Pin Description | | Pin Numbe | er | | | | |-------|-----------|--------------------------|----------|---|--| | SOT25 | SOT23 | X2-DFN1010-4
(Type B) | Pin Name | Function | | | 3 | - | 3 | EN | Chip Enable — This should be driven either high or low and must not be floating. Driving EN high enables regulator output, while pulling it low places regulator into shutdown mode. | | | 2 | 3 | 2 | GND | Ground | | | 5 | 2 | 1 | Vout | Output Voltage | | | 1 | 1 | 4 | Vin | Power Input | | | _ | | Center Pad | _ | No connection or ground. Note: Chip Ground must be through GND pin. | | # **Functional Block Diagram** EN Pin Not Available on SOT23 # **Absolute Maximum Ratings** (Note 5) | Symbol | Parameter | Rating | Unit | |------------------|---------------------------------|------------------------------|------| | ESD HBM | Human Body Model ESD Protection | 4 | kV | | ESD MM | Machine Model ESD Protection | 400 | V | | VIN | Input Voltage | 6.0 | V | | V _{EN} | Input Voltage at EN Pin | 6.0 | V | | Vouт | Output Voltage to GND | -0.3 to V _{IN} +0.3 | V | | TA | Operating Ambient Temperature | -40 to +85 | °C | | TJ | Maximum Junction Temperature | +125 | °C | | T _{STG} | Storage Temperature | -55 to +125 | °C | | P _D | Power Dissipation (Note 6) | 315 | mW | Notes: # **Recommended Operating Conditions** | Symbol | Parameter | Min | Мах | Unit | |--------|-------------------------------|-----|-----|------| | Vin | Input Voltage | 2.0 | 5.5 | V | | lout | Output Current | 0 | 150 | mA | | TA | Operating Ambient Temperature | -40 | +85 | °C | Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability. ^{6.} This is based on an application temperature of +40°C. Derate 3.75mW per °C for each degree above +40°C. $\textbf{Electrical Characteristics} \ \ (@T_A = +25^{\circ}C, \ V_{EN} = V_{IN} = V_{OUT} + 1V \ (1.5V < V_{OUT} \le 4.5V), \ V_{EN} = V_{IN} = 2.5V \ (V_{OUT} \le 1.5V), \ I_{OUT} = 1mA, 1mA,$ $C_{IN} = C_{OUT} = 0.1 \mu F$, unless otherwise specified.) | Parameter | Conditions | | Min | Тур | Max | Unit | |--|--|---|-----|------|------|------| | Input Voltage | T _A = -40°C to +85°C | | 2.0 | _ | 5.5 | V | | | Vout > 2.0V | T _A = +25°C | -1 | _ | +1 | | | | IOUT = 1mA | $T_A = -40$ °C to +85°C | -2 | _ | +2 | % | | Output Voltage Accuracy | V _{OUT} ≤ 2.0V | T _A = +25°C | -40 | _ | 40 | | | | I _{OUT} = 1mA | $T_A = -40$ °C to +85°C | -80 | _ | 80 | mV | | Line Regulation (ΔVουτ/ΔVικ/Vουτ) | MAX (Vout + 1.0V
(All Versions Exce | $(7, 2.5V) \le V_{IN} \le 5.5V$ ept 4.5V) | _ | 0.02 | 0.1 | %/V | | Local Develotion (AV. | 1mA ≤ I _{OUT} ≤ 150r | mA (All Versions Except 4.5V) | -40 | _ | 40 | mV | | Load Regulation (ΔV _{OUT}) | 1mA ≤ I _{OUT} ≤ 150r | mA (Applicable to 4.5V Version) | -55 | _ | 55 | mV | | Short Circuit Current Limit (Note 7) | Vout = 0V | | _ | 60 | _ | mA | | Quiescent Current (Note 8) | Iout = 0mA | | | 0.25 | 0.6 | μA | | ISTANDBY | Set EN Low, No Lo | oad | _ | 0.02 | 0.2 | μA | | Output Current | _ | | 150 | _ | _ | mA | | | | V _{OUT} = 1.1V | _ | 0.70 | 1.00 | V | | | | Vout = 1.2V | _ | 0.60 | 0.90 | | | | | Vout = 1.5V | _ | 0.43 | 0.75 | | | | | