000h	SA12 (64KB)			
0033:FFFFh 0033:0000h	SA11 (64KB)			
0032:FFFFh 0032:0000h	SA10 (64KB)			
0031:FFFFh 0031:0000h	SA9 (64KB)		
0030:FFFFh 0030:0000h	SA8 (64KB)		
002F:FFFFh 002F:E000h	SA7	(8KB)		
002F:DFFFh 002F:C000h	SA6	(8KB)		
002F:BFFFh 002F:A000h	SA5	(8KB)		
002F:9FFFh 002F:8000h	SA4	(8KB)		
002F:7FFFh 002F:6000h	SA3 (8KB)			
002F:5FFFh 002F:4000h	SA2 (8KB)			
002F:3FFFh 002F:2000h	SA1 (8KB)			
002F:1FFFh 002F:0000h	SA0	(8KB)		
	FA[1:0]=00	FA[1:0]=10		
16bit write mode	DQ[15:0]	DQ[15:0]		

Remark: Always keep FA[0] = 0 and FA[20] = 1

Memory available in this area

Memory not available in this area

Legend

4.2. Pin connections in parallel programming mode

Resetting after setting the MD[2:0] pins to [111] will halt CPU functioning. At this time, the Flash memory's interface circuit enables direct control of the Flash memory unit from external pins by directly linking some of the signals to GP-Ports. Please see table below for signal mapping.

In this mode, the Flash memory appears to the external pins as a stand-alone unit. This mode is generally set when writing/erasing using the parallel Flash programmer. In this mode, all operations of the 8.5 Mbits Flash memory's Auto Algorithms are available.

Correspondence between MBM29LV400TC and Flash Memory Control Signals

MBM29LV400TC External pins	FR-CPU mode		MB91F464HB external pins			
		Flash memory mode	Normal function	Pin number		
-	INITX	-	INITX	84		
RESET	-	FRSTX	GP16_6	70		
-	-	MD2	MD2	76	Set to '1'	
-	-	MD1	MD1	75	Set to '1'	
-	-	MD0	MD0	74	Set to '1'	
RY/BY	FMCS:RDY bit	RY/BYX	GP18_2	100		
BYTE	Internally fixed to 'H'	BYTEX	GP16_4	68		
WE		WEX	GP16_7	71		
OE	Internal control sig- nal + control via inter-	OEX	GP07_7	3		
CE		CEX	GP07_6	2		
-		ATDIN	GP18_6	103	Set to '0'	
-	face circuit	EQIN	GP18_5	102	Set to '0'	
-		TESTX	GP16_5	69	Set to '1'	
-		RDYI	GP18_4	101	Set to '0'	
A-1		FA0	GP05_5	17	Set to '0'	
A0 to A3		FA1 to FA4	GP19_0 to GP19_2, GP19_4	92 to 95		
A4 to A7		FA5 to FA8	GP19_5 to GP19_6, GP18_0 to GP18_1	96 to 99		
A8 to A11	Internal address bus	FA9 to FA12	GP06_0 to GP06_3	4 to 7		
A12 to A15		FA13 to FA16	GP06_4 to GP06_7	8 to 11		
A16 to A18		FA17 to FA19	GP05_0 to GP05_2	12 to 14		
A19		FA20	GP05_3	15	See note *1	
-		FA21	GP05_4	16	See note *2	
DQ0 to DQ7	Internal data bus	DQ0 to DQ7	GP00_0 to GP00_7	28 to 35		
DQ8 to DQ15	internal data bus	DQ8 to DQ15	GP01_0 to GP01_7	20 to 27		

- 1. A19 is used as address bit on MB91F466HA. For MB91F464HB, set this pin to '1'.
- 2. For MB91F466HA, set this pin to '1'. For MB91F464HB, this pin can be left open.

5. Poweron Sequence in parallel programming mode

The flash memory can be accessed in programming mode after a certain wait time, which is needed for Security Vector fetch:

Minimum wait time after VDD5/VDD5R power on: 2.76 ms
Minimum wait time after INITX rising: 1.0 ms

6. Flash Security

6.1. Vector addresses

Two Flash Security Vectors (FSV1, FSV2) are located parallel to the Boot Security Vectors (BSV1, BSV2) controlling the protection functions of the Flash Security Module:

FSV1: 0x14:8000 BSV1: 0x14:8004 FSV2: 0x14:8008 BSV2: 0x14:800C

6.2. Security Vector FSV1

The setting of the Flash Security Vector FSV1 is responsible for the read and write protection modes and the individual write protection of the 8 KBytes sectors.

6.2.1. FSV1 (bit31 to bit16)

The setting of the Flash Security Vector FSV1 bits [31:16] is responsible for the read and write protection modes.

Explanation of the bits in the Flash Security Vector FSV1[31:16]

FSV1[31:19]	FSV1[18] Write Protection Level	FSV1[17] Write Protection	FSV1[16] Read Protection	Flash Security Mode
set all to '0'	set to '0'	set to '0'	set to '1'	Read Protection (all device modes, except INTVEC mode MD[2:0]="000")
set all to '0'	set to '0'	set to '1'	set to '0'	Write Protection (all device modes, without exception)
set all to '0'	set to '0'	set to '1'	set to '1'	Read Protection (all device modes, except INTVEC mode MD[2:0]="000") and Write Protection (all device modes)
set all to '0'	set to '1'	set to '0'	set to '1'	Read Protection (all device modes, except INTVEC mode MD[2:0]="000")
set all to '0'	set to '1'	set to '1'	set to '0'	Write Protection (all device modes, except INTVEC mode MD[2:0]="000")
set all to '0'	set to '1'	set to '1'	set to '1'	Read Protection (all device modes, except INTVEC mode MD[2:0]="000") and Write Protection (all device modes except INTVEC mode MD[2:0]="000")

6.2.2. FSV1 (bit15 to bit0) MB91F464HB

The setting of the Flash Security Vector FSV1 bits [15:0] is responsible for the individual write protection of the 8 KBytes sectors. It is only evaluated if write protection bit FSV1[17] is set.

Explanation of the bits in the Flash Security Vector FSV1[15:0]

FSV1 bit	Sector	Enable Write Protection	Disable Write Protection	Comment
FSV1[3:0]	<u> </u>			not available
FSV1[4]	SA4	set to "0"	_	Write protection is mandatory!
FSV1[5]	SA5	set to "0"	set to "1"	
FSV1[6]	SA6	set to "0"	set to "1"	
FSV1[7]	SA7	set to "0"	set to "1"	
FSV1[15:8]	_		_	not available

Note: It is mandatory to always set the sector where the Flash Security Vectors FSV1 and FSV2 are located to write protected (here sector SA4). Otherwise it is possible to overwrite the Security Vector to a setting where it is possible to either read out the Flash content or manipulate data by writing.

See section "Flash access in CPU mode" for an overview about the sector organisation of the Flash Memory.

6.2.3. FSV1 (bit15 to bit0) MB91F466HA

The setting of the Flash Security Vector FSV1 bits [15:0] is responsible for the individual write protection of the 8 KBytes sectors. It is only evaluated if write protection bit FSV1[17] is set.

Explanation of the bits in the Flash Security Vector FSV1[15:0]

FSV1 bit	Sector	Enable Write Protection	Disable Write Protection	Comment
FSV1[0]	SA0	set to "0"	set to "1"	
FSV1[1]	SA1	set to "0"	set to "1"	
FSV1[2]	SA2	set to "0"	set to "1"	
FSV1[3]	SA3	set to "0"	set to "1"	
FSV1[4]	SA4	set to "0"	_	Write protection is mandatory!
FSV1[5]	SA5	set to "0"	set to "1"	
FSV1[6]	SA6	set to "0"	set to "1"	
FSV1[7]	SA7	set to "0"	set to "1"	
FSV1[15:8]	_	_	_	not available

Note: It is mandatory to always set the sector where the Flash Security Vectors FSV1 and FSV2 are located to write protected (here sector SA4). Otherwise it is possible to overwrite the Security Vector to a setting where it is possible to either read out the Flash content or manipulate data by writing.

See section "Flash access in CPU mode" for an overview about the sector organisation of the Flash Memory.

6.3. Security Vector FSV2 MB91F464HB

The setting of the Flash Security Vector FSV2 bits [31:0] is responsible for the individual write protection of the 64 KByte sectors. It is only evaluated if write protection bit FSV1[17] is set.

Explanation of the bits in the Flash Security Vector FSV2[31:0]

FSV2 bit	Sector	Enable Write Protection	Disable Write Protection	Comment
FSV2[5:0]	_	_	_	not available
FSV2[6]	SA14	set to "0"	set to "1"	
FSV2[7]	SA15	set to "0"	set to "1"	
FSV2[8]	SA16	set to "0"	set to "1"	
FSV2[9]	SA17	set to "0"	set to "1"	
FSV2[10]	SA18	set to "0"	set to "1"	
FSV2[11]	SA19	set to "0"	set to "1"	
FSV2[31:12]	_	_	_	not available

Note: See section "Flash access in CPU mode" for an overview about the sector organisation of the Flash Memory.

6.4. Security Vector FSV2 MB91F466HA

The setting of the Flash Security Vector FSV2 bits [31:0] is responsible for the individual write protection of the 64 KByte sectors. It is only evaluated if write protection bit FSV1[17] is set.

Explanation of the bits in the Flash Security Vector FSV2[31:0]

FSV2 bit	Sector	Enable Write Protection	Disable Write Protection	Comment
FSV2[0]	SA8	set to "0"	set to "1"	
FSV2[1]	SA9	set to "0"	set to "1"	
FSV2[2]	SA10	set to "0"	set to "1"	
FSV2[3]	SA11	set to "0"	set to "1"	
FSV2[4]	SA12	set to "0"	set to "1"	
FSV2[5]	SA13	set to "0"	set to "1"	
FSV2[6]	SA14	set to "0"	set to "1"	
FSV2[7]	SA15	set to "0"	set to "1"	
FSV2[8]	SA16	set to "0"	set to "1"	
FSV2[9]	SA17	set to "0"	set to "1"	
FSV2[10]	SA18	set to "0"	set to "1"	
FSV2[11]	SA19	set to "0"	set to "1"	
FSV2[31:12]	_	set to "0"	set to "1"	not available

Note: See section "Flash access in CPU mode" for an overview about the sector organisation of the Flash Memory.

■ MEMORY SPACE

The FR family has 4 Gbytes of logical address space (2³² addresses) available to the CPU by linear access.

· Direct addressing area

The following address space area is used for I/O.

This area is called direct addressing area, and the address of an operand can be specified directly in an instruction.

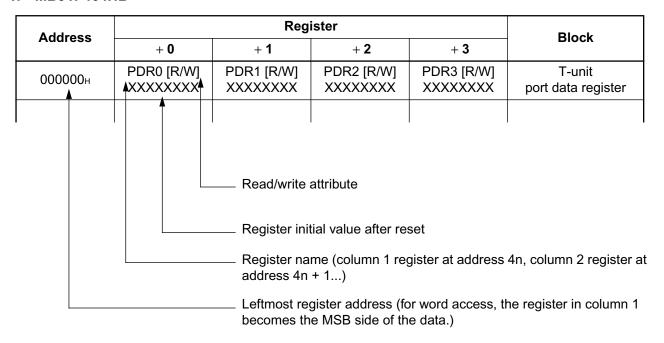
The size of directly addressable area depends on the length of the data being accessed as shown below.

Byte data access : 000_H to 0FF_H
Half word access : 000_H to 1FF_H
Word data access : 000_H to 3FF_H

■ MEMORY MAPS

1. MB91F464HB, MB91F466HA

MB91F464HB


0000000н I/O (direct addressing area) 00000400н I/O 00001000н DMA 00002000 H00004000н Flash-Cache (8 Kbytes) 00006000н 00007000н Flash memory control 00008000н 0000В000н Boot ROM (4 Kbytes) 0000С000н CAN 0000D000н 0002С000н D-RAM (0 wait, 16 Kbytes) 00030000 HID-RAM (16 Kbytes) 00034000н 00040000н External bus area 0008000н 000А000н Flash memory (384 Kbytes) 00100000н External bus area 00148000н Flash memory (32 Kbytes) 00150000н 00180000н External bus area 00500000н External data bus $\mathsf{FFFFFFF}_\mathsf{H}$ Note: Access prohibited areas

MB91F466HA

0000000н	I/O (direct addressing area)
00000400н	1/0
00001000н	
00002000н	DMA
00004000н	
	Flash-Cache (8 KBytes)
00006000н	
00007000н	Flash memory control
00008000н	
0000В000н	
0000С000н	Boot ROM (4 Kbytes)
	CAN
0000D000н	
0002А000н	D-RAM (0 wait, 24 Kbytes)
00030000н	· · · · · · · · · · · · · · · · · · ·
00034000н	ID-RAM (16 Kbytes)
00040000н	External bus area
00080000н	2.10.110.200 0.100
	Flash memory (768 Kbytes)
00100000н	
00140000н	Flash memory (64 Kbytes)
00150000н	riasirinemory (04 Kbytes)
00180000н	
	External bus area
00500000н	
FFFFFFF	External data bus
Note:	Access prohibited areas

■ I/O MAP

1. MB91F464HB

Note: Initial values of register bits are represented as follows:

" 1 " : Initial value " 1 " " 0 " : Initial value " 0 "

"X": Initial value "undefined"

" - " : No physical register at this location

Access is barred with an undefined data access attribute.

Address		Regi	ster		Block
	+0	+1	+2	+3	
000000н	PDR00 [R/W] XXXXXXXX	PDR01 [R/W] XXXXXXXX	Reserved	Reserved	
000004н	Reserved	PDR05 [R/W] XXXXXX	PDR06 [R/W] XXXXXXXX	PDR07 [R/W] XXXXXXXX	
000008н	PDR08 [R/W] X X X	PDR09 [R/W] XX	PDR10 [R/W] X	Reserved	
00000Сн	Reserved	Reserved	PDR14 [R/W] XXXXXXXX	PDR15 [R/W] XXXXXXXX	R-bus Port Data
000010н	PDR16 [R/W] XXXXXXXX	PDR17 [R/W] XXXXXXXX	PDR18 [R/W] - XXX - XXX	PDR19 [R/W] - XXX - XXX	Register
000014н	PDR20 [R/W] - XXX - XXX	PDR21 [R/W] XX	PDR22 [R/W] XXXXXXXX	PDR23 [R/W] XXXXXXXX	
000018н	PDR24 [R/W] XXXXXXXX	Reserved	PDR26 [R/W] XXXXXXXX	PDR27 [R/W] XXXXXXXX	
00001Сн	PDR28 [R/W] XXXXXXXX	PDR29 [R/W] XXXXXXXX	Reserved	Reserved	
000020нtо 00002Сн		Rese	rved		
000030н	EIRR0 [R/W] XXXXXXXX	ENIR0 [R/W] 00000000		[R/W] 00000000	External interrupt (INT 0 to INT 7)
000034н	EIRR1 [R/W] XXXXXXXX	ENIR1 [R/W] 00000000		[R/W] 00000000	External interrupt (INT 8 to INT 15)
000038н	DICR [R/W]	HRCL [R/W] 0 11111	RBS	YNC	Delay interrupt
00003Сн		Rese	rved		Reserved
000040н	SCR00 [R/W,W] 00000000	SMR00 [R/W,W] 00000000	SSR00 [R/W,R] 00001000	RDR00/TDR00 [R/W] 00000000	LIN-USART
000044н	ESCR00 [R/W] 00000X00	ECCR00 [R/W,R,W] -00000XX	Reserved		0
000048н 00004Сн	Reserved				Reserved
000050н	SCR02 [R/W,W] 00000000	SMR02 [R/W,W] 00000000	SSR02 [R/W,R] 00001000	RDR02/TDR02 [R/W] 00000000	LIN-USART
000054н	ESCR02 [R/W] 00000X00	ECCR02 [R/W,R,W] -00000XX	Reserved		2

Address		Regi	ster		Block
	+0	+1	+2	+3	
000058н	SCR03 [R/W,W] 00000000	SMR03 [R/W,W] 00000000	SSR03 [R/W,R] 00001000	RDR03/TDR03 [R/W] 00000000	LIN-USART
00005Сн	ESCR03 [R/W] 00000X00	ECCR03 [R/W,R,W] -00000XX	Rese	erved	3
000060н	SCR04 [R/W,W] 00000000	SMR04 [R/W,W] 00000000	SSR04 [R/W,R] 00001000	RDR04/TDR04 [R/W] 00000000	LIN-USART 4
000064н	ESCR04 [R/W] 00000X00	ECCR04 [R/W,R,W] -00000XX	FSR04 [R] 00000	FCR04 [R/W] 0001 - 000	with FIFO
000068н	SCR05 [R/W,W] 00000000	SMR05 [R/W,W] 00000000	SSR05 [R/W,R] 00001000	RDR05/TDR05 [R/W] 00000000	LIN-USART 5
00006Сн	ESCR05 [R/W] 00000X00	ECCR05 [R/W,R,W] -00000XX	FSR05 [R] 00000	FCR05 [R/W] 0001 - 000	with FIFO
000070н	SCR06 [R/W,W] 00000000	SMR06 [R/W,W] 00000000	SSR06 [R/W,R] 00001000	RDR06/TDR06 [R/W] 00000000	LIN-USART 6
000074н	ESCR06 [R/W] 00000X00	ECCR06 [R/W,R,W] -00000XX	FSR06 [R] 00000	FCR06 [R/W] 0001 - 000	with FIFO
000078н	SCR07 [R/W,W] 00000000	SMR07 [R/W,W] 00000000	SSR07 [R/W,R] 00001000	RDR07/TDR07 [R/W] 00000000	LIN-USART 7
00007Сн	ESCR07 [R/W] 00000X00	ECCR07 [R/W,R,W] -00000XX	FSR07 [R] 00000	FCR07 [R/W] 0001 - 000	with FIFO
000080н	BGR100 [R/W] 00000000	BGR000 [R/W] 00000000	Reserved	Reserved	
000084н	BGR102 [R/W] 00000000	BGR002 [R/W] 00000000	BGR103 [R/W] 00000000	BGR003 [R/W] 00000000	Baud rate Generator
000088н	BGR104 [R/W] 00000000	BGR004 [R/W] 00000000	BGR105 [R/W] 00000000	BGR005 [R/W] 00000000	LIN-USART 0 to 7
00008Сн	BGR106 [R/W] 00000000	BGR006 [R/W] 00000000	BGR107 [R/W] 00000000	BGR007 [R/W] 00000000	
000090н to 0000ССн	Reserved				Reserved

