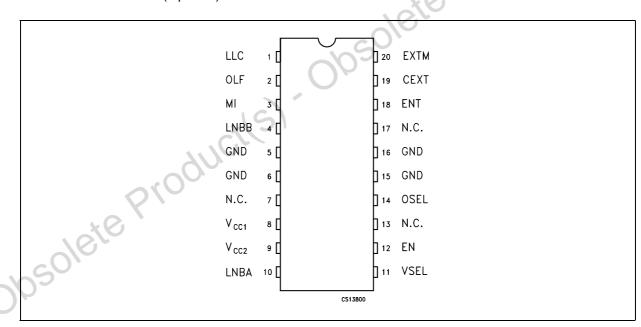
available (EXTM). An appropriate DC blocking capacitor must be used to couple the modulating signal source to the EXTM pin. When external modulation is not used, the relevant pin can be left open.

Two pins are dedicated to the overcurrent protection/monitoring: CEXT and OLF. The overcurrent protection circuit works dynamically: as soon as an overload is detected in either LNB output, the output is shut-down for a time Toff determined by the capacitor connected between CEXT and GND. Simultaneously the OLF pin, that is an open collector diagnostic output flag, from HIGH IMPEDANCE state goes LOW.


After the time has elapsed, the output is resumed for a time $t_{on}=1/15t_{off}$ (typ.) and OLF goes in HIGH

IMPEDANCE. If the overload is still present, the protection circuit will cycle again through t_{off} and ton until the overload is removed. Typical $t_{on}+t_{off}$ value is 1200ms when a 4.7μ F external capacitor is used.

This dynamic operation can greatly reduce the power dissipation in short circuit condition, still ensuring excellent power-on start up even with highly capacitive loads on LNB outputs.

The device is packaged in Multiwatt15 for thru-holes mounting and in PowerSO-20 for surface mounting. When a limited functionality in a smaller package matches design needs, a range of cost-effective PowerSO-10 solutions is also offered. All versions have built-in thermal protection against overheating damage.

(*): External components are needed to comply to level 2.x and above (bidirectiona) DiSEqC[™] bus hardware requirements. DiSEqC[™] is a trademark or EUTELSAT.

PIN CONFIGURATION (top view)

Downloaded from Arrow.com.

TABLE A: PIN CONFIGURATIONS

PIN N°	SYMBOL	NAME	FUNCTION			
1	LLC	Line Length Compens. (1V typ)	Logic control input: see truth table			
2	OLF	Over Load Flag	Logic output (open collector). Normally in HIGH IMPEDANCE, goes LOW when current or thermal overload occurs			
3	MI	Master Input	In stand-by mode, the voltage on MI is routed to LNBA pin. Can be left open if bypass function is not needed			
4	LNBB	Output Port	See truth tables for voltage and port selection			
5, 6, 15, 16	GND	Ground	Circuit Ground. It is internally connected to the die frame			
7, 13	N.C.	Not Connected	16			
8	V _{CC1}	Supply Input 1	15V to 27V supply. It is automatically selected when V_{OUT} = 13 or 14V			
9	V _{CC2}	Supply Input 2	22V to 27V supply. It is automatically selected when V_{OUT} = 18 or 19V			
10	LNBA	Output Port	See truth table voltage and port selection. In stand-by mode this port is powered by the MI pin via the internal Bypass Switch			
11	V _{SEL}	Output Voltage Selection: 13 or 18V (typ)	Logic control input: see truth table			
12	EN	Port Enable	Logic control input: see truth table			
14	OSEL	Port Selection	Logic control input: see truth table			
18	ENT	22KHz Tone Enable	Logic control input: see truth table			
19	CEXT	External Capacitor	Timing Capacitor used by the Dynamic Overload protection. Typical application is $4.7\mu F$ for a 1200ms cycle			
20	EXTM	External Modulator	External Modulation Input. Needs DC decoupling to the AC source. if not used, can be left open.			

NOTE: the limited pin availability of the PowerSO-10 package leads to drop some functions.

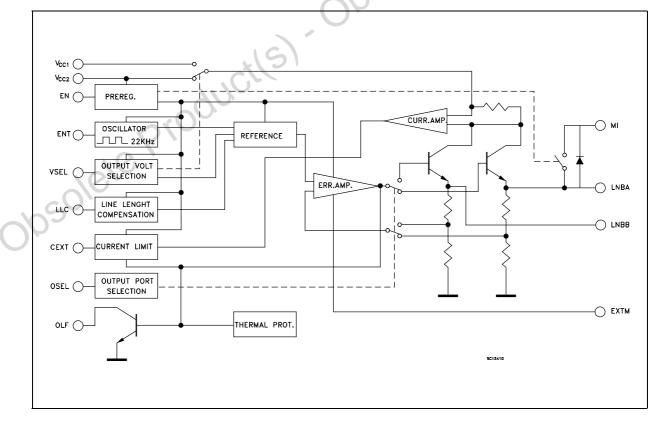
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter ²	Value	Unit
VI	DC Input Voltage (V _{CC1} , V _{CC2} , MI)	28	V
I _O	Output Current (LNBA, LNBB)	Internally Limited	mA
CVI	Logic Input Voltage (ENT, EN OSEL, VSEL, LLC)	-0.5 to 7	V
T _{SW}	Bypass Switch Current	900	mA
PD	Power Dissipation at T _{case} < 85°C	3	W
T _{stg}	Storage Temperature Range	-40 to +150	°C
T _{op}	Operating Junction Temperature Range	-40 to +125	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal Resistance Junction-case	15	°C/W



LNBK20D2

CONTROL I/O		PIN NAME		L	н	
OUT		OLF		$I_{OUT} > I_{OMAX}$ or $T_j > 150^{\circ}C$	I _{OUT} < I _{OMAX}	
	IN	ENT		22KHz tone OFF	22KHz tone ON	
	IN	EN		See Table Below	See Table Below	
	IN	OSEL		See Table Below	See Table Below	
IN		VSEL		See Table Below	See Table Below	
	IN	LLC		See Table Below	See Table Below	
EN	OSEL	VSEL	LLCO	V _{LNBA}	V _{LNBB}	
L	Х	Х	Х	V _{MI} - 0.4V (typ.)	Disabled	
Н	L	L	L	13V (typ.)	Disabled	
Н	L	Н	L	18V (typ.)	Disabled	
Н	L	L	Н	14V (typ.)	Disabled	
Н	L	Н	Н	19V (typ.)	Disabled	
Н	Н	L	L	Disabled	13V (typ.)	
Н	Н	Н	L	Disabled	18V (typ.)	
Н	Н	L	Н	Disabled	14V (typ.)	
Н	Н	Н	Н	Disabled	19V (typ.)	
DTE: All logic	input pins have int	ernal pull-down r	esistor (typ. = 250			

LOGIC CONTROLS TRUTH TABLE

BLOCK DIAGRAM

57

4/14

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{IN1}	V _{CC1} Supply Voltage	I _O = 400 mA ENT=H, VSEL=L, LLC=L	15		27	V
	I _O = 400 mA ENT=H, VSEL=L,		16		27	V
V _{IN2}	V _{CC2} Supply Voltage	I _O = 400 mA ENT=H, VSEL=L, LLC=L	22		27	V
		I _O = 400 mA VSEL=L, LLC=H	23		27	V
V _{O1}	Output Voltage	I _O = 400 mA VSEL=L, LLC=L	17.3	18	18.7	V
		I _O = 400 mA ENT=H, VSEL=L, LLC=H		19		V
V _{O2}	Output Voltage	I _O = 400 mA VSEL=L, LLC=L	12.5	13	13.5	V
		I _O = 400 mA ENT=H, VSEL=L, LLC=H		14		V
ΔV_{O}	Line Regulation	V _{IN1} =15 to 18V V _{OUT} =13V		5	50	mV
		V _{IN2} =22 to 25V V _{OUT} =18V		5	50	mV
ΔV_{O}	Load Regulation	$V_{IN1} = V_{IN2} = 22V$ $V_{OUT} = 13 \text{ or } 18V$ $I_{O} = 0 \text{ to } 3A$		65	150	mV
SVR	Supply Voltage Rejection	V _{IN1} = V _{IN2} = 23 ± 0.5V _{ac} f _{ac} = 120 Hz,	\mathcal{O}	45		dB
I _{MAX}	Output Current Limiting	ß	500	650	800	mA
t _{OFF}	Dynamic Overload protection OFF Time	Output Shorted $C_{EXT} = 4.7 \mu F$		1100		ms
t _{ON}	Dynamic Overload protection ON Time	Output Shorted $C_{EXT} = 4.7 \mu F$		t _{OFF} /15		ms
f _{TONE}	Tone Frequency	ENT=H	20	22	24	KHz
A _{TONE}	Tone Amplitude	ENT=H	0.55	0.72	0.9	Vpp
D _{TONE}	Tone Duty Cycle	ENT=H	40	50	60	%
t _r , t _f	Tone Rise and Fall Time	ENT=H	5	10	15	μs
G _{EXTM}	External Modulation Gain	$\Delta V_{OUT} / \Delta V_{EXTM}$, f = 10Hz to 40KHz		5		
V _{EXTM}	External Modulation Input Voltage	AC Coupling			400	mVpp
Z _{EXTM}	External Modulation Impedance	f = 10Hz to 40KHz		400		Ω
V _{SW}	Bypass Switch Voltage Drop (MI to LNBA)	EN=L, I _{SW} =300mA, V _{CC2} -V _{MI} =4V		0.35	0.6	V
VoL	Overload Flag Pin Logic LOW	I _{OL} =8mA		0.28	0.5	V
loz	Overload Flag Pin OFF State Leakage Current	V _{OH} = 6V			10	μA
V _{IL}	Control Input Pin Logic LOW				0.8	V
V_{IH}	Control Input Pin Logic HIGH		2.5			V
I _{IH}	Control Pins Input Current	V _{IH} = 5V		20		μΑ
I _{CC}	Supply Current	Output Disabled (EN=L)		0.3	1	mA
		ENT=H, I _{OUT} =500mA		3.1	6	mA
I _{OBK}	Output Backward Current			0.2	3	mA
T _{SHDN}	Temperature Shutdown Threshold			150		°C