Address		Regi	ister		Block
	+0	+1	+2	+3	
0000D0н	IBCR0 [R/W] 00000000	IBSR0 [R] 00000000	ITBAH0 [R/W] 00	ITBAL0 [R/W] 00000000	
0000Д4н	ITMKH0 [R/W] 00 11	ITMKL0 [R/W] 11111111	ISMK0 [R/W] 01111111	ISBA0 [R/W] - 0000000	I ² C 0
0000D8н	Reserved	IDAR0 [R/W] 00000000	ICCR0 [R/W] - 0011111	Reserved	
0000DСн	IBCR1 [R/W] 00000000	IBSR1 [R] 00000000	ITBAH1 [R/W] 00	ITBAL1 [R/W] 00000000	
0000Е0н	ITMKH1 [R/W] 00 11	ITMKL1 [R/W] 11111111	ISMK1 [R/W] 01111111	ISBA1 [R/W] - 0000000	I ² C 1
0000Е4н	Reserved	IDAR1 [R/W] 00000000	ICCR1 [R/W] - 0011111	Reserved	
0000E8н to 0000FCн		Rese	erved		Reserved
000100н	GCN10 00110010		Reserved	GCN20 [R/W] 0000	PPG Control 0 to 3
000104н	GCN11 [R/W] 00110010 00010000		Reserved	GCN21 [R/W] 0000	PPG Control 4 to 7
000108н	GCN12 00110010		Reserved	GCN22 [R/W] 0000	PPG Control 8 to 11
000110н	PTMR0 11111111			00 [W] XXXXXXX	PPG 0
000114н	PDUT0 XXXXXXXX		PCNH00 [R/W] 0000000 -	PCNL00 [R/W] 000000 - 0	7700
000118н	PTMR0 11111111)1 [R] 11111111	PCSR(XXXXXXXX	01 [W] XXXXXXX	PPG 1
00011Сн	PDUT0 XXXXXXXX		PCNH01 [R/W] 0000000 -	PCNL01 [R/W] 000000 - 0	1101
000120н	PTMR0 11111111)2 [R] 11111111		02 [W] XXXXXXX	PPG 2
000124н	PDUT0 XXXXXXXX		PCNH02 [R/W] 0000000 -	PCNL02 [R/W] 000000 - 0	1102
000128н	PTMR03 [R] PCSR03 [W] 11111111 11111111 XXXXXXXXX XXXXXXXX		PPG 3		
00012Сн	PDUT0 XXXXXXXX		PCNH03 [R/W] 0000000 -	PCNL03 [R/W] 000000 - 0	1103
000130н	PTMR(11111111)4 [R] 11111111	PCSR XXXXXXXX	04 [W] XXXXXXX	PPG 4
000134н	PDUT0 XXXXXXXX		PCNH04 [R/W] 0000000 -	PCNL04 [R/W] 000000 - 0	FF U 4

Address	Register			Block	
	+0	+1	+2	+3	
000138н	PTMR0 11111111			05 [W] XXXXXXXX	PPG 5
00013Сн	PDUT0 XXXXXXXX		PCNH05 [R/W] 0000000 -	PCNL05 [R/W] 000000 - 0	PPG 5
000140н	PTMR0 11111111			06 [W] XXXXXXXX	PPG 6
000144н	PDUT0 XXXXXXXX		PCNH06 [R/W] 0000000 -	PCNL06 [R/W] 000000 - 0	PPG 0
000148н	PTMR0 11111111			07 [W] XXXXXXXX	PPG 7
00014Сн	PDUT0 XXXXXXXX		PCNH07 [R/W] 0000000 -	PCNL07 [R/W] 000000 - 0	PPG /
000150н	PTMR0 11111111			08 [W] XXXXXXX	PPG 8
000154н	PDUT0 XXXXXXXX		PCNH08 [R/W] 0000000 -	PCNL08 [R/W] 000000 - 0	PPG 0
000158н	PTMR0 11111111			09 [W] XXXXXXXX	PPG 9
00015Сн	PDUT0 XXXXXXXX		PCNH09 [R/W] 0000000 -	PCNL09 [R/W] 000000 - 0	PPG 9
000160н	PTMR1 11111111			10 [W] XXXXXXXX	DDC 40
000164н	PDUT1 XXXXXXXX		PCNH10 [R/W] 0000000 -	PCNL10 [R/W] 000000 - 0	PPG 10
000168н	PTMR1 11111111			11 [W] XXXXXXXX	PPG 11
00016Сн	PDUT1 XXXXXXXX		PCNH11 [R/W] 0000000 -	PCNL11 [R/W] 000000 - 0	PPG II
000170н to 00017Сн		Rese	rved		Reserved
000180н	Reserved	ICS01 [R/W] 00000000	Reserved	ICS23 [R/W] 00000000	
000184н	IPCP(XXXXXXXX		IPCP XXXXXXXX	1 [R] XXXXXXXX	Input Capture 0 to 3
000188н	IPCP2 XXXXXXXX			3 [R] XXXXXXXX	

Address		Register			Block
	+0	+1	+2	+3	
00018Сн	OCS01		OCS23		•
000190н	OCCP0 XXXXXXXX		OCCP.	1 [R/W] XXXXXXXX	Output Compare 0 to 3
000194н	OCCP2 XXXXXXXX			3 [R/W] XXXXXXXX	
000198н	SGCRH [R/W] 0000 00	SGCRL [R/W] 0000	SGFR [XXXXXXXX		Sound
00019Сн	SGAR [R/W] 00000000	Reserved	SGTR [R/W] XXXXXXXX	SGDR [R/W] XXXXXXXX	Generator
0001А0н	ADERH 00000000		ADERI 00000000		
0001A4	ADCS1 [R/W] 00000000	ADCS0 [R/W] 00000000	ADCR1 [R] 000000XX	ADCR0 [R] XXXXXXXX	A/D Converter
0001А8н	ADCT1 [R/W] 00010000	ADCT0 [R/W] 00101100	ADSCH [R/W] 00000	ADECH [R/W] 00000	
0001АСн	Reserved	ACSR0 [R/W] -11XXX00	Reserved	Reserved	Alarm Comparator 0 to 1
0001В0н	TMRLR XXXXXXXX		TMR(XXXXXXXX	[R] XXXXXXXX	Reload Timer 0
0001В4н	Rese	rved	TMCSRH0 [R/W] 00000	TMCSRL0 [R/W] 0 - 000000	(PPG 0, PPG 1)
0001В8н	TMRLR XXXXXXXX		TMR ² XXXXXXXX	1 [R] XXXXXXXX	Reload Timer 1
0001ВСн	Rese	rved	TMCSRH1 [R/W] 00000	TMCSRL1 [R/W] 0 - 000000	(PPG 2, PPG 3)
0001С0н	TMRLR XXXXXXXX		TMR2 XXXXXXXX	2 [R] XXXXXXXX	Reload Timer 2
0001С4н	Rese	rved	TMCSRH2 [R/W] 00000	TMCSRL2 [R/W] 0 - 000000	(PPG 4, PPG 5)
0001С8н	TMRLR3 [W] XXXXXXXX XXXXXXX		TMR: XXXXXXXX	R] XXXXXXXX	Reload Timer 3
0001ССн	Rese	rved	TMCSRH3 [R/W] 00000	TMCSRL3 [R/W] 0 - 000000	(PPG 6, PPG 7)
0001D0н	TMRLR XXXXXXXX		TMR ² XXXXXXXX		Reload Timer 4
0001D4н	Rese	rved	TMCSRH4 [R/W] 00000	TMCSRL4 [R/W] 0 - 000000	(PPG 8, PPG 9)

Address		Reg	jister		Block
	+0	+1	+2	+3	
0001D8н	TMRLR: XXXXXXXX			5 [R] XXXXXXXX	Reload Timer 5
0001DСн	Reser	ved	TMCSRH5 [R/W] 00000	TMCSRL5 [R/W] 0 - 000000	(PPG 10, PPG 11)
0001Е0н	TMRLR0 XXXXXXXX			6 [R] XXXXXXXX	Reload Timer 6
0001Е4н	Reser	ved	TMCSRH6 [R/W] 00000	TMCSRL6 [R/W] 0 - 000000	(PPG 12, PPG 13)
0001Е8н	TMRLR' XXXXXXXX			7 [R] XXXXXXXX	Reload Timer 7
0001ЕСн	Reser	ved	TMCSRH7 [R/W] 00000	TMCSRL7 [R/W] 0 - 000000	(PPG 14, PPG 15) (A/D Converter)
0001F0н	TCDT0 XXXXXXXX		Reserved	TCCS0 [R/W] 00000000	Free Running Timer 0 (ICU 0, ICU 1)
0001F4н	TCDT1 XXXXXXXX		Reserved	TCCS1 [R/W] 00000000	Free Running Timer 1 (ICU 2, ICU 3)
0001F8н	TCDT2 XXXXXXXX		Reserved	TCCS2 [R/W] 00000000	Free Running Timer 2 (OCU 0, OCU 1)
0001FСн	TCDT3		Reserved	TCCS3 [R/W] 00000000	Free Running Timer 3 (OCU 2, OCU 3)
000200н	0000		0 [R/W] XXXXXXXX XXXXX	XXX	
000204н	0000		0 [R/W] XXXXXXX XXXXX	ΚΧΧ	
000208н	0000		1 [R/W] XXXXXXXX XXXXX	XXX	
00020Сн	DMACB1 [R/W] 00000000 00000000 XXXXXXXX XXXXXXX				DMAC
000210н	DMACA2 [R/W] 00000000 0000XXXX XXXXXXXX XXXXXXXX				DIVIAO
000214н	DMACB2 [R/W] 00000000 00000000 XXXXXXXX XXXXXXX				
000218н	0000		3 [R/W] XXXXXXXX XXXXX	xxx	
00021Сн	0000		3 [R/W] XXXXXXX XXXXX	ΚXX	

Address		Regi	ster		Block
	+0	+1	+2	+3	
000220н	0000				
000224н	0000	DMACB4 00000 00000000 X	I [R/W] XXXXXXX XXXXX	xxx	
000228н to 00023Сн		Rese	rved		DMAC
000240н	DMACR [R/W] 00 0000		Reserved		
000244н to 0002ССн		Rese	rved		Reserved
0002D0н	Reserved	ICS045 [R/W] 00000000	Reserved	ICS67 [R/W] 00000000	
0002D4н	IPCP4 XXXXXXXX			P5 [R] XXXXXXXX	Input Capture 4 to 7
0002D8н	IPCP6 XXXXXXXX				
0002DСн	OCS45			7 [R/W] 0000 00	
0002Е0н	OCCP4 XXXXXXXX			5 [R/W] XXXXXXXX	Output Compare 4 to 7
0002Е4н	OCCP6 XXXXXXXX			7 [R/W] XXXXXXXX	
0002E8н to 0002EСн		Rese	rved		Reserved
0002F0н	TCDT4 XXXXXXXX		Reserved	TCCS4 [R/W] 00000000	Free Running Timer 4 (ICU 4, ICU 5)
0002F4н	TCDT5 XXXXXXXX		Reserved	TCCS5 [R/W] 00000000	Free Running Timer 5 (ICU 6, ICU 7)
0002F8н	TCDT6 XXXXXXXX		Reserved	TCCS6 [R/W] 00000000	Free Running Timer 6 (OCU 4, OCU 5)
0002FСн	TCDT7 XXXXXXXX		Reserved	TCCS7 [R/W] 00000000	Free Running Timer 7 (OCU 6, OCU 7)

Address		Regi	ster		Block
	+0	+1	+2	+3	
000300н	UDRC1 [W] 00000000	UDRC0 [W] 00000000	UDCR1 [R] 00000000	UDCR0 [R] 00000000	
000304н	UDCCH0 [R/W] 00000000	UDCCL0 [R/W] 00001000	Reserved	UDCS0 [R/W] 00000000	Up/Down Counter 0 to 1
000308н	UDCCH1 [R/W] 00000000	UDCCL1 [R/W] 00001000	Reserved	UDCS1 [R/W] 00000000	
00030Сн to 00031Сн		Rese	rved		Reserved
000320н	GCN13 00110010		Reserved	GCN23 [R/W] 0000	PPG Control 12 to 15
000324н to 00032Сн		Rese	rved		Reserved
000330н	PTMR1 11111111	2 [R] 11111111		12 [W] XXXXXXXX	- PPG 12
000334н	PDUT1 XXXXXXXX		PCNH12 [R/W] 0000000 -	PCNL12 [R/W] 000000 - 0	FFG 12
000338н	PTMR1 11111111			13 [W] XXXXXXXX	PPG 13
00033Сн	PDUT1 XXXXXXXX		PCNH13 [R/W] 0000000 -	PCNL13 [R/W] 000000 - 0	- PFG 13
000340н	PTMR1 11111111	4 [R] 11111111	PCSR XXXXXXXX	14 [W] XXXXXXX	PPG 14
000344н	PDUT1 XXXXXXXX		PCNH14 [R/W] 0000000 -	PCNL14 [R/W] 000000 - 0	FFG 14
000348н	PTMR1 11111111	5 [R] 11111111		15 [W] XXXXXXXX	PPG 15
00034Сн	PDUT1 XXXXXXXX		PCNH15 [R/W] 0000000 -	PCNL15 [R/W] 000000 - 0	- PPG 15
000350н to 00038Сн	Reserved				Reserved
000390н	ROMS 11111111		Rese	erved	ROM Select Register
000394н to 0003ECн		Rese	rved		Reserved

Address	Register				Block
	+0	+1	+2	+3	
0003F0н	XXXX				
0003F4н	XXXX	BSD1 XXXX XXXXXXXX	[R/W] XXXXXXXX XXXX	xxxx	Bit Search Module
0003F8н	XXXX	BSDC XXXX XXXXXXXX	[W] XXXXXXXX XXXX	XXXX	- Bit Search Module
0003FСн	XXXX	BSRR XXXX XXXXXXX	[R] XXXXXXXX XXXX	XXXX	
000400н to 00043Сн		Rese	rved		
000440н	ICR00 [R/W] 11111	ICR01 [R/W] 11111	ICR02 [R/W] 11111	ICR03 [R/W] 11111	
000444н	ICR04 [R/W] 11111	ICR05 [R/W] 11111	ICR06 [R/W] 11111	ICR07 [R/W] 11111	
000448н	ICR08 [R/W] 11111	ICR09 [R/W] 11111	ICR10 [R/W] 11111	ICR11 [R/W] 11111	
00044Сн	ICR12 [R/W] 11111	ICR13 [R/W] 11111	ICR14 [R/W] 11111	ICR15 [R/W] 11111	
000450н	ICR16 [R/W] 11111	ICR17 [R/W] 11111	ICR18 [R/W] 11111	ICR19 [R/W] 11111	
000454н	ICR20 [R/W] 11111	ICR21 [R/W] 11111	ICR22 [R/W] 11111	ICR23 [R/W] 11111	
000458н	ICR24 [R/W] 11111	ICR25 [R/W] 11111	ICR26 [R/W] 11111	ICR27 [R/W] 11111	
00045Сн	ICR28 [R/W] 11111	ICR29 [R/W] 11111	ICR30 [R/W] 11111	ICR31 [R/W] 11111	Interrupt Controller
000460н	ICR32 [R/W] 11111	ICR33 [R/W] 11111	ICR34[R/W] 11111	ICR35 [R/W] 11111	
000464н	ICR36 [R/W] 11111	ICR37 [R/W] 11111	ICR38 [R/W] 11111	ICR39 [R/W] 11111	
000468н	ICR40 [R/W] 11111	ICR41 [R/W] 11111	ICR42 [R/W] 11111	ICR43 [R/W] 11111	
00046Сн	ICR44 [R/W] 11111	ICR45 [R/W] 11111	ICR46 [R/W] 11111	ICR47 [R/W] 11111	
000470н	ICR48 [R/W] 11111	ICR49 [R/W] 11111	ICR50 [R/W] 11111	ICR51 [R/W] 11111	
000474н	ICR52 [R/W] 11111	ICR53 [R/W] 11111	ICR54 [R/W] 11111	ICR55 [R/W] 11111	-
000478н	ICR56 [R/W] 11111	ICR57 [R/W] 11111	ICR58 [R/W] 11111	ICR59 [R/W] 11111	

Address		Regi	ster		Block
	+0	+1	+2	+3	
00047Сн	ICR60 [R/W] 11111	ICR61 [R/W] 11111	ICR62 [R/W] 11111	ICR63 [R/W] 11111	Interrupt Controller
000480н	RSRR [R/W] 10000000	STCR [R/W] 00110011	TBCR [R/W] 00XXXX00	CTBR [W] XXXXXXXX	Clock
000484н	CLKR [R/W] 0000	WPR [W] XXXXXXXX	DIVR0 [R/W] 00000011	DIVR1 [R/W] 00000000	Control
000488н		Rese	rved		Reserved
00048Сн	PLLDIVM [R/W] 0000	PLLDIVN [R/W] 000000	PLLDIVG [R/W] 0000	PLLMULG [R/W] 00000000	- PLL Interface
000490н	PLLCTRL [R/W] 0000		Reserved		F LL IIILEHACE
000494н	OSCC1 [R/W] 010	OSCS1 [R/W] 00001111	OSCC2 [R/W]	OSCS2 [R/W] 00001111	Main/Sub Oscillator Control (Reserved)
000498н	PORTEN [R/W] 00		Reserved		Port Input Enable Control
0004А0н	Reserved	WTCER [R/W] 00		R [R/W] 000 - 00 - 0	
0004А4н	Reserved	XX>	WTBR [R/W]	×xxxxx	Real Time Clock (Watch Timer)
0004А8н	WTHR [R/W] 00000	WTMR [R/W] 000000	WTSR [R/W] 000000	Reserved	
0004АСн	CSVTR [R/W] 00010	CSVCR [R/W] - 011100	CSCFG [R/W] 0X000000	CMCFG [R/W] 00000000	Clock- Supervisor/Selector/ Monitor
0004В0н	CUCR	[R/W] 000		[R/W] 00000000	Calibration of Sub
0004В4н	CUTR	1 [R] 00000000		R2 [R] 00000000	Clock
0004В8н	CMPR 000010		Reserved	CMCR [R/W] - 001 00	Clock
0004ВСн	CMT1 00000000	[R/W] 1 0000		[R/W] 000000	Modulator
0004С0н	CANPRE [R/W] 0 0000	CANCKD [R/W]	Rese	erved	CAN Clock Control
0004С4н	LVSEL [R/W] 00000111	LVDET [R/W] 00000 - 00	HWWDE [R/W] 00	HWWD [R/W,W] 00011000	Low Voltage Detection/ Hardware Watchdog
0004С8н	OSCRH [R/W] 000 001	OSCRL [R/W] 000	WPCRH [R/W] 000 001	WPCRL [R/W]	Main-/Sub-Oscilla- tion Stabilisation Timer

Address		Block			
	+0	+1	+2	+3	
0004ССн	OSCCR [R/W] 00	Reserved	REGSEL [R/W] 000110	REGCTR [R/W] 0-00	Main- Oscillation Standby Control / Main/Sub Regulator Control
0004D0н to 00063Cн		Rese	erved		Reserved
000640н	ASR0 00000000			[R/W] 00000000° ²	
000644н	ASR1 XXXXXXXX	[R/W] XXXXXXXX		[R/W] XXXXXXXX	
000648н	ASR2 XXXXXXXX			[R/W] XXXXXXXX	
00064Сн	ASR3 XXXXXXXX			[R/W] XXXXXXXX	
000650н	ASR4 XXXXXXXX			[R/W] XXXXXXXX	
000654н	ASR5 XXXXXXXX			[R/W] XXXXXXXX	
000658н	ASR6 XXXXXXXX		ACR6 [R/W] XXXXXXXX XXXXXXX		
00065Сн	ASR7 XXXXXXXX			ACR7 [R/W] XXXXXXXX XXXXXXX	
000660н	AWR0 01111111			[R/W] XXXXXXXX	External Bus
000664н	AWR2			R/W]	Unit
000668н	AWR4			[R/W] XXXXXXXX	
00066Сн	AWR6			' [R/W] XXXXXXXX	
000670н	MCRA [R/W] XXXXXXXX	MCRB [R/W] XXXXXXXX	Rese	Reserved	
000674н		Rese	erved		
000678н	IOWR0 [R/W] XXXXXXXX	IOWR1 [R/W] XXXXXXXX	IOWR2 [R/W] IOWR3 [R/W] XXXXXXXX		
00067Сн		Rese	erved		1
000680н	CSER [R/W] 00000001	CHER [R/W] 11111111	Reserved TCR [R/W] 0000**** *3		
000684н	RCRH [R/W] 00XXXXXX	RCRL [R/W] XXXX0XXX	Rese	erved	

Address		Reg	ister		Block
	+0	+1	+2	+2 +3	
000688н to 0007F8н		External Bus Unit			
0007FСн	Reserved	MODR [W] XXXXXXXX	Rese	erved	Mode Register
000800н to 000CFCн		Rese	erved		Reserved
000D00н	PDRD00 [R] XXXXXXXX	PDRD01 [R] XXXXXXXX	Rese	erved	
000D04н	Reserved	PDRD05 [R] XXXXXX	PDRD06 [R] XXXXXXXX	PDRD07 [R] XXXXXXXX	
000D08н	PDRD08 [R] X XX	PDRD09 [R] XX	PDRD10 [R]	Reserved	
000D0Сн	Rese	rved	PDRD14 [R] XXXXXXXX	PDRD15 [R] XXXXXXXX	R-bus Port Data
000D10н	PDRD16 [R] XXXXXXXX	PDRD17 [R] XXXXXXXX	PDRD18 [R] - XXX - XXX	PDRD19 [R] - XXX - XXX	Direct Read Register
000D14н	PDRD20 [R] - XXX - XXX	PDRD21 [R]	PDRD22 [R] XXXXXXXX	PDRD23 [R] XXXXXXXX	
000D18н	PDRD24 [R] XXXXXXXX	Reserved	PDRD26 [R] XXXXXXXX	PDRD27 [R] XXXXXXXX	
000D1Cн	PDRD28 [R] XXXXXXXX	PDRD29 [R] XXXXXXXX	Rese	erved	
000D20н to 000D3Cн		Rese	erved		
000D40н	DDR00 [R/W] 00000000	DDR01 [R/W] 00000000	Rese	erved	
000D44н	Reserved	DDR05 [R/W] 000000	DDR06 [R/W] 00000000	DDR07 [R/W] 00000000	
000D48н	DDR08 [R/W] 0 00	DDR09 [R/W] 00	DDR10 [R/W] 0	Reserved	
000D4Сн	Rese	rved	DDR14 [R/W] DDR15 [R/W] 00000000 00000000		R-bus Port Direction
000D50н	DDR16 [R/W] 00000000	DDR17 [R/W] 00000000	DDR18 [R/W] - 000 - 000	DDR19 [R/W] - 000 - 000	Register
000D54н	DDR20 [R/W] - 000 - 000	DDR21 [R/W]	DDR22 [R/W] 00000000	DDR23 [R/W] 00000000	
000D58н	DDR24 [R/W] 00000000	Reserved	DDR26 [R/W] 00000000	DDR27 [R/W] 00000000	
000D5Cн	DDR28 [R/W] 00000000	DDR29 [R/W] 00000000	Rese	erved	

Address		Regi	ster		Block
	+0	+1	+2	+3	
000D60н to 000D7Сн		Rese	rved		Reserved
000D80н	PFR00 [R/W] 11111111	PFR01 [R/W] 11111111	Rese	erved	
000D84н	Reserved	PFR05 [R/W] 111111	PFR06 [R/W] 11111111	PFR07 [R/W] 11111111	
000D88н	PFR08 [R/W] 1 1 11	PFR09 [R/W] 11	PFR10 [R/W] 1	Reserved	
000D8Сн	Rese	rved	PFR14 [R/W] 00000000	PFR15 [R/W] 00000000	R-bus Port Function
000D90н	PFR16 [R/W] 00000000	PFR17 [R/W] 00000000	PFR18 [R/W] - 000 - 000	PFR19 [R/W] - 000 - 000	Register
000D94н	PFR20 [R/W] - 000 - 000	PFR21 [R/W] 00	PFR22 [R/W] 0000-0-0	PFR23 [R/W] -0000000	
000D98н	PFR24 [R/W] 00000000	Reserved	PFR26 [R/W] 00000000	PFR27 [R/W] 00000000	
000D9Сн	PFR28 [R/W] 00000000	PFR29 [R/W] 00000000	Rese	erved	
000DA0н to 000DC4н		Rese	rved		
000DC8н	Rese	rved	EPFR10 [R/W]	Reserved	
000DCCн	Rese	rved	EPFR14 [R/W] 00000000	EPFR15 [R/W] 00000000	
000DD0н	EPFR16 [R/W] 0 - 00	Reserved	EPFR18 [R/W] - 000 - 000	EPFR19 [R/W] - 0 0	R-bus Port Extra Function Register
000DD4н	EPFR20 [R/W] - 000 - 000	EPFR21 [R/W]	Rese	erved	
000DD8н	Rese	rved	EPFR26 [R/W] 00000000	EPFR27 [R/W] 00000000	
000DDCн to 000DFCн	Reserved			Reserved	

Address		Regi	ster		Block
	+0	+1	+2	+3	
000Е00н	PODR00 [R/W] 00000000	PODR01 [R/W] 00000000	Rese	erved	
000Е04н	Reserved	PODR05 [R/W] 000000	PODR06 [R/W] 00000000	PODR07 [R/W] 00000000	
000Е08н	PODR08 [R/W] 0 0 0	PODR09 [R/W]	PODR10 [R/W]	Reserved	
000Е0Сн	Rese	rved	PODR14 [R/W] 00000000	PODR15 [R/W] 00000000	R-bus Port
000Е10н	PODR16 [R/W] 00000000	PODR17 [R/W] 00000000			Output Drive Select Register
000Е14н	PODR20 [R/W] - 000 - 000	PODR21 [R/W] 00	PODR22 [R/W] 00000000	PODR23 [R/W] 00000000	
000Е18н	PODR24 IR/M/I	Reserved	PODR26 [R/W] 00000000	PODR27 [R/W] 00000000	
000Е1Сн	PODR28 [R/W] 00000000	PODR29 [R/W] 00000000	Rese		
000E20н to 000E3Cн		Rese	rved		Reserved
000Е40н	PILR00 [R/W] 00000000	PILR01 [R/W] 00000000	Rese	erved	
000Е44н	Reserved	PILR05 [R/W] 000000	PILR06 [R/W] 00000000	PILR07 [R/W] 00000000	
000Е48н	PILR08 [R/W] 0 0 0	PILR09 [R/W] 00	PILR10 [R/W]	Reserved	
000Е4Сн	Rese	rved	PILR14 [R/W] 00000000	PILR15 [R/W] 00000000	R-bus Port
000Е50н	PILR16 [R/W] 00000000	PILR17 [R/W] 00000000	PILR18 [R/W] 000	PILR19 [R/W] - 000 - 000	Input Level Select Register
000Е54н	PILR20 [R/W] - 000 - 000	PILR21 [R/W] 00	PILR22 [R/W] 00000000	PILR23 [R/W] 00000000	
000Е58н	PILR24 [R/W] 00000000	Reserved	PILR26 [R/W] 00000000	PILR27 [R/W] 00000000	
000Е5Сн	PILR28 [R/W] 00000000	PILR29 [R/W] 00000000	Reserved		
000E60н to 000E7Cн		Reserved			

Address		Regi	ster		Block	
	+0	+1	+2	+3		
000Е80н	EPILR00 [R/W] 00000000	EPILR01 [R/W] 00000000	Rese	erved		
000Е84н	Reserved	EPILR05 [R/W] 000000				
000Е88н	EPILR08 [R/W] 0 0 0	EPILR09 [R/W]	EPILR10 [R/W]	Reserved		
000Е8Сн	Rese	rved	EPILR14 [R/W] 00000000	EPILR15 [R/W] 00000000	R-bus Port Extra Input Level	
000Е90н	EPILR16 [R/W] 00000000	EPILR17 [R/W] 00000000	EPILR18 [R/W] 000	EPILR19 [R/W] - 000 - 000	Select Register	
000Е94н	EPILR20 [R/W] - 000 - 000	EPILR21 [R/W]	EPILR22 [R/W] 00000000	EPILR23 [R/W] 00000000		
000Е98н	EPILR24 [R/W] 00000000	Reserved	EPILR26 [R/W] 00000000	EPILR27 [R/W] 00000000		
000Е9Сн	EPILR28 [R/W] 00000000	EPILR29 [R/W] 00000000	Rese	erved		
000EA0н to 000EBCн		Rese	rved		Reserved	
000ЕС0н	PPER00 [R/W] 00000000	PPER01 [R/W] 00000000	Rese	erved		
000ЕС4н	Reserved	PPER05 [R/W] 000000	PPER06 [R/W] 00000000	PPER07 [R/W] 00000000		
000ЕС8н	PPER08 [R/W] 0 0 0	PPER09 [R/W] 00	PPER10 [R/W]	Reserved		
000ЕССн	Rese	rved	PPER14 [R/W] 00000000	PPER15 [R/W] 00000000	R-bus Port Pull-Up/Down	
000ЕD0н	PPER16 [R/W] 00000000	PPER17 [R/W] 00000000	PPER18 [R/W] - 000 - 000	PPER19 [R/W] - 000 - 000	Enable Register	
000ЕD4н	PPER20 [R/W] - 000 - 000	PPER21 [R/W] 00	PPER22 [R/W] 00000000	PPER23 [R/W] 00000000		
000ED8н	PPER24 [R/W] 00000000	Reserved	PPER26 [R/W] 00000000	PPER27 [R/W] 00000000		
000EDCн	PPER28 [R/W] 00000000	PPER29 [R/W] 00000000	Rese			
000EE0н to 000EFCн	to Reserved					

Address		Register						
	+0	+1	+2	+3				
000F00н	PPCR00 [R/W] 11111111	PPCR01 [R/W] 11111111	Rese	erved				
000F04н	Reserved	PPCR05 [R/W] 111111	PPCR06 [R/W] 11111111	PPCR07 [R/W] 11111111				
000F08н	PPCR08 [R/W] 1 1 1							
000F0Сн	Rese	rved	PPCR14 [R/W] 00000000	PPCR15 [R/W] 11111111	R-bus Port Pull-Up/Down Con-			
000F10н	PPCR16 [R/W] 00000000	PPCR17 [R/W] 00000000	PPCR18 [R/W] - 111- 111	PPCR19 [R/W] - 111- 111	trol Register			
000F14н	PPCR20 [R/W] - 111- 111	PPCR21 [R/W]	PPCR22 [R/W] 11111111	PPCR23 [R/W] 11111111				
000F18н	PPCR24 [R/W] 11111111	Reserved	PPCR26 [R/W] 11111111	PPCR27 [R/W] 11111111				
000F1Cн	PPCR28 [R/W] 11111111	PPCR29 [R/W] 11111111	Rese	erved				
000F20н to 000F3Cн		Rese	rved		Reserved			
001000н	XXXX	DMASA XXXX XXXXXXX	0 [R/W] XXXXXXXX XXXX	××××				
001004н	XXXX	DMADA XXXX XXXXXXX	0 [R/W] XXXXXXXX XXXX	××××				
001008н	XXXX	DMASA XXXX XXXXXXX	1 [R/W] XXXXXXXX XXXX	××××				
00100Сн	XXXX	DMADA XXXX XXXXXXX	1 [R/W] XXXXXXXX XXXX	XXXX				
001010н	XXXX	DMASA XXXX XXXXXXX	2 [R/W] XXXXXXXX XXXX	××××	DMAG			
001014н	XXXX	DMADA XXXX XXXXXXX	2 [R/W] XXXXXXXX XXXX	XXXX	- DMAC			
001018н	XXXX	DMASA XXXX XXXXXXX	3 [R/W] XXXXXXXX XXXX	XXXX				
00101Сн	XXXX	DMADA XXXX XXXXXXX	3 [R/W] XXXXXXXX XXXX	XXXX				
001020н	XXXX	DMASA XXXX XXXXXXX	4 [R/W] XXXXXXXX XXXX	xxxx				
001024н	XXXX	DMADA XXXX XXXXXXX	4 [R/W] XXXXXXXX XXXX	××××				
001028н to		Rese	rved		Reserved			
003FFCн								

Address		Regi	ister		Block			
	+0	+1	+2	+3				
002000н to 006FFCн	Flash-c	cache size is 8 Kby	tes : 004000н to 00	5FFC _H	Flash-cache / I-RAM area			
007000н	FMCS [R/W] 01101000							
007004н	FMWT 11111111		Flash Memory/ I-Cache Control					
007008н	000	FMA 000000 00000000	C [R] 00000000 000000	00	Register			
00700Сн		FCHA0 [R/W] 000000 00000000 00000000						
007010н			[R/W] 00000000 000000	000	able area setting Register			
007014н to 007FFCн		Rese	erved		Reserved			
008000н to 00BFFCн			es : 00B000⊦ to 00B cle, data access is 1		Boot ROM area			
00С000н	CTRLR(00000000			0 [R/W] 00000000				
00С004н	ERRCN 00000000		[R/W] 00000001	CAN 0 Control				
00С008н	INTR(00000000			0 [R/W] X0000000	Register			
00С00Сн	BRPE0 00000000		CBS	YNC0				