ELECTRICAL CHARACTERISTICS FOR LNBK SERIES (T_J = 0 to 85°C, C_I = 0.22μ F, C_O = 0.1μ F, EN=H, ENT=L, LLC=L, V_{IN1}=16V, V_{IN2}=23V I_{OUT}=50mA, unless otherwise specified.)

TYPICAL CHARACTERISTICS (unless otherwise specified $T_i = 25^{\circ}C$)

Figure 1 : Output Voltage vs Output Current

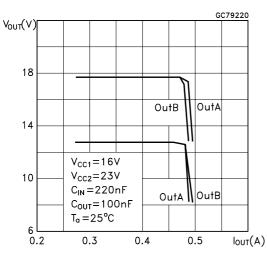


Figure 2 : Tone Duty Cycle vs Temperature

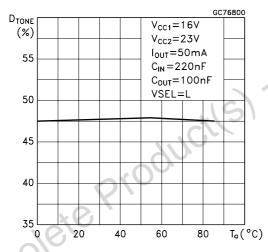
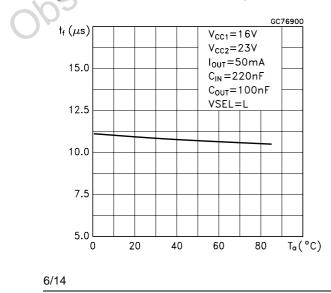



Figure 3 : Tone Fall Time vs Temperature

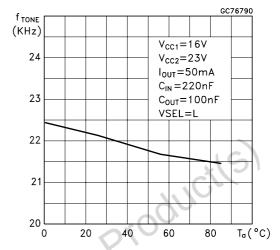


Figure 5 : Tone Rise Time vs Temperature

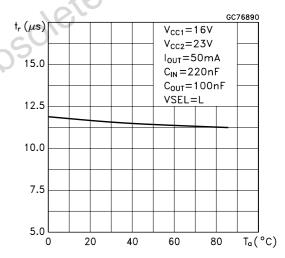


Figure 6 : Tone Amplitude vs Temperature

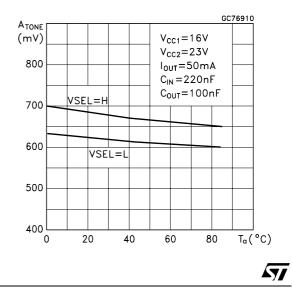
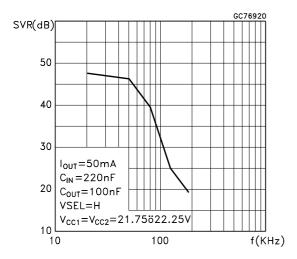
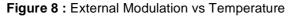
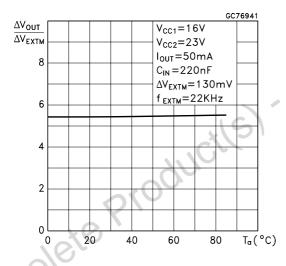
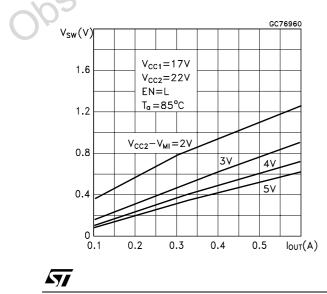
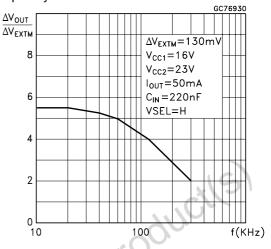
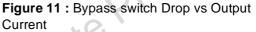
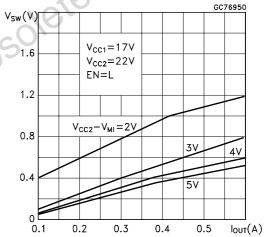
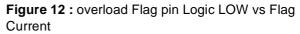




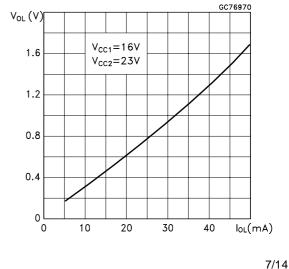
Figure 4 : Tone Frequency vs Temperature

Figure 7 : S.V.R. vs Frequency


Figure 9 : Bypass Switch Drop vs Output Current




Figure 10 : LNBA External Modulation gain vs Frequency

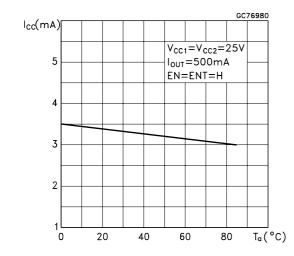


Figure 13 : Supply Voltage vs Temperature

Figure 14 : Supply Current vs Temperature

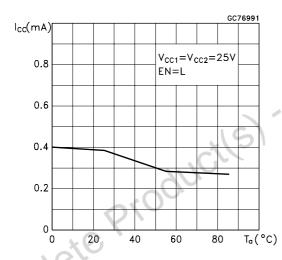
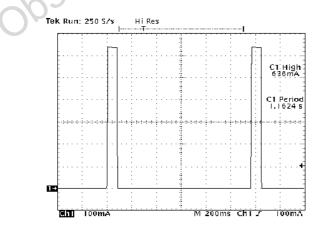
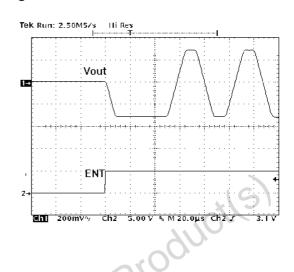




Figure 15 : Dynamic Overload protection (I_{SC} vs Time)