Address		Reg	ister		Block	
	+0	+1	+2	+3		
00С010н	IF1CREC 00000000			K0 [R/W] 00000000		
00С014н	IF1MSK2 11111111			10 [R/W] 11111111		
00С018н	IF1ARB2 00000000			10 [R/W] 00000000		
00С01Сн	IF1MCTR 00000000		Rese	erved		
00С020н	IF1DTA1 00000000			20 [R/W] 00000000		
00С024н	IF1DTB1 00000000			20 [R/W] 00000000	CAN 0 IF 1 Register	
00С028н to 00С02Сн		Rese	erved			
00С030н	IF1DTA2 00000000			10 [R/W] 00000000		
00С034н	IF1DTB2 00000000			10 [R/W] 00000000		
00С038н to 00С03Сн		Rese	erved			
00С040н	IF2CREC 00000000			K0 [R/W] 00000000		
00С044н	IF2MSK2 11111111			10 [R/W] 11111111	CAN 0 IF 2 Register	
00С048н	IF2ARB2 00000000			IF2ARB10 [R/W] 00000000 00000000		

Address		Register				
	+0	+1	+2	+3		
00С04Сн	IF2MCTR 00000000		Res	erved		
00С050н	IF2DTA1 00000000			A20 [R/W] 00000000		
00С054н	IF2DTB10 [R/W] 00000000 00000000			320 [R/W] 00000000		
00С058н to 00С05Сн						
00С060н	IF2DTA2 00000000			A10 [R/W] 00000000		
00С064н	IF2DTB2 00000000			310 [R/W] 00000000		
00С068н to 00С07Сн						
00С080н	TREQR 00000000			R10 [R] 00000000		
00С084н to 00С08Сн	Rese	ved	Res	erved		
00С090н	NEWDT 00000000		NEWI 00000000			
00С094н to 00С09Сн	Rese	ved	Res	Reserved		
00С0А0н	INTPND 00000000			ID10 [R] 00000000	Status Flags	
00C0A4н to 00C0ACн	Rese	ved	Res	erved		
00С0В0н	MSGVA 00000000			AL10 [R] 00000000		
00С0В4н to 00С0FСн	Reserved Reserved					
00С100н to 00ЕFFСн		Rese	erved		Reserved	

Address		Reg	ister		Block				
	+0	+1	+2	+3					
00F000н		BCTRL	[R/W] 11111100 00000	0000					
00F004н			- [R/W] 00000000 10 0	00000					
00F008н		BIAC [R] 00000000 00000000							
00F00Сн		BOAC [R] 00000000 00000000							
00F010н		BIRQ [R/W]							
00F014н to 00F01Сн		Res	erved		EDSU / MPU				
00F020н		BCR0 [R/W] 00000000 00000000 00000000							
00F024н		BCR1 [R/W]							
00F028н		BCR2	[R/W] 0 00000000 000000	000					
00F02Сн			[R/W] 0 00000000 000000	000					
00F030н to 00F07Сн		Reso	erved		Reserved				
00F080н	XXXXX	BAD0 XXX XXXXXXX	[R/W] XXXXXXXX XXX	(XXXXX					
00F084н	XXXXX	BAD1 XXX XXXXXXX	[R/W] XXXXXXXX XXX	(XXXXX					
00F088н	xxxxx		[R/W] XXXXXXXX XXX	(XXXXX					
00F08Сн	xxxxx		[R/W] XXXXXXXX XXX	(XXXXX	EDSU / MPU				
00F090н	xxxxx		[R/W] XXXXXXXX XXX	(XXXXX	LDGG / IVII G				
00F094н	xxxxx		[R/W] XXXXXXXX XXX	(XXXXX					
00F098н	XXXXX		[R/W] XXXXXXXX XXX	(XXXXX					
00F09Сн	XXXXX		[R/W] XXXXXXXX XXX	(XXXXX					

Address		Reg	ister		Block		
	+0	+1	+2		+3		
00F0A0н	XXXXX	BAD8 XXXX XXXXXXX	[R/W] XXXXXXXX	xxxx	xxx		
00F0A4н	XXXXX	BAD9 XXXX XXXXXXX	[R/W] XXXXXXXX	xxxxx	XXX		
00F0A8н	XXXXX	BAD10 XXXX XXXXXXX		XXXXX	XXX		
00F0АСн	XXXXX	BAD11 XXXX XXXXXXX		XXXXX	XXX	EDSU / MPU	
00F0B0н	XXXXX	BAD12 XXXX XXXXXXX	L ' J	XXXXX	XXX	LD30 / WIF 0	
00F0В4н	XXXXX	BAD13 XXXX XXXXXXX		XXXXX	XXX		
00F0B8н	xxxx	BAD14 XXXX XXXXXXX	[R/W] XXXXXXXX	XXXXX	XXX		
00F0ВСн	XXXXX	BAD15 XXXX XXXXXXX		XXXXX	XXX		
00F0C0н to 01FFFCн		Rese	erved				
020000н to 02FFFCн		HA D-RAM size is 2 HB D-RAM size is 1 (data access is	6 Kbytes : 02	С000н - С		D-RAM area	
030000н to 03FFFCн		RAM size is 16 Kbyt access is 0 wait cyc				ID-RAM area	

^{*1 :} depends on the number of available CAN channels

^{*2 :} ACR0 [11 : 10] depends on Mode vector fetch information on bus width

^{**3 :} TCR [3 : 0] INIT value = 0000, keeps value after RST

2. Flash memory and external bus area

2.1. MB91F464HB

32bit read	dat[31:0] dat[3									
16bit read/write	dat[31:16]	dat[1	15:0]	dat[31:16]	dat[15:0]		
Address		!		Reg	ister				Block	
Address	+ 0	+ 1	+ 2	+ 3	+ 4	+ 5	+ 6	+ 7		
040000н to 05FFF8н		Res	served			Res	served		ROMS0	
060000н to 07FFF8н		Res	served			Res	served		ROMS1	
080000н to 09FFF8н		Res	served			Res	served		ROMS2	
0A0000н to 0BFFF8н		SA14	(64KB)			SA15	(64KB)		ROMS3	
0C0000н to 0DFFF8н		SA16	(64KB)			SA17	(64KB)		ROMS4	
0E0000н to 0FFFF0н		SA18	(64KB)			SA19	(64KB)			
0FFFF8⊦		FMV [R] FRV [R] 06 00 00 00 H 00 00 BF F8H						ROMS5		
100000н to 11FFF8н		External Bus Area								
120000н to 13FFF8н				External	Bus Are	ea			ROMS6	
140000н to 143FF8н				External	Duo Ar					
144000н to 17FF8н				External	DUS AI	за				
148000н to 14BFF8н		SA4	(8KB)			SA5	(8KB)		ROMS7	
14С000н to 14FFF8н		SA6	(8KB)			SA7	(8KB)			
150000н to 17FFF8н				Res	erved					
180000н to 1BFFF8н									ROMS8	
1C0000н to 1FFFF8н									ROMS9	
200000н to 27FFF8н									ROMS10	
280000н to 2FFFF8н				External	Duc A=	20			ROMS11	
300000н to 37FFF8н				⊏xiemai	DUS AF	d			ROMS12	
380000н to 3FFFF8н									ROMS13	
400000н to 47FFF8н									ROMS14	
480000н to 4FFFF8н									ROMS15	

Notes: Write operations to address 0FFFF8_H and 0FFFFC_H are not possible. When reading these addresses, the values shown above will be read.

2.1. MB91F466HA

64bit read			dat[63:0]				
32bit read/write	da	t[31:0]			dat	[31:0]		
16bit read/write	dat[31:16]	dat[15:0]	dat[31:16]	dat[15:0]	
Address			Reg	ister				Block
Address	+ 0 + 1	+ 2	+ 3	+ 4	+ 5	+ 6	+ 7	BIOCK
040000н to 05FFF8н	SA8	(64KB)			SA9	(64KB)		ROMS0
060000н to 07FFF8н	SA1	0 (64KB)			SA11	I (64KB)		ROMS1
080000н to 09FFF8н	SA1	2 (64KB)			SA13	3 (64KB)		ROMS2
0A0000н to 0BFFF8н	SA1	4 (64KB)			SA15	5 (64KB)		ROMS3
0C0000н to 0DFFF8н	SA1	6 (64KB)			SA17	7 (64KB)		ROMS4
0E0000н to 0FFFOн	SA1	8 (64KB)			SA19	9 (64KB)		
0FFFF8н	F1 06 0	FRV [R] 00 00 BF F8 _H			ROMS5			
100000н to 11FFF8н								
120000н to 13FFF8н			External	Bus Ar	ea			ROMS6
140000н to 143FF8н	SA	0 (8KB)			SA1 (8KB)			
144000н to 17FF8н	SA	2 (8KB)		SA3 (8KB)				
148000н to 14BFF8н	SA	4 (8KB)		SA5 (8KB)				ROMS7
14С000н to 14FFF8н	SA	6 (8KB)		SA7 (8KB)				
150000н to17FFF8н			Res	erved				
180000н to 1BFFF8н								ROMS8
1C0000н to 1FFFF8н								ROMS9
200000н to 27FFF8н								ROMS10
280000н to 2FFFF8н			External	Rus Ar	00			ROMS11
300000н to 37FFF8н			LXICITIAI	Dus Al	c a			ROMS12
380000н to 3FFFF8н								ROMS13
400000н to 47FFF8н								ROMS14
480000н to 4FFFF8н								ROMS15

Notes: Write operations to address 0FFFF8_H and 0FFFFC_H are not possible. When reading these addresses, the values shown above will be read.

■ INTERRUPT VECTOR TABLE

		ot num- er	Interrup	ot level *1	Interr	upt vector *2	DMA Resource number
Interrupt	Deci- mal	Hexa- deci- mal	Setting Register	Register address	Offset	Default vec- tor address	
Reset	0	00	_	_	3FСн	000FFFFCн	_
Mode vector	1	01	_	_	3F8н	000FFFF8н	_
System reserved	2	02	_	_	3F4н	000FFFF4н	_
System reserved	3	03	_	_	3F0н	000FFFOн	_
System reserved	4	04	_	_	3ЕСн	000FFFECн	_
CPU supervisor mode (INT #5 instruction) *5	5	05	_	_	3Е8н	000FFFE8н	_
Memory Protection exception *5	6	06	_	_	3Е4н	000FFFE4н	_
System reserved	7	07	_	_	3Е0н	000FFFE0н	_
System reserved	8	08	_	_	3DСн	000FFFDCн	_
System reserved	9	09	_	_	3D8н	000FFFD8н	_
System reserved	10	0A	_	_	3D4н	000FFFD4н	_
System reserved	11	0B	_	_	3D0н	000FFFD0н	_
System reserved	12	0C	_	_	3ССн	000FFFCCн	_
System reserved	13	0D	_	_	3С8н	000FFFC8н	_
Undefined instruction exception	14	0E	_	_	3С4н	000FFFC4н	_
NMI request	15	0F	F _H f	ixed	3С0н	000FFFC0н	_
External Interrupt 0	16	10	10000	440	3ВСн	000FFFBCн	0, 16
External Interrupt 1	17	11	ICR00	440н	3В8н	000FFFB8н	1, 17
External Interrupt 2	18	12	IOD04	444	3В4н	000FFFB4н	2, 18
External Interrupt 3	19	13	ICR01	441н	3В0н	000FFFB0н	3, 19
External Interrupt 4	20	14	10000	440	3АСн	000FFFACн	20
External Interrupt 5	21	15	ICR02	442н	3А8н	000FFFA8н	21
External Interrupt 6	22	16	10000	440	3А4н	000FFFA4н	22
External Interrupt 7	23	17	ICR03	443н	3А0н	000FFFA0н	23
External Interrupt 8	24	18	IOD04	444	39Сн	000FFF9Сн	_
External Interrupt 9	25	19	ICR04	444н	398н	000FFF98н	_
External Interrupt 10	26	1A	ICDOF	AAE	394н	000FFF94н	_
External Interrupt 11	27	1B	ICR05	445н	390н	000FFF90н	_
External Interrupt 12	28	1C	ICDOC	440	38Сн	000FFF8Сн	_
External Interrupt 13	29	1D	ICR06	446н	388н	000FFF88н	_
External Interrupt 14	30	1E	IOD07	447	384н	000FFF84н	_
External Interrupt 15	31	1F	ICR07	447н	380н	000FFF80н	_

		pt num- er	Interrup	t level *1	Interr	upt vector *2	DMA
Interrupt	Deci- mal	Hexa- deci- mal	Setting Register	Register address	Offset	Default vector address	Resource number
Reload Timer 0	32	20	ICR08	448н	37Сн	000FFF7Сн	4, 32
Reload Timer 1	33	21	ICKUO	440H	378н	000FFF78н	5, 33
Reload Timer 2	34	22	ICR09	449н	374н	000FFF74н	34
Reload Timer 3	35	23	ICKUS	449 H	370н	000FFF70н	35
Reload Timer 4	36	24	ICR10	44Ан	36Сн	000FFF6Сн	36
Reload Timer 5	37	25	ICKIU	44AH	368н	000FFF68н	37
Reload Timer 6	38	26	ICD11	44D.	364н	000FFF64н	38
Reload Timer 7	39	27	ICR11	44Вн	360н	000FFF60н	39
Free Run Timer 0	40	28	ICR12	44Сн	35Сн	000FFF5Сн	40
Free Run Timer 1	41	29	;	358н	000FFF58н	41	
Free Run Timer 2	42	2A	ICD42	440	354н	000FFF54н	42
Free Run Timer 3	43	2B	ICR13	44Dн	350н	000FFF50н	43
Free Run Timer 4	44	2C	— ICR14 44Eн —	34Сн	000FFF4Сн	44	
Free Run Timer 5	45	2D		44 ⊏ H	348н	000FFF48н	45
Free Run Timer 6	46	2E	10045	4.45	344н	000FFF44н	46
Free Run Timer 7	47	2F	ICR15	44Fн	340н	000FFF40н	47
CAN 0	48	30	IOD46	450	33Сн	000FFF3Сн	_
Reserved	49	31	ICR16	450н	338н	000FFF38н	_
Reserved	50	32	10047	454	334н	000FFF34н	_
Reserved	51	33	ICR17	451н	330н	000FFF30н	_
Reserved	52	34	IOD40	450	32Сн	000FFF2Сн	_
Reserved	53	35	ICR18	452н	328н	000FFF28н	_
LIN-USART 0 RX	54	36	10040	450	324н	000FFF24н	6, 48
LIN-USART 0 TX	55	37	ICR19	453н	320н	000FFF20н	7, 49
Reserved	56	38	IOD00	454	31Сн	000FFF1Сн	8, 50
Reserved	57	39	ICR20	454н	318н	000FFF18 _H	9, 51
LIN-USART 2 RX	58	3A	IOD04	455	314н	000FFF14н	52
LIN-USART 2 TX	59	3B	ICR21	455н	310н	000FFF10н	53
LIN-USART 3 RX	60	3C	IODOO	450	30Сн	000FFF0Сн	54
LIN-USART 3 TX	61	3D	ICR22	456н	308н	000FFF08н	55
System Reserved	62	3E	ICD00 *3	457	304н	000FFF04н	_
Delayed Interrupt	63	3F	ICR23 *3	457н	300н	000FFF00н	_
System Reserved *4	64	40	ICD04	450	2FСн	000FFEFCн	_
System Reserved *4	65	41	ICR24	458н	2F8н	000FFEF8н	_

Interrupt	Interrupt num- ber		Interrupt level *1		Interrupt vector *2		DMA
	Deci- mal	Hexa- deci- mal	Setting Register	Register address	Offset	Default vec- tor address	Resource number
LIN-USART (FIFO) 4 RX	66	42	ICR25	459н	2F4н	000FFEF4н	10, 56
LIN-USART (FIFO) 4 TX	67	43			2F0н	000FFEF0н	11, 57
LIN-USART (FIFO) 5 RX	68	44	ICR26	45Ан	2ЕСн	000FFEECн	12, 58
LIN-USART (FIFO) 5 TX	69	45			2Е8н	000FFEE8н	13, 59
LIN-USART (FIFO) 6 RX	70	46	- ICR27 45	450	2Е4н	000FFEE4н	60
LIN-USART (FIFO) 6 TX	71	47		43BH	2Е0н	000FFEE0н	61
LIN-USART (FIFO) 7 RX	72	48	ICDOO	450	2DC _H	000FFEDCн	62
LIN-USART (FIFO) 7 TX	73	49	ICR28	45Сн	2D8н	000FFED8н	63
I ² C 0	74	4A	IOD00	45Dн	2D4н	000FFED4н	_
I ² C 1	75	4B	ICR29		2D0н	000FFED0н	_
Reserved	76	4C	ICD20	455	2ССн	000FFECCн	64
Reserved	77	4D	ICR30	45Ен	2С8н	000FFEC8н	65
Reserved	78	4E	ICD24	455	2С4н	000FFEC4н	66
Reserved	79	4F	ICR31	45Fн	2С0н	000FFEC0н	67
Reserved	80	50	10000	460н	2ВСн	000FFEBCн	68
Reserved	81	51	ICR32		2В8н	000FFEB8н	69
Reserved	82	52	ICR33	461н	2В4н	000FFEB4н	70
Reserved	83	53			2В0н	000FFEB0н	71
Reserved	84	54	ICR34	462н	2АСн	000FFEACн	72
Reserved	85	55			2А8н	000FFEA8н	73
Reserved	86	56	- ICR35	463н	2А4н	000FFEA4н	74
Reserved	87	57			2А0н	000FFEA0н	75
Reserved	88	58	ICR36	464н	29Сн	000FFE9Сн	76
Reserved	89	59			298н	000FFE98н	77
Reserved	90	5A	ICR37	465н	294н	000FFE94н	78
Reserved	91	5B			290н	000FFE90 _H	79
Input Capture 0	92	5C	- ICR38	466н	28Сн	000FFE8Сн	80
Input Capture 1	93	5D			288н	000FFE88н	81
Input Capture 2	94	5E	ICR39	467н	284н	000FFE84н	82
Input Capture 3	95	5F			280н	000FFE80н	83
Input Capture 4	96	60	ICR40	468н	27Сн	000FFE7Сн	84
Input Capture 5	97	61			278н	000FFE78н	85
Input Capture 6	98	62	ICR41	469н	274н	000FFE74н	86
Input Capture 7	99	63			270н	000FFE70н	87