8/14

Figure 16 : Tone Enable

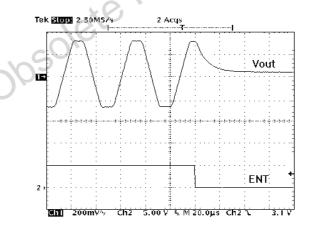
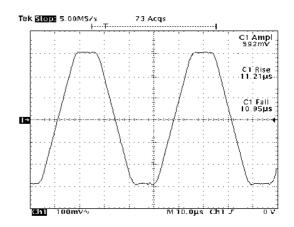
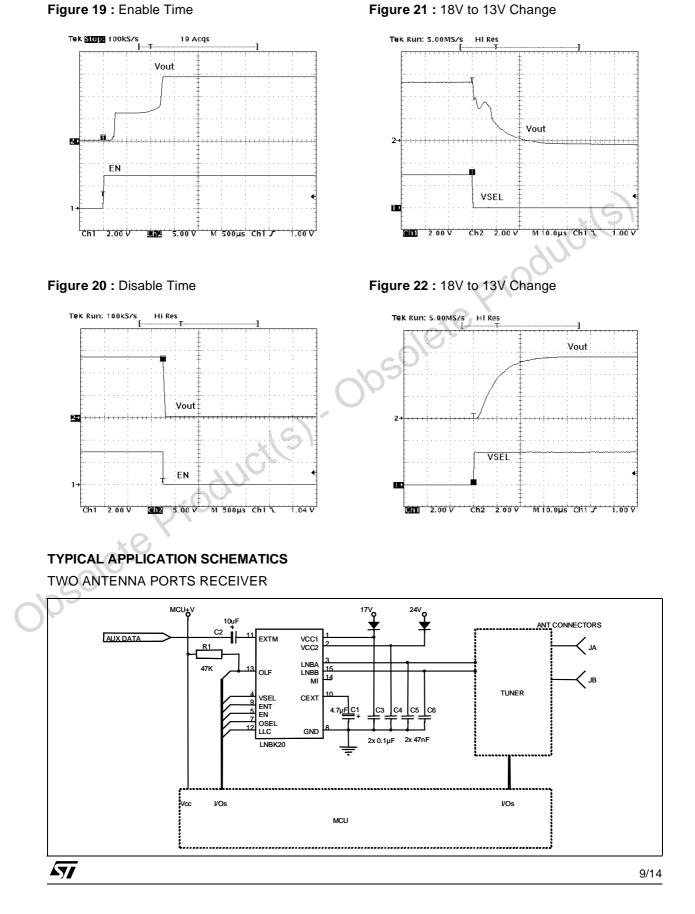
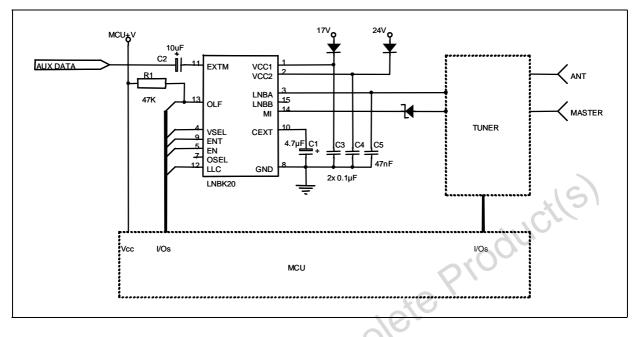
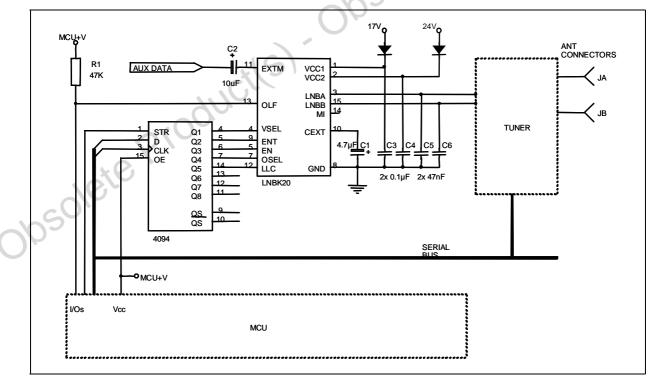