Interrupt	Interrupt num- ber		Interrupt level *1		Interrupt vector *2		DMA
	Deci- mal	Hexa- deci- mal	Setting Register	Register address	Offset	Default vec- tor address	Resource number
Output Compare 0	100	64	ICR42	46Ан	26Сн	000FFE6Сн	88
Output Compare 1	101	65			268н	000FFE68н	89
Output Compare 2	102	66	ICR43	46Вн	264н	000FFE64н	90
Output Compare 3	103	67			260н	000FFE60н	91
Output Compare 4	104	68	ICD44	CR44 46CH	25Сн	000FFE5Сн	92
Output Compare 5	105	69	ICK44		258н	000FFE58н	93
Output Compare 6	106	6A	ICR45	46Dн	254н	000FFE54н	94
Output Compare 7	107	6B	10043	40DH	250н	000FFE50н	95
Sound Generator	108	6C	ICR46	46Ен	24Сн	000FFE4Cн	_
Reserved	109	6D	1CK40	40EH	248н	000FFE48н	_
System Reserved	110	6E	ICR47 *3	46E	244н	000FFE44н	_
System Reserved	111	6F	ICR47	46Fн	240н	000FFE40н	_
PPG 0	112	70	ICR48	470н	23Сн	000FFE3Cн	15, 96
PPG 1	113	71	101140		238н	000FFE38н	97
PPG 2	114	72	ICR49	471н	234н	000FFE34н	98
PPG 3	115	73			230н	000FFE30н	99
PPG 4	116	74	ICR50	472н	22Сн	000FFE2Cн	100
PPG 5	117	75	ICKSU	412H	228н	000FFE28н	101
PPG 6	118	76	ICD51	ICR51 473н	224н	000FFE24н	102
PPG 7	119	77	ICIXOT		220н	000FFE20н	103
PPG 8	120	78	ICR52	474н	21Сн	000FFE1Сн	104
PPG 9	121	79	ICKSZ		218н	000FFE18н	105
PPG 10	122	7A	- ICR53 475н	175	214н	000FFE14н	106
PPG 11	123	7B		210н	000FFE10н	107	
PPG 12	124	7C	ICR54	476н	20Сн	000FFE0Сн	108
PPG 13	125	7D			208н	000FFE08н	109
PPG 14	126	7E	ICR55	477н	204н	000FFE04н	110
PPG 15	127	7F			200н	000FFE00н	111
Up/Down Counter 0	128	80	ICR56	478н	1FCн	000FFDFCн	_
Up/Down Counter 1	129	81			1F8н	000FFDF8н	
Reserved	130	82	ICR57	479н	1F4н	000FFDF4н	_
Reserved	131	83			1F0н	000FFDF0н	_
Real Time Clock	132	84	ICR58	47Ан	1ЕСн	000FFDECн	_
Calibration Unit	133	85			1Е8н	000FFDE8н	

	Interrupt num- ber		Interrupt level *1		Interr	DMA	
Interrupt	Deci- mal	Hexa- deci- mal	Setting Register	Register address	Offset	Default vector address	Resource number
A/D Converter 0	134	86	ICR59	47Вн	1Е4н	000FFDE4н	14, 112
System reserved	135	87	ICKS	47 DH	1Е0н	000FFDE0н	_
Alarm Comparator 0	136	88	ICR60	47Сн	1DC _H	000FFDDCн	_
Reserved	137	89	ICROU	47 CH	1D8н	000FFDD8н	_
Low Voltage Detection	138	8A	10004 470		1D4н	000FFDD4н	_
Reserved	139	8B	ICR61	47Dн	1D0н	000FFDD0н	_
Time base Overflow	140	8C	ICR62	47Ен	1ССн	000FFDCCн	_
PLL Clock Gear	141	8D	ICROZ	47 ⊏ H	1С8н	000FFDC8н	_
DMA Controller	142	8E	ICDC2	475	1С4н	000FFDC4н	_
Main/Sub OSC stability wait	143	8F	ICR63	47Fн	1С0н	000FFDC0н	_
Security vector	144	90	_	_	1ВСн	000FFDBCн	_
Used by the INT instruction.	145 to 255	91 to FF	_	_	1В8н to 000н	000FFDB8н to 000FFC00н	_

^{*1 :} The Interrupt Control Registers (ICRs) are located in the interrupt controller and set the interrupt level for each interrupt request. An ICR is provided for each interrupt request.

^{*2 :} The vector address for each EIT (exception, interrupt or trap) is calculated by adding the listed offset to the table base register value (TBR) . The TBR specifies the top of the EIT vector table. The addresses listed in the table are for the default TBR value (000FFC00H) . The TBR is initialized to this value by a reset. The TBR is set to 000FFC00H after the internal boot ROM is executed.

^{*3:} ICR23 and ICR47 can be exchanged by setting the REALOS compatibility bit (addr 0C03H: IOS[0])

^{*4:} Used by REALOS

^{*5 :} Memory Protection Unit (MPU) support

■ RECOMMENDED SETTINGS

1. PLL and Clockgear settings

Please note that for MB91F464HB the core base clock frequencies are valid in the 1.8V operation mode of the Main regulator and Flash .

Please refer to "Absolute maximum ratings" on page 82 to find the maximum allowed frequency of Core Base Clock (fclkb) at high temperature.

Recommended PLL divider and clockgear settings

PLL Input (CLK)	Frequency	Parameter			PLL Output (X) [MHz]	Core Base Clock [MHz]	Remarks
[MHz]	DIVM	DIVN	DIVG	MULG	MULG		
4	2	25	16	24	200	100	*1
4	2	24	16	24	192	96	
4	2	23	16	24	184	92	
4	2	22	16	24	176	88	
4	2	21	16	20	168	84	
4	2	20	16	20	160	80	
4	2	19	16	20	152	76	
4	2	18	16	20	144	72	
4	2	17	16	16	136	68	
4	2	16	16	16	128	64	
4	2	15	16	16	120	60	
4	2	14	16	16	112	56	
4	2	13	16	12	104	52	
4	2	12	16	12	96	48	
4	2	11	16	12	88	44	
4	4	10	16	24	160	40	
4	4	9	16	24	144	36	
4	4	8	16	24	128	32	
4	4	7	16	24	112	28	
4	6	6	16	24	144	24	
4	8	5	16	28	160	20	
4	10	4	16	32	160	16	
4	12	3	16	32	144	12	

^{*1} This setting is not possible at MB91F466HA.

2. Clock Modulator settings

The following table shows all possible settings for the Clock Modulator in a base clock frequency range from 32MHz up to 88MHz.

The Flash access time settings need to be adjusted according to Fmax while the PLL and clockgear settings should be set according to base clock frequency.

Please refer to "Absolute maximum ratings" on page 82 to find the maximum allowed frequency of Fmax (fclkb) at high temperature.

Clock Modulator settings, frequency range and supported supply voltage

Modulation Degree (k)	Random No (N)	CMPR [hex]	Baseclk [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks	
1	3	026F	88	79.5	98.5	*1	
1	3	026F	84	76.1	93.8		
1	3	026F	80	72.6	89.1		
1	5	02AE	80	68.7	95.8		
2	3	046E	80	68.7	95.8		
1	3	026F	76	69.1	84.5		
1	5	02AE	76	65.3	90.8		
1	7	02ED	76	62	98.1	*1	
2	3	046E	76	65.3	90.8		
3	3	066D	76	62	98.1	*1	
1	3	026F	72	65.5	79.9		
1	5	02AE	72	62	85.8		
1	7	02ED	72	58.8	92.7		
2	3	046E	72	62	85.8		
3	3	066D	72	58.8	92.7		
1	3	026F	68	62	75.3		
1	5	02AE	68	58.7	80.9		
1	7	02ED	68	55.7	87.3		
1	9	032C	68	53	95		
2	3	046E	68	58.7	80.9		
2	5	04AC	68	53	95		
3	3	066D	68	55.7	87.3		
4	3	086C	68	53	95		
1	3	026F	64	58.5	70.7		
1	5	02AE	64	55.3	75.9		
1	7	02ED	64	52.5	82		
1	9	032C	64	49.9	89.1		
1	11	036B	64	47.6	97.6	*1	
2	3	046E	64	55.3	75.9		

Modulation Degree (k)	Random No (N)	CMPR [hex]	Baseclk [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks
2	5	04AC	64	49.9	89.1	
3	3	066D	64	52.5	82	
4	3	086C	64	49.9	89.1	
5	3	0A6B	64	47.6	97.6	
1	3	026F	60	54.9	66.1	
1	5	02AE	60	51.9	71	
1	7	02ED	60	49.3	76.7	
1	9	032C	60	46.9	83.3	
1	11	036B	60	44.7	91.3	
2	3	046E	60	51.9	71	
2	5	04AC	60	46.9	83.3	
3	3	066D	60	49.3	76.7	
4	3	086C	60	46.9	83.3	
5	3	0A6B	60	44.7	91.3	
1	3	026F	56	51.4	61.6	
1	5	02AE	56	48.6	66.1	
1	7	02ED	56	46.1	71.4	
1	9	032C	56	43.8	77.6	
1	11	036B	56	41.8	84.9	
1	13	03AA	56	39.9	93.8	
2	3	046E	56	48.6	66.1	
2	5	04AC	56	43.8	77.6	
2	7	04EA	56	39.9	93.8	
3	3	066D	56	46.1	71.4	
3	5	06AA	56	39.9	93.8	
4	3	086C	56	43.8	77.6	
5	3	0A6B	56	41.8	84.9	
6	3	0C6A	56	39.9	93.8	
1	3	026F	52	47.8	57	
1	5	02AE	52	45.2	61.2	
1	7	02ED	52	42.9	66.1	
1	9	032C	52	40.8	71.8	
1	11	036B	52	38.8	78.6	
1	13	03AA	52	37.1	86.8	
1	15	03E9	52	35.5	96.9	*1
2	3	046E	52	45.2	61.2	

Modulation Degree (k)	Random No (N)	CMPR [hex]	Basecik [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks
2	5	04AC	52	40.8	71.8	
2	7	04EA	52	37.1	86.8	
3	3	066D	52	42.9	66.1	
3	5	06AA	52	37.1	86.8	
4	3	086C	52	40.8	71.8	
5	3	0A6B	52	38.8	78.6	
6	3	0C6A	52	37.1	86.8	
7	3	0E69	52	35.5	96.9	*1
1	3	026F	48	44.2	52.5	
1	5	02AE	48	41.8	56.4	
1	7	02ED	48	39.6	60.9	
1	9	032C	48	37.7	66.1	
1	11	036B	48	35.9	72.3	
1	13	03AA	48	34.3	79.9	
1	15	03E9	48	32.8	89.1	
2	3	046E	48	41.8	56.4	
2	5	04AC	48	37.7	66.1	
2	7	04EA	48	34.3	79.9	
3	3	066D	48	39.6	60.9	
3	5	06AA	48	34.3	79.9	
4	3	086C	48	37.7	66.1	
5	3	0A6B	48	35.9	72.3	
6	3	0C6A	48	34.3	79.9	
7	3	0E69	48	32.8	89.1	
1	3	026F	44	40.6	48.1	
1	5	02AE	44	38.4	51.6	
1	7	02ED	44	36.4	55.7	
1	9	032C	44	34.6	60.4	
1	11	036B	44	33	66.1	
1	13	03AA	44	31.5	73	
1	15	03E9	44	30.1	81.4	
2	3	046E	44	38.4	51.6	
2	5	04AC	44	34.6	60.4	
2	7	04EA	44	31.5	73	
2	9	0528	44	28.9	92.1	
3	3	066D	44	36.4	55.7	

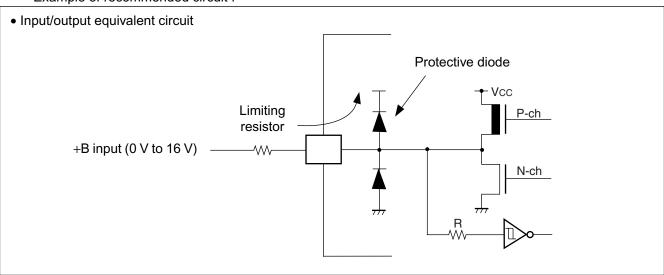
Modulation Degree (k)	Random No (N)	CMPR [hex]	Baseclk [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks
3	5	06AA	44	31.5	73	
4	3	086C	44	34.6	60.4	
4	5	08A8	44	28.9	92.1	
5	3	0A6B	44	33	66.1	
6	3	0C6A	44	31.5	73	
7	3	0E69	44	30.1	81.4	
8	3	1068	44	28.9	92.1	
1	3	026F	40	37	43.6	
1	5	02AE	40	34.9	46.8	
1	7	02ED	40	33.1	50.5	
1	9	032C	40	31.5	54.8	
1	11	036B	40	30	59.9	
1	13	03AA	40	28.7	66.1	
1	15	03E9	40	27.4	73.7	
2	3	046E	40	34.9	46.8	
2	5	04AC	40	31.5	54.8	
2	7	04EA	40	28.7	66.1	
2	9	0528	40	26.3	83.3	
3	3	066D	40	33.1	50.5	
3	5	06AA	40	28.7	66.1	
3	7	06E7	40	25.3	95.8	
4	3	086C	40	31.5	54.8	
4	5	08A8	40	26.3	83.3	
5	3	0A6B	40	30	59.9	
6	3	0C6A	40	28.7	66.1	
7	3	0E69	40	27.4	73.7	
8	3	1068	40	26.3	83.3	
9	3	1267	40	25.3	95.8	
1	3	026F	36	33.3	39.2	
1	5	02AE	36	31.5	42	
1	7	02ED	36	29.9	45.3	
1	9	032C	36	28.4	49.2	
1	11	036B	36	27.1	53.8	
1	13	03AA	36	25.8	59.3	
1	15	03E9	36	24.7	66.1	
2	3	046E	36	31.5	42	

Modulation Degree (k)	Random No (N)	CMPR [hex]	Baseclk [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks
2	5	04AC	36	28.4	49.2	
2	7	04EA	36	25.8	59.3	
2	9	0528	36	23.7	74.7	
3	3	066D	36	29.9	45.3	
3	5	06AA	36	25.8	59.3	
3	7	06E7	36	22.8	85.8	
4	3	086C	36	28.4	49.2	
4	5	08A8	36	23.7	74.7	
5	3	0A6B	36	27.1	53.8	
6	3	0C6A	36	25.8	59.3	
7	3	0E69	36	24.7	66.1	
8	3	1068	36	23.7	74.7	
9	3	1267	36	22.8	85.8	
1	3	026F	32	29.7	34.7	
1	5	02AE	32	28	37.3	
1	7	02ED	32	26.6	40.2	
1	9	032C	32	25.3	43.6	
1	11	036B	32	24.1	47.7	
1	13	03AA	32	23	52.5	
1	15	03E9	32	22	58.6	
2	3	046E	32	28	37.3	
2	5	04AC	32	25.3	43.6	
2	7	04EA	32	23	52.5	
2	9	0528	32	21.1	66.1	
2	11	0566	32	19.5	89.1	
3	3	066D	32	26.6	40.2	
3	5	06AA	32	23	52.5	
3	7	06E7	32	20.3	75.9	
4	3	086C	32	25.3	43.6	
4	5	08A8	32	21.1	66.1	
5	3	0A6B	32	24.1	47.7	
5	5	0AA6	32	19.5	89.1	
6	3	0C6A	32	23	52.5	
7	3	0E69	32	22	58.6	
8	3	1068	32	21.1	66.1	
9	3	1267	32	20.3	75.9	

Modulation Degree (k)	Random No (N)	CMPR [hex]	Baseclk [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks
10	3	1466	32	19.5	89.1	