Figure 18: 22KHz Tone


Figure 19 : Enable Time

LNBK20D2

SINGLE ANTENNA RECEIVER WITH MASTER RECEIVER PORT

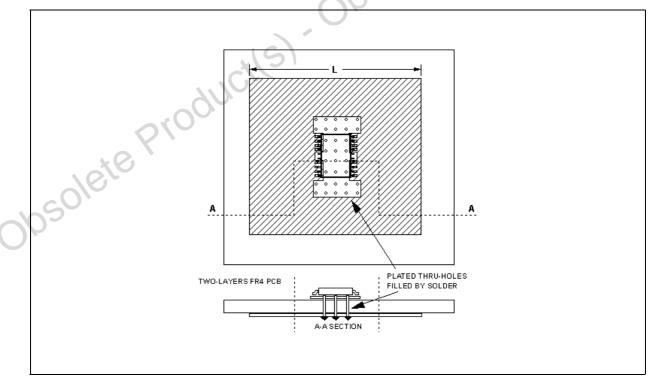
USING SERIAL BUS TO SAVE MPU I/Os

57

10/14

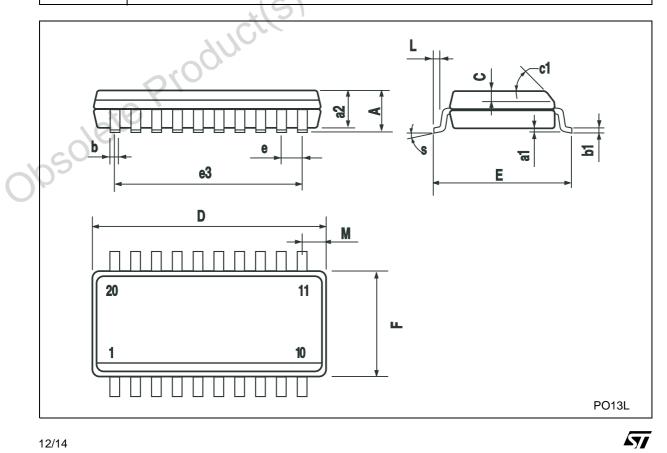
THERMAL DESIGN NOTE

During normal operation, this device dissipates some power. At maximum rated output current (400mA), the voltage drop on the linear regulator lead to a total dissipated power that is of about 2W. The heat generated requires a suitable heatsink to keep the junction temperature below the over temperature protection threshold. Assuming a 40°C temperature inside the Set-Top-Box case, the total Rthj-amb has to be less than 43°C/W.

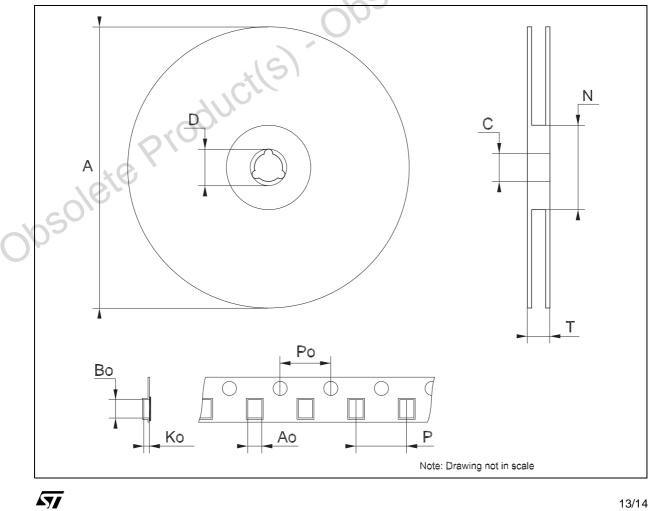

While this can be easily achieved using a through-hole power package that can be attached to a small heatsink or to the metallic frame of the receiver, a surface mount power package must rely on PCB solutions whose thermal efficiency is often limited. The simplest solution is to use a large, continuous copper area of the GND layer to dissipate the heat coming from the IC body.

The SO-20 package of this IC has 4 GND pins that are not just intended for electrical GND connection, but also to provide a low thermal resistance path between the silicon chip and the PCB heatsink. Given an Rthj-c equal to 15°C/W, a maximum of 28°C/W are left to the PCB heatsink. This figure is achieved if a minimum of 25cm² copper area is placed just below the IC body. This area can be the inner GND layer of a multi-layer PCB, or, in a dual layer PCB, an unbroken GND area even on the opposite side where the IC is placed. In both cases, the thermal path between the IC GND pins and the dissipating copper area must exhibit a low thermal resistance.

In figure 4, it is shown a suggested layout for the SO-20 package with a dual layer PCB, where the IC Ground pins and the square dissipating area are thermally connected through 32 vias holes, filled by solder. This arrangement, when L=50mm, achieves an Rthc-a of about 28°C/W.


Different layouts are possible, too. Basic principles, however, suggest to keep the IC and its ground pins approximately in the middle of the dissipating area; to provide as many vias as possible; to design a dissipating area having a shape as square as possible and not interrupted by other copper traces.

SO-20 SUGGESTED PCB HEATSINK LAYOUT


LNBK20D2

SO-20 MECHANICAL DATA								
		mm.			inch			
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.		
А			2.65			0.104		
a1	0.1		0.2	0.004		0.008		
a2			2.45			0.096		
b	0.35		0.49	0.014		0.019		
b1	0.23		0.32	0.009		0.012		
С		0.5			0.020	16		
c1			45° (typ.)	111	0		
D	12.60		13.00	0.496	00	0.512		
Е	10.00		10.65	0.393		0.419		
е		1.27		. 0.	0.050			
e3		11.43		101	0.450			
F	7.40		7.60	0.291		0.300		
L	0.50		1.27	0.020		0.050		
М			0.75			0.029		
M S			0.75 8° (n			0		

DIM	mm.			inch		
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
Ν	60			2.362		
Т			30.4			1.197
Ao	10.8		11	0.425	20	0.433
Во	13.2		13.4	0.520	100	0.528
Ko	3.1		3.3	0.122		0.130
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Tape & Reel SO-20 MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

obsolete Product(s)- Obsolete Product(s)

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco

Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

@ mtp.//www.st.com