^{*1} These settings are not possible at MB91F466HA

■ ELECTRICAL CHARACTERISTICS


1. Absolute maximum ratings

Downwater	Curahal	Rat	ting	111-2:4	Damarka	
Parameter	Symbol	Min	Max	Unit	Remarks	
Power supply slew rate	_	_	50	V/ms		
Power supply voltage 1*1	VDD5R	- 0.3	+ 6.0	V		
Power supply voltage 2*1	V _{DD} 5	- 0.3	+ 6.0	V		
Relationship of the supply volt-	AVcc5	V _{DD} 5-0.3 V _{DD} 35-0.3	V _{DD} 5+0.3 V _{DD} 35+0.3	V	At least one pin of the Ports 26 to 29 (ANn) is used as digital input or output.	
ages		Vss5-0.3 Vdd35-0.3	V _{DD} 5+0.3 V _{DD} 35+0.3	V	All pins of the Ports 26 to 29 (ANn) follow the condition of V _{IA}	
Analog power supply voltage*1	AVcc5	- 0.3	+ 6.0	V	*2	
Analog reference power supply voltage*1	AVRH	- 0.3	+ 6.0	V	*2	
Input voltage 1*1	Vıı	Vss5 - 0.3	V _{DD} 5 + 0.3	V		
Analog pin input voltage*1	VIA	AVss5 - 0.3	AVcc5 + 0.3	V		
Output voltage 1*1	V ₀₁	Vss5 - 0.3	V _{DD} 5 + 0.3	V		
Maximum clamp current	ICLAMP	- 4.0	+ 4.0	mA	*3	
Total maximum clamp current	Σ ICLAMP		20	mA	*3	
"L" level maximum output current*4	Іоь	_	10	mA		
"L" level average output current*5	lolav	_	8	mA		
"L" level total maximum output current	ΣΙοι	_	100	mA		
"L" level total average output current*6	Σ lolav	_	50	mA		
"H" level maximum output current*4	Іон	_	- 10	mA		
"H" level average output current*5	Іонач	_	- 4	mA		
"H" level total maximum output current	ΣІон	_	- 100	mA		
"H" level total average output current*6	ΣΙοнαν	_	- 25	mA		
	fmax, CLKB	_	100			
Permitted operating frequency	fmax, CLKP	_	50	MHz	T _A ≤ 105 °C	
MB91F464HB	f _{max} , CLKT	_	50] IVITZ		
	fmax, CLKCAN		50			

Davameter	Cymphal	Rat	ting	l lmi4	Remarks	
Parameter	Symbol	Min	Max	Unit	Remarks	
	f _{max} , CLKB	_	96			
Permitted operating frequency	fmax, CLKP		48	MHz	T _A ≤ 125 °C	
MB91F464HB	f _{max} , CLKT		48	IVITZ	TA ≥ 125 C	
	fmax, CLKCAN		48			
	f _{max} , CLKB		96			
Permitted operating frequency	fmax, CLKP		48	MHz	T _A ≤ 105 °C	
MB91F466HA	f _{max} , CLKT		48	IVITZ	1A S 103 C	
	fmax, CLKCAN		48			
	fmax, CLKB	_	92			
Permitted operating frequency	fmax, CLKP	_	46	MHz	T _A ≤ 125 °C	
MB91F466HA	f _{max} , CLKT		46		TA S 125 C	
	fmax, CLKCAN		46			
			1200 *8	mW	T _A ≤ 85 °C	
			600 *8	mW	T _A ≤ 105 °C	
Permitted power dissipation *7	P _D		1300 *8	mW	T _A ≤ 105 °C, no Flash program/erase *9	
r diministra pomor alcorpano.		_	1000 *8	mW	T _A ≤ 115 °C, no Flash program/erase *9	
		_	750 ^{*8}	mW	T _A ≤ 125 °C, no Flash program/erase *9	
Operating temperature	TA	- 40	+ 125	°C		
Storage temperature	Tstg	– 55	+ 150	°C		

- *1 : The parameter is based on Vss5 = AVss5 = 0.0 V.
- *2 : AVcc5 and AVRH5 must not exceed $V_{DD}5 + 0.3 V$.
- *3: Use within recommended operating conditions.
 - Use with DC voltage (current).
 - •+B signals are input signals that exceed the V_{DD}5 voltage. +B signals should always be applied by connecting a limiting resistor between the +B signal and the microcontroller.
 - The value of the limiting resistor should be set so that the current input to the microcontroller pin does not exceed the rated value at any time, either instantaneously or for an extended period, when the +B signal is input.
 - Note that when the microcontroller drive current is low, such as in the low power consumption modes, the +B input potential can increase the potential at the power supply pin via a protective diode, possibly affecting other devices.
 - Note that if the +B signal is input when the microcontroller is off (not fixed at 0 V), power is supplied through the +B input pin; therefore, the microcontroller may partially operate.
 - Note that if the +B signal is input at power-on, since the power is supplied through the pin, the power-on reset may not function in the power supply voltage.

- Do not leave +B input pins open.
- Example of recommended circuit :

- *4: Maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
- *5 : Average output current is defined as the value of the average current flowing through any one of the corresponding pins for a 100 ms period.
- *6 : Total average output current is defined as the value of the average current flowing through all of the corresponding pins for a 100 ms period.
- *7 : The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows:

$$P_D = P_{IO} + P_{INT}$$

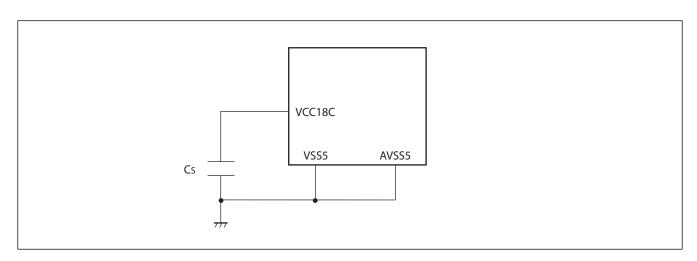
 $P_{IO} = \sum (V_{OL} * I_{OL} + V_{OH} * I_{OH})$ (IO load power dissipation, sum is performed on all IO ports)

PINT = VDD5R * Icc + AVcc5 * IA + AVRH5 * IR (internal power dissipation)

- *8 : Worst case value for the QFP package mounted on a 4-layer PCB at specified T $_{
 m A}$ without air flow.
- *9 : Please contact Fujitsu for reliability limitations when using under these conditions.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended operating conditions


(Vss5 = AVss5 = 0.0 V)

Parameter	Symbol		Value		Unit	Remarks
Parameter	Symbol	Min	Тур	Max	Onit	Remarks
	V _{DD} 5	3.0	_	5.5	V	
Power supply voltage	V _{DD} 5R	3.0	_	5.5	V	Internal regulator
	AVcc5	3.0	_	5.5	V	A/D converter
Smoothing capacitor at VCC18C pin	Cs	_	4.7	_	μF	Use a X7R ceramic capacitor or a capacitor that has similar frequency characteristics.
Power supply slew rate		_	_	50	V/ms	
Operating temperature	Та	- 40		+ 125	°C	
Main Oscillation stabilisation time		10			ms	
Lock-up time PLL (4 MHz ->16100MHz)				0.6	ms	
ESD Protection (Human body model)	Vsurge	2			kV	$R_{discharge} = 1.5k\Omega$ $C_{discharge} = 100pF$
RC Oscillator	frc100kHz frc2MHz	50 1	100 2	200 4	kHz MHz	VDDcore ≥ 1.65V

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

> Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

> No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC characteristics

D		`	2	,	Value			,
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
		_	Port inputs if CMOS Hysteresis 0.8/0.2 input is selected	0.8 × V _{DD}	_	V _{DD} + 0.3	V	CMOS hysteresis input
			Port inputs if CMOS	$0.7 \times V_{DD}$		V _{DD} + 0.3	V	$4.5~V \le V_{DD} \le 5.5~V$
	ViH	_	Hysteresis 0.7/0.3 input is selected	0.74×V _{DD}		V _{DD} + 0.3	V	$3 \text{ V} \leq \text{V}_{DD} \leq 4.5 \text{ V}$
			AUTOMOTIVE Hysteresis input is selected	0.8 × V _{DD}	_	V _{DD} + 0.3	V	
Input "H" voltage		_	Port inputs if TTL input is selected			V _{DD} + 0.3	V	
Voltage	VIHR	INITX	_	0.8 × V _{DD}	_	V _{DD} + 0.3	V	INITX input pin (CMOS Hysteresis)
	V _{ІНМ}	MD_3 to MD_0	_	V _{DD} - 0.3		V _{DD} + 0.3	V	Mode input pins
	V _{IHX0S}	X0, X0A	_	2.5		V _{DD} + 0.3	V	External clock in "Oscillation mode"
	V _{IHX0F}	X0	_	0.8 × V _{DD}	_	V _{DD} + 0.3	V	External clock in "Fast Clock Input mode"
	_		Port inputs if CMOS Hysteresis 0.8/0.2 input is selected	Vss - 0.3		0.2 × V _{DD}	V	
	V	_	Port inputs if CMOS Hysteresis 0.7/0.3 input is selected	Vss - 0.3		0.3 × V _{DD}	V	
	VIL		Port inputs if	Vss - 0.3	_	$0.5 \times V_{DD}$	V	$4.5~V \leq V_{DD} \leq 5.5~V$
Input "L"		_	AUTOMOTIVE Hysteresis input is selected	Vss - 0.3		0.46 × V _{DD}	V	3 V ≤ V _{DD} < 4.5 V
voltage		_	Port inputs if TTL input is selected	Vss - 0.3		0.8	V	
	Vilr	INITX	_	Vss - 0.3	_	0.2 × V _{DD}	V	INITX input pin (CMOS Hysteresis)
	VILM	MD_3 to MD_0	_	Vss - 0.3		Vss + 0.3	V	Mode input pins
	VILXDS	X0, X0A	_	Vss - 0.3	_	0.5	V	External clock in "Oscillation mode"

Dawassatas	Currelle ed	Pin	Condition		Value	11	Domonika	
Parameter	Symbol	name	Condition	Min	Тур	Max	Unit	Remarks
Input "L" voltage	VILXDF	X0	_	Vss - 0.3	_	0.2 × V _{DD}	V	External clock in "Fast Clock Input mode"
	Vон2	Normal outputs	$ \begin{aligned} 4.5 \text{V} &\leq \text{V}_{\text{DD}} \leq 5.5 \text{V}, \\ \text{IoH} &= -2 \text{mA} \end{aligned} $ $ 3.0 \text{V} &\leq \text{V}_{\text{DD}} \leq 4.5 \text{V}, \\ \text{IoH} &= -1.6 \text{mA} $	V _{DD} - 0.5		_	V	Driving strength set to 2 mA
Output "H" voltage	V _{OH5}	Normal outputs	$4.5V \leq V_{DD} \leq 5.5V,$ $I_{OH} = -5mA$ $3.0V \leq V_{DD} \leq 4.5V,$ $I_{OH} = -3mA$	V _{DD} - 0.5	_	_	V	Driving strength set to 5 mA
	Vонз	I ² C outputs	$3.0 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{V},$ $\text{I}_{\text{OH}} = -3 \text{mA}$	V _{DD} - 0.5	_	_	V	
	V _{OL2}	Normal outputs	$4.5V \le V_{DD} \le 5.5V,$ $I_{OH} = +2mA$ $3.0V \le V_{DD} \le 4.5V,$ $I_{OH} = +1.6mA$	_	_	0.4	V	Driving strength set to 2 mA
Output "L" voltage	V _{OL5}	Normal outputs	$4.5V \le V_{DD} \le 5.5V,$ $I_{OH} = +5mA$ $3.0V \le V_{DD} \le 4.5V,$	_	_	0.4	V	Driving strength set to 5 mA
	Vol3	I ² C outputs	$I_{OH} = +3mA$ $3.0V \le V_{DD} \le 5.5V$, $I_{OH} = +3mA$	_	_	0.4	V	
Input leak-	I.	Pnn_m	$3.0V \le V_{DD} \le 5.5V$ $V_{SS} \le V_I \le V_{DD}$ $T_A=25$ °C	– 1	_	+ 1	^	
age current	l _{IL}	*1	$3.0V \le V_{DD} \le 5.5V$ $V_{SS}5 < V_{I} < V_{DD}$ $T_{A}=125 °C$	- 3	_	+ 3	μΑ	
Analog in-		A N I *2	3.0V ≤ V _{DD} ≤ 5.5V T _A =25 °C	- 1		+ 1	μΑ	
put leak- IAIN I age current		ANn*2	$3.0 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{V}$ Ta=125 °C	- 3	_	+ 3	μΑ	
Pull-up	_	Pnn_m	$3.0V \leq V_{DD} \leq 3.6V$	40	100	160		
resistance	Rup	*3 INITX	4.5V ≤V _{DD} ≤5.5V	25	50	100	kΩ	
Pull-down	Roown	Pnn_m	$3.0V \leq V_{DD} \leq 3.6V$	40	100	180	kΩ	
resistance	LADOWIN	*4	$4.5V \le V_{DD} \le 5.5V$	25	50	100	1/22	

Davamatar	Symbol	Pin	Condition		Value		l lmi4	Demonto
Parameter	Symbol	name	Condition	Min	Тур	Max	Unit	Remarks
Input capaci- tance	Cin	All except VDD5, VDD5R, VSS5, AVCC5, AVSS5, AVRH5	f = 1 MHz	-	5	15	pF	
	Icc	V _{DD} 5R	CLKB: 100 MHz CLKP: 50 MHz CLKT: 50 MHz CLKCAN: 50 MHz	-	100	130	mA	Code fetch from Flash
			T _A = + 25 °C	-	30	150	μΑ	
			T _A = + 105 °C	-	0.3	2.0	mA	At stop mode *5
			T _A = + 125 °C	-	0.75	5.0	mA	
Power			T _A = + 25 °C	-	100	500	μΑ	RTC:
supply	Іссн	V _{DD} 5R	T _A = + 105 °C	-	0.5	2.4	mA	4 MHz mode *5
current			T _A = + 125 °C	-	0.85	5.4	mA	
MB91			T _A = + 25 °C	-	50	250	μΑ	DTC :
F464HB			T _A = + 105 °C	-	0.4	2.2	mA	RTC : 100 kHz mode *5
			T _A = + 125 °C	-	0.8	5.2	mA	
	ILVI	V _{DD} 5R	_	_	50	100	μА	Internal low voltage detection
	losc	losc Vpp5	-	-	250	500	μА	Main clock (4 MHz)
	1050	טטט ע	-	-	20	40	μА	Sub clock (32 kHz)

Downstan	Cumah al	Pin	Condition		Value		11:4	Damanka
Parameter	Symbol	name	Condition	Min	Тур	Max	Unit	Remarks
	Icc	V _{DD} 5R	CLKB: 96 MHz CLKP: 48 MHz CLKT: 48 MHz CLKCAN: 48 MHz	_	110	140	mA	Code fetch from Flash
		T _A = + 25 °C		30	150	μΑ		
		T _A = + 105 °C	_	0.4	2.0	mA	At stop mode *5	
			T _A = + 125 °C	_	1.0	5.0	mA	
		Iссн VDD5R	T _A = + 25 °C	_	100	500	μΑ	
Power	Іссн		T _A = + 105 °C	_	0.5	2.4	mA	RTC : 4 MHz mode *5
supply current			T _A = + 125 °C		1.1	5.4	mA	
Current			T _A = + 25 °C		50	250	μА	DTO
MB91			T _A = + 105 °C	_	0.45	2.2	mA	RTC: 100 kHz mode *5
F466HA			T _A = + 125 °C	_	1.05	5.2	mA	
	ILVE	V _{DD} 5	_	_	70	150	μА	External low voltage detection
	ILVI	V _{DD} 5R	_	_	50	100	μА	Internal low voltage detection
	losc	V _{DD} 5	_	_	250	500	μА	Main clock (4 MHz)
	IOSC		_	_	20	40	μА	Sub clock (32 kHz)

- 1. Pnn_m includes all GPIO pins. Analog (AN) channels and PullUp/PullDown are disabled.
- 2. ANn includes all pins where AN channels are enabled.
- 3. Pnn_m includes all GPIO pins. The pull up resistors must be enabled by PPER/PPCR setting and the pins must be in input direction.
- 4. Pnn_m includes all GPIO pins. The pull down resistors must be enabled by PPER/PPCR setting and the pins must be in input direction.
- 5. Main regulator OFF, sub regulator set to 1.2V, Low voltage detection disabled.

4. A/D converter characteristics

(VDD5 = AVcc5 = 3.0 V to 5.5 V, Vss5 = AVss5 = 0 V, $T_A = -40$ °C to + 125 °C)

Parameter	Symbol	Pin name		Value		Unit	Remarks
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks
Resolution		_	_	_	10	bit	
Total error	_	_	- 3	_	+ 3	LSB	
Nonlinearity error		_	- 2.5	_	+ 2.5	LSB	
Differential nonlinearity error		_	- 1.9	_	+ 1.9	LSB	
Zero reading voltage	Vот	ANn	AVRL-1.5	AVRL + 0.5	AVRL + 2.5	LSB	
Full scale reading voltage	V _{FST}	ANn	AVRH-3.5	AVRH-1.5	AVRH + 0.5	LSB	
Compare time	Тсотр		0.6	_	16,500	μs	4.5 V ≤ AVcc5 ≤ 5.5 V
Compare time	I comp	_	2.0	_	_	μs	3.0 V ≤ AVcc5 ≤ 4.5 V
Sampling time	Tsamp	_	0.4	_	_	μs	$4.5 \text{ V} \le \text{AVcc5} \le$ $5.5 \text{ V},$ $R_{\text{EXT}} < 2 \text{ k}\Omega$
Sampling time			1.0	_	_	μs	3.0 V ≤ AVcc5 ≤ 4.5 V, REXT < 1 kΩ
Conversion time	Tconv		1.0	_	_	μs	4.5 V ≤ AVcc5 ≤ 5.5 V
Conversion time	I conv	_	3.0	_	_	μs	3.0 V ≤ AVcc5 ≤ 4.5 V
Input capacitance	Cin	ANn			11	pF	
Input resistance	Rin	ANn	_	_	2.6	kΩ	4.5 V ≤ AVcc5 ≤ 5.5 V
Imput resistance	NIN	AINII	_	_	12.1	kΩ	3.0 V ≤ AVcc5 ≤ 4.5 V
Analog input leakage	Iain	ANn	– 1	_	+ 1	μА	T _A = + 25 °C
current	IAIN	AINH	- 3	_	+ 3	μΑ	T _A = + 125 °C
Analog input voltage range	Vain	ANn	AVRL	_	AVRH	V	
Offset between input channels		ANn	_	_	4	LSB	

(Continued)

Note: The accuracy gets worse as AVRH - AVRL becomes smaller

(Continued)

Parameter	Symbol	Pin name		Value		Unit	Remarks
Parameter	Symbol		Min	Тур	Max	Ullit	Remarks
Reference voltage range	AVRH	AVRH5	0.75 × AVcc5	_	AVcc5	V	
Reference voltage range	AVRL	AVss5	AVss5	_	AVcc5 × 0.25	V	
Power supply current	la	AVcc5		2.5	5	mA	A/D Converter active
per ADC macro *3	Іан	AVcc5		_	5	μА	A/D Converter not operated *1
Reference voltage current	lR	AVRH5		0.7	1	mA	A/D Converter active
per ADC macro *3	Ігн	AVRH5		_	5	μА	A/D Converter not operated *2

^{*1 :} Supply current at AVcc5, if A/D converter and ALARM comparator are not operating, $(V_{DD}5 = AVcc5 = AVRH = 5.0 \text{ V})$

Sampling Time Calculation

$$\begin{split} T_{\text{samp}} &= \text{(2.6 kOhm + Rext)} \times 11 pF \times 7; \text{ for } 4.5 \text{V} \leq \text{AVcc5} \leq 5.5 \text{V} \\ T_{\text{samp}} &= \text{(12.1 kOhm + Rext)} \times 11 pF \times 7; \text{ for } 3.0 \text{V} \leq \text{AVcc5} \leq 4.5 \text{V} \end{split}$$

Conversion Time Calculation

 $T_{conv} = T_{samp} + T_{comp}$

Definition of A/D converter terms

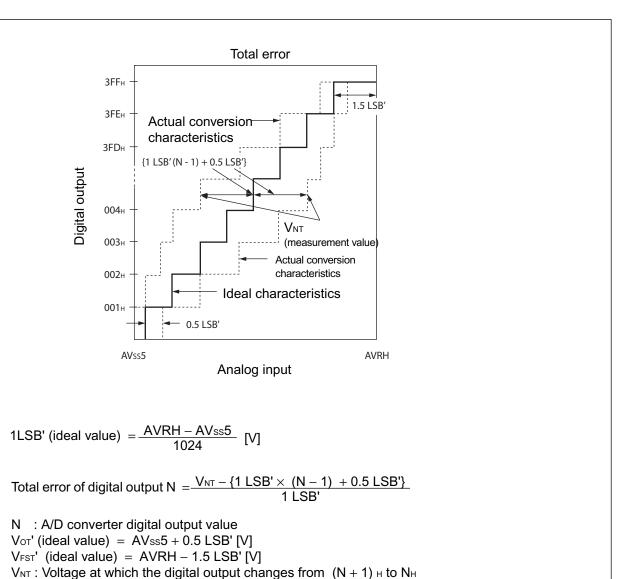
Resolution

Analog variation that is recognizable by the A/D converter.

· Nonlinearity error

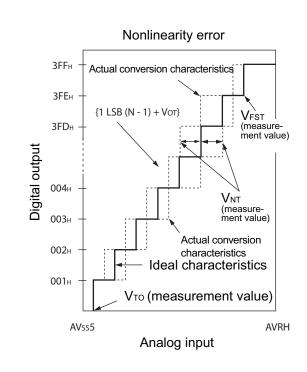
Deviation between actual conversion characteristics and a straight line connecting the zero transition point (00 0000 0000 $_{\text{B}} \leftrightarrow 00$ 0000 0001 $_{\text{B}}$) and the full scale transition point (11 1111 1110 $_{\text{B}} \leftrightarrow 11$ 1111 1111 $_{\text{B}}$).

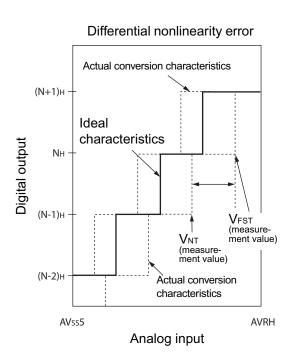
· Differential nonlinearity error


Deviation of the input voltage from the ideal value that is required to change the output code by 1 LSB.

· Total error

This error indicates the difference between actual and theoretical values, including the zero transition error, full scale transition error, and nonlinearity error.


^{*2:} Input current at AVRH5, if A/D converter is not operating, (VDD5 = AVcc5 = AVRH = 5.0 V)


^{*3:} The current consumption per ADC macro is given here. On devices having more then one A/D converter, the current values have to be multiplied by the number of macros.

(Continued)

(Continued)

Nonlinearity error of digital output N = $\frac{V_{NT} - \{1LSB \times (N-1) + V_{OT}\}}{1LSB}$ [LSB]

Differential nonlinearity error of digital output N = $\frac{V(N+1)T - V_{NT}}{1LSB} - 1$ [LSB]

 $1LSB = \frac{V_{FST} - V_{OT}}{1022} [V]$

N : A/D converter digital output value

 $V_{\text{OT}}\:\:$: Voltage at which the digital output changes from 000H to 001H. $V_{\text{FST}}\:\:$: Voltage at which the digital output changes from 3FEH to 3FFH.

5. Alarm comparator characteristics

Parameter	Symbol	Pin name		Unit	Remarks		
Parameter	Syllibol	Pili liaille	Min	Тур	Max	Ullit	Remarks
	I A5ALMF		_	25	40	μА	Alarm compar- ator enabled in fast mode (per channel) *1
Power supply current	I A5ALMS	AVcc5	_	7	10	μА	Alarm comparator enabled in normal mode (per channel)
	l _{A5ALMH}		_	_	5	μА	Alarm comparator disabled
ALARM pin in-	Ialin		- 1	_	+ 1	μΑ	T _A =25 °C
put current	IALIN		- 3		+ 3	μΑ	T _A =125 °C
ALARM pin in- put voltage range	VALIN		0	_	AVcc5	V	
Alarm upper limit voltage	VIAH		AVcc5 × 0.78 - 3%	AVcc5 × 0.78	AVcc5 × 0.78 + 3%	V	
Alarm lower limit voltage	VIAL		AVcc5 × 0.36 - 5%	AVcc5 × 0.36	AVcc5 × 0.36 + 5%	V	
Alarm hystere- sis voltage	VIAHYS	ALARM_n	50	_	250	mV	
Alarm input resistance	Rin		5	_	_	МΩ	
Comparion	tсомрғ		_	0.1	0.2	μs	Alarm compar- ator enabled in fast mode *1
Comparion time	tcomps		_	1	2	μs	Alarm comparator enabled in normal mode

Note: *1: The fast Alarm Comparator mode is enabled by setting ACSR.MD=1 Setting ACSR.MD=0 sets the normal mode.

6. FLASH memory program/erase characteristics

6.1. MB91F464HB

 $(V_{DD}5 = 3.0 \text{ V to } 5.5 \text{ V}, V_{DD}5R = 3.0 \text{ V to } 5.5 \text{ V}, V_{SS}5 = 0 \text{ V}, T_A = -40 ^{\circ}\text{C to } + 105 ^{\circ}\text{C})$

Parameter		Value		Unit	Remarks		
Parameter	Min	Min Typ Max		Unit	ixemarks		
Sector erase time	-	0.9	3.6	s	Erasure programming time not included		
Chip erase time	-	n*0.9	n*3.6	s	n is the number of Flash sector of the device		
Word (16-bit or 32-bit width) programming time	-	23	370	μs	System overhead time not included		
Programm/Erase cycle	10 000			cycle			
Flash data retention time	20			year	*1		

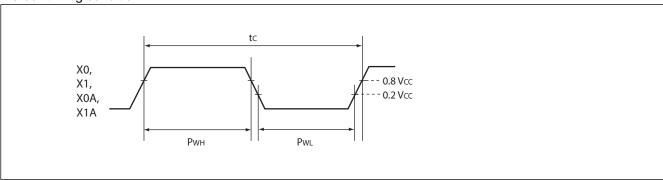
^{*1:} This value was converted from the results of evaluating the reliability of the technology (using Arrhenius equation to convert high temperature measurements into normalized value at 85°C)

6.2. MB91F466HA

 $(V_{DD}5 = 3.0 \text{ V to } 5.5 \text{ V}, V_{DD}5R = 3.0 \text{ V to } 5.5 \text{ V}, V_{SS}5 = 0 \text{ V}, T_A = -40 ^{\circ}\text{C to } + 105 ^{\circ}\text{C})$

Parameter		Value		Unit	Remarks
Farameter	Min	Тур	Max	Oill	Kemarks
Sector erase time	-	0.5	2.0	s	Erasure programming time not included
Chip erase time	-	n*0.5	n*2.0	S	n is the number of Flash sector of the device
Word (16-bit or 32-bit width) programming time	-	6	100	μs	System overhead time not included
Program/Erase cycle	10 000			cycle	
Flash data retention time	20			year	*1

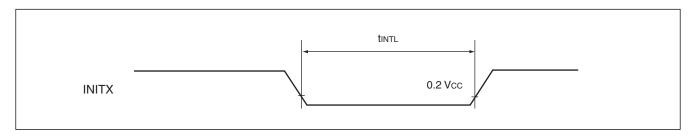
^{*1:} This value was converted from the results of evaluating the reliability of the technology (using Arrhenius equation to convert high temperature measurements into normalized value at 85°C)


7. AC characteristics

7.1. Clock timing

(VDD5 = 3.0 V to 5.5 V, Vss5 = AVss5 = 0 V, $T_A = -40$ °C to + 125 °C)

Parameter	Symbol	Pin name	Value			Unit	Condition	
			Min	Тур	Max	Oilit	Condition	
Clock frequency	£	X0 X1	3.5	4	16	MHz	Opposite phase external supply or crystal	
Clock frequency	f c	X0A X1A	32	32.768	100	kHz		


Clock timing condition

7.2. Reset input ratings

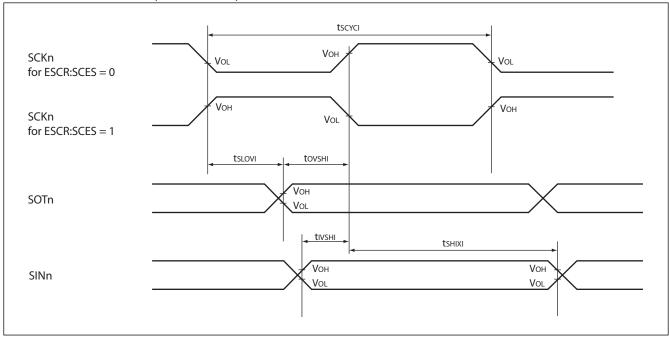
 $(V_{DD}5 = 3.0 \text{ V to } 5.5 \text{ V}, \text{ Vss}5 = \text{AVss}5 = 0 \text{ V}, \text{ T}_{A} = -40 \, ^{\circ}\text{C to } + 125 \, ^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	Unit	
Farameter	Syllibol	Finitianie	Condition	Min	Max	Onit
INITX input time (at power-on)	- t intl	INITX		8	_	ms
INITX input time (other than the above)			_	20	_	μs

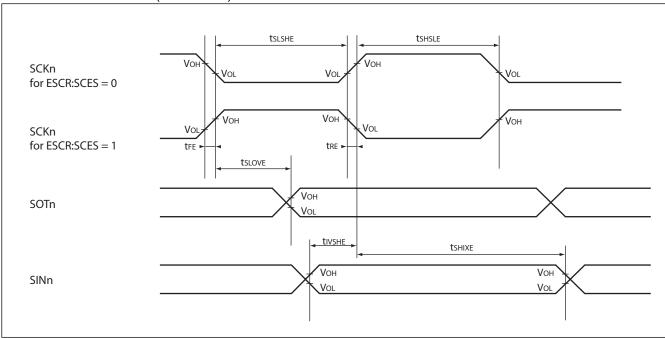
7.3. LIN-USART Timings at $V_{DD}5 = 3.0$ to 5.5 V

- · Conditions during AC measurements
- All AC tests were measured under the following conditions:
- - IO_{drive} = 5 mA
- $-V_{DD}5 = 3.0 \text{ V to } 5.5 \text{ V, } I_{load} = 3 \text{ mA}$
- Vss5 = 0 V
- - Ta = -40 °C to +125 °C
- - C₁ = 50 pF (load capacity value of pins when testing)
- $-VOL = 0.2 \times V_{DD}5$
- - $VOH = 0.8 \times V_{DD}5$
- - EPILR = 0, PILR = 1 (Automotive Level = worst case)

 $(V_{DD}5 = 3.0 \text{ V to } 5.5 \text{ V}, V_{SS}5 = AV_{SS}5 = 0 \text{ V}, T_{A} = -40 \,^{\circ}\text{C to } + 125 \,^{\circ}\text{C})$


Parameter	Symbol	Pin name	Condition	$V_{\text{DD}}5 = 3.0$	V to 4.5 V	$V_{\text{DD}}5 = 4.5$	V to 5.5 V	Unit
Farameter	Symbol	riii iiaiiie	Condition	Min	Max	Min	Max	Oilit
Serial clock cycle time	t scyci	SCKn		4 tclkp	_	4 tclkp	_	ns
$\begin{array}{c} SCK \downarrow \to SOT \\ delay\ time \end{array}$	t sLOVI	SCKn SOTn	Internal	- 30	30	- 20	20	ns
$\begin{array}{c} SOT \to SCK \downarrow \\ delay\ time \end{array}$	t ovshi	SCKn SOTn	clock operation (master	$m \times \\ t_{\text{CLKP}} - 30^*$	_	m × tclкp – 20*	_	ns
$\begin{array}{c} \text{Valid SIN} \rightarrow \\ \text{SCK} \uparrow \text{setup time} \end{array}$	t ıvsнı	SCKn SINn	mode)	tclkp + 55	_	tclkp + 45	_	ns
SCK $\uparrow \rightarrow \text{valid}$ SIN hold time	t shixi	SCKn SINn		0		0		ns
Serial clock "H" pulse width	t shsle	SCKn		tclkp + 10	_	tclkp + 10	_	ns
Serial clock "L" pulse width	t slshe	SCKn		tclkp + 10		tclkp + 10	_	ns
SCK ↓ → SOT delay time	tslove	SCKn SOTn	External clock		2 tclkp + 55		2 tclkp + 45	ns
Valid SIN → SCK ↑ setup time	tivshe	SCKn SINn	operation (slave mode)	10		10	_	ns
SCK $\uparrow \rightarrow \text{valid}$ SIN hold time	t shixe	SCKn SINn		tclkp + 10		tclkp + 10		ns
SCK rising time	t _{FE}	SCKn			20		20	ns
SCK falling time	tre	SCKn			20	_	20	ns

- * : Parameter m depends on tscyci and can be calculated as :
 - if tscycl = 2*k*tclkP, then m = k, where k is an integer > 2
 - if tscycl = (2*k + 1)*tclkp, then m = k + 1, where k is an integer > 1


Notes: • The above values are AC characteristics for CLK synchronous mode.

• tclkp is the cycle time of the peripheral clock.

• Internal clock mode (master mode)

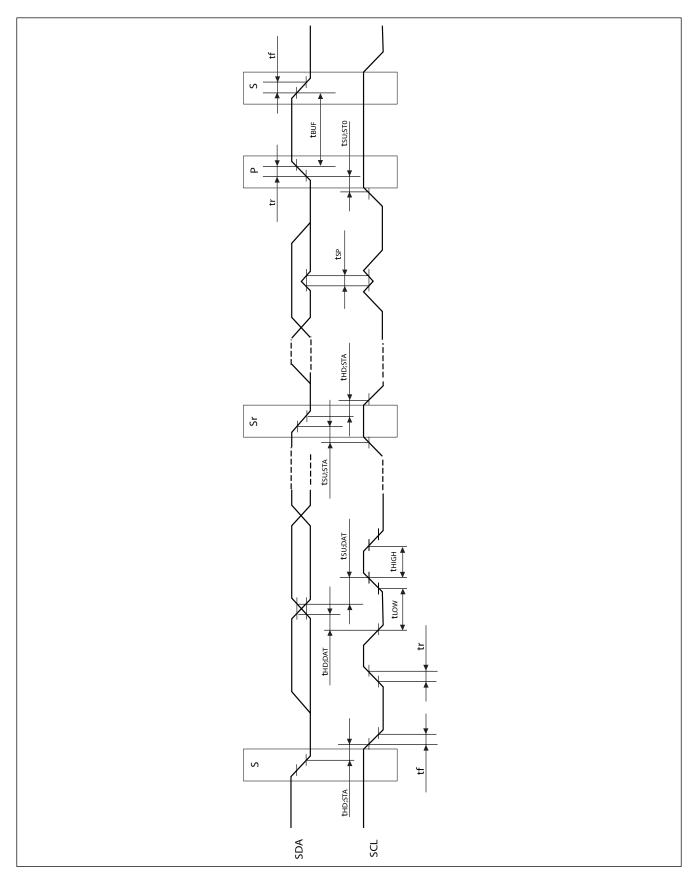
• External clock mode (slave mode)

7.4. $I^{2}C$ AC Timings at $V_{DD}5 = 3.0$ to 5.5 V

· Conditions during AC measurements

All AC tests were measured under the following conditions:

- IOdrive = 3 mA
- $V_{DD}5 = 3.0 V$ to 5.5 V, $I_{load} = 3 mA$
- Vss5 = 0 V
- Ta = -40 °C to +125 °C
- $C_1 = 50 pF$
- $VOL = 0.3 \times V_{DD}5$
- VOH = $0.7 \times V_{DD}5$
- EPILR = 0, PILR = 0 (CMOS Hysteresis $0.3 \times V_{DD}5/0.7 \times V_{DD}5$)

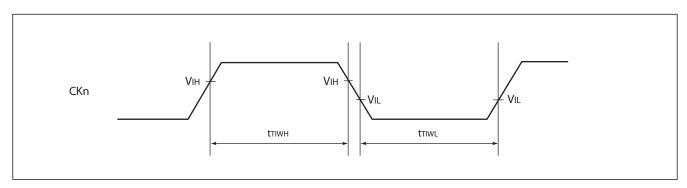

Fast mode:

$$(V_{DD}5 = 3.5 \text{ V to } 5.5 \text{ V}, \text{ Vss}5 = \text{AVss}5 = 0 \text{ V}, \text{ T}_{A} = -40 \,^{\circ}\text{C to } + 125 \,^{\circ}\text{C})$$

Domonoston.	Cumb al	Din nome	Val	ue	11:4	Damark
Parameter	Symbol	Pin name	Min	Max	Unit	Remark
SCL clock frequency	fscL	SCLn	0	400	kHz	
Hold time (repeated) START condition. After this period, the first clock pulse is generated	thd;sta	SCLn, SDAn	0.6	_	μs	
LOW period of the SCL clock	t Low	SCLn	1.3	_	μs	
HIGH period of the SCL clock	t HIGH	SCLn	0.6	_	μs	
Setup time for a repeated START condition	tsu;sta	SCLn, SDAn	0.6	_	μs	
Data hold time for I ² C-bus devices	thd;dat	SCLn, SDAn	0	0.9	μs	
Data setup time	t su;dat	SCLn SDAn	100	_	ns	
Rise time of both SDA and SCL signals	t r	SCLn, SDAn	20 + 0.1Cb	300	ns	
Fall time of both SDA and SCL signals	t f	SCLn, SDAn	20 + 0.1Cb	300	ns	
Setup time for STOP condition	t su;sto	SCLn, SDAn	0.6	_	μs	
Bus free time between a STOP and START condition	t BUF	SCLn, SDAn	1.3	_	μs	
Capacitive load for each bus line	Сь	SCLn, SDAn	_	400	pF	
Pulse width of spike suppressed by input filter	t sp	SCLn, SDAn	0	(11.5) × tclkp	ns	*1

^{*1} The noise filter will suppress single spikes with a pulse width of 0ns and between (1 to 1.5) cycles of peripheral clock, depending on the phase relationship between I²C signals (SDA, SCL) and peripheral clock.

Note: tclkp is the cycle time of the peripheral clock.

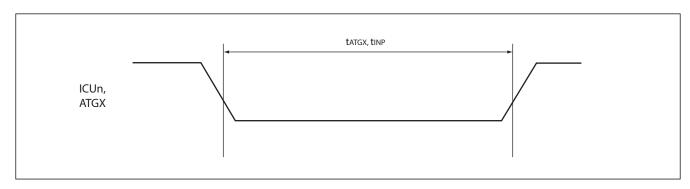


7.5. Free-run timer clock

(VDD5 = 3.0 V to 5.5 V, Vss5 = AVss5 = 0 V, TA = -40 °C to + 125 °C)

Parameter	Symbol	Pin name	Condition	Va	lue	Unit
raiailletei	Symbol	riii iiaiiie	Condition	Min	Max	Oilit
Input pulse width	tтıwн tтıwL	CKn	_	4t clkP	_	ns

Note : $\ensuremath{\mathsf{tcLKP}}$ is the cycle time of the peripheral clock.



7.6. Trigger input timing

(VDD5 = 3.0 V to 5.5 V, Vss5 = AVss5 = 0 V, TA = -40 °C to + 125 °C)

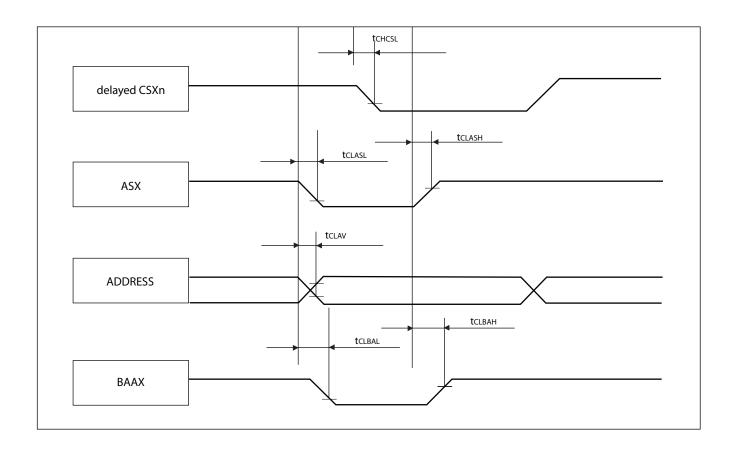
Parameter	Symbol	Pin name	Condition	Va	lue	Unit
raiailletei	Syllibol	Fili liaille	Condition	Min	Max	
Input capture input trigger	tinp	ICUn	_	5tclkp	_	ns
A/D converter trigger	t atgx	ATGX	_	5tclkp	_	ns

Note : t_{CLKP} is the cycle time of the peripheral clock.

7.7. External Bus AC Timings at VDD35 = 3.0 to 5.5 V

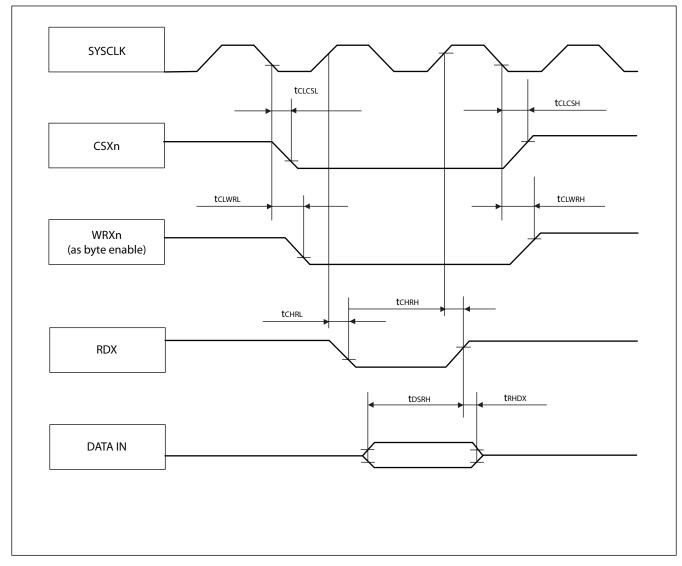
· Conditions during AC measurements

All AC tests were measured under the following conditions:

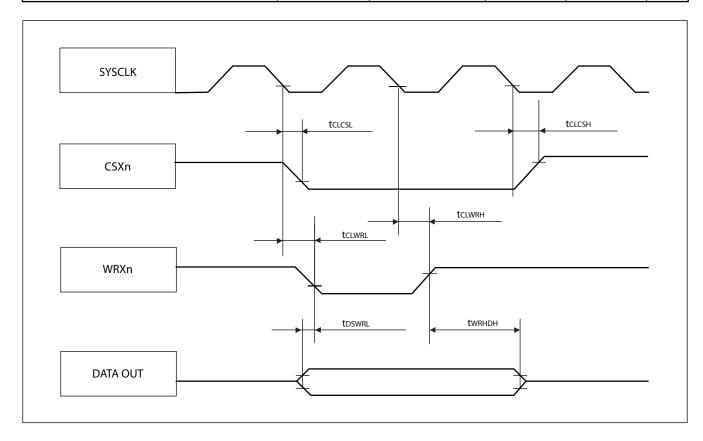

- $IO_{drive} = 5 mA$
- $V_{DD}35 = 4.5 V$ to 5.5 V, $I_{load} = 3 mA$
- Vss5 = 0 V
- Ta = -40 °C to +125 °C
- $C_1 = 50 pF$
- VOL = $0.5 \times V_{DD}35$
- VOH = $0.5 \times V_{DD}35$
- EPILR = 0, PILR = 1 (Automotive Level = worst case)

7.7.1. Basic Timing

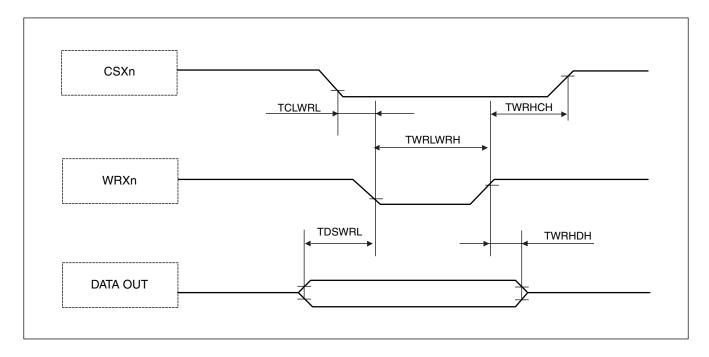
$$(V_{DD}35 = 3.0 \text{ V to } 5.5 \text{ V}, \text{ Vss5} = \text{AVss5} = 0 \text{ V}, \text{ TA} = -40 ^{\circ}\text{C to } + 125 ^{\circ}\text{C})$$


Parameter	Symbol Pin name		Va	Unit	
Faiailletei	Syllibol	Fili liallie	Min	Max	Oilit
SYSCLK	t cLCH	SYSCLK	1/2 x tськт – 1	1/2 × tськт + 9	ns
STOCK	t chcL	STOCK	1/2 × tclкт — 9	1/2 × tськт + 1	ns
SYSCLK ↓ to CSXn_delay time	tclcsl		_	8	ns
3130EN VIO COAIT delay lilile	t clcsh	SYSCLK	_	12	ns
$\begin{array}{c} SYSCLK \uparrow to \; CSXn \; \; delay \; time \\ (Addr \to CS \; delay) \end{array}$	tchcsL	CSXn	- 6	+ 1	ns
SYSCLK ↓ to Address valid delay time	tclav	SYSCLK A21 to A0	_	13	ns

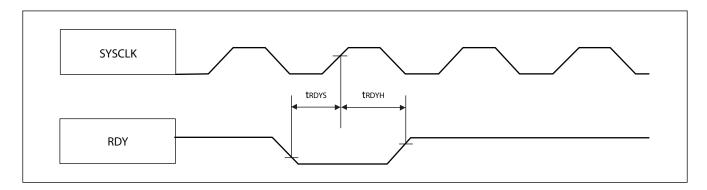
Note : t_{CLKT} is the cycle time of the external bus clock.


7.7.2. Synchronous/Asynchronous read access

Parameter	Symbol	Symbol Pin name		lue	Unit
	Symbol	Pili liame	Min	Max	Ullit
SYSCLK ↑ to RDX delay time	TCHRL	SYSCLK	-7	1	ns
313CER to RDX delay time	TCHRH	RDX	- 4	2	ns
Data valid to RDX ↑ setup time	TDSRH	RDX D31 to D16	33	_	ns
RDX ↑ to Data valid hold time	TRHDX	RDX D31 to D16	0	_	ns
SYSCLK ↓ to WRXn	TCLWRL	SYSCLK	_	8	ns
(as byte enable) delay time	TCLWRH	WRXn	0	_	ns
SYSCLK ↓ to CSXn delay time	TCLCSL	SYSCLK	_	8	ns
	TCLCSH	CSXn		12	ns


7.7.3. Synchronous write access

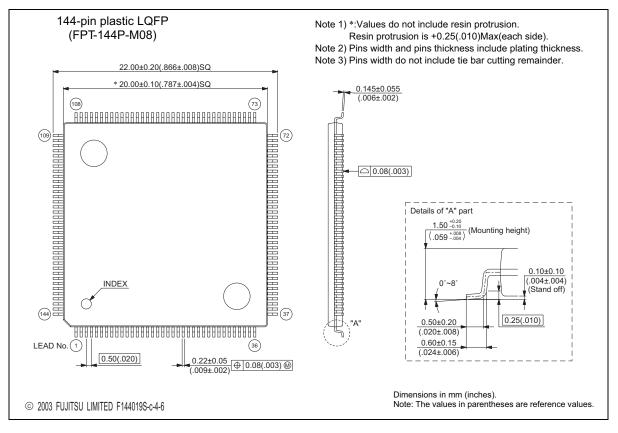
Parameter	Symbol	Pin name	Va	lue	Unit
Farameter	Symbol	Symbol Fill hame		Max	
SVSCLK to WBVn delev time	TCLWRL	SYSCLK	_	8	ns
SYSCLK ↓ to WRXn delay time	TCLWRH	WRXn	0	_	ns
Data valid to WRXn ↓ setup time	TDSWRL	WRXn D31 to D16	-7	_	ns
WRXn ↑ to Data valid hold time	TWRHDH	WRXn D31 to D16	tclкт — 20	_	ns
SYSCLK ↓ to CSXn delay time	TCLCSL	SYSCLK	_	8	ns
13130EN \$ 10 COAT delay little	TCLCSH	CSXn	_	12	ns


7.7.4. Asynchronous write access

Parameter	Cumbal	Din nama	Value		
	Symbol	Pin name	Min	Max	Unit
WRXn ↓ to WRXn ↑ pulse width	TWRLWRH	WRXn	t clkt	_	ns
Data valid to WRXn ↓ setup time	TDSWRL	WRXn D31 to D16	1/2 × tclкт — 10	_	ns
WRXn ↑ to Data valid hold time	TWRHDH	WRXn D31 to D16	1/2 × tськт — 19	_	ns
WRXn to CSXn delay time	TCLWRL	WRXn	_	1/2 × t clкт	ns
What to Coall delay time	TWRHCH	CSXn	1/2 × t clкт		ns

7.7.5. RDY waitcycle insertion

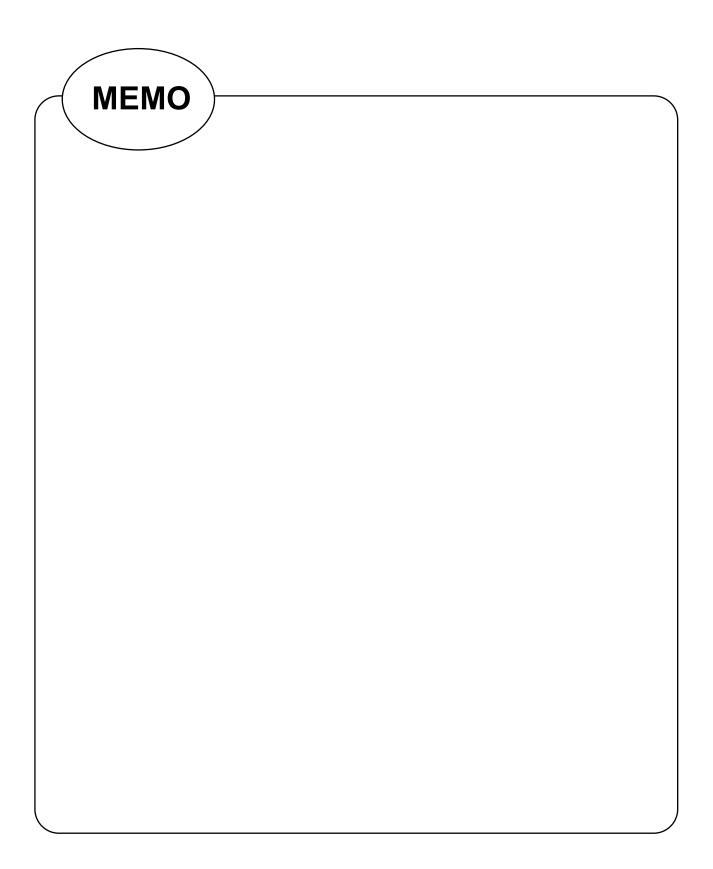
Parameter	Symbol	Pin name	Va	lue	Unit
Parameter	Symbol	riii iiaiiie	Min	Max	Offic
RDY setup time	TRDYS	SYSCLK RDY	34	_	ns
RDY hold time	TRDYH	SYSCLK RDY	0	_	ns



■ ORDERING INFORMATION

Part number	Package	Remarks
MB91F464HBPMC-GSE2	144-pin plastic LQFP	Lead-free package
MB91F466HAPMC-GSE2	(FPT-144P-M08)	Leau-пее раска <u>у</u> е

■ PACKAGE DIMENSION



■ REVISION HISTORY

Version	Date	Remark
2.0	2009-01-07	Initial version
3.0	2009-04-21	Added device MB91F466HA Added Ta=125C characteristics Product Lineup: MB91F464HB has 16KB D-Bus RAM (not 24KB) Flash memory and external bus area: Changed table formatting for MB91F464HB IO-Map: Corrected CANCKD register (only bit 0 applicable)

■ MEMO AND DISCLAIMER

MEMO		

FUJITSU MICROELECTRONICS LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Strategic Business Development Dept.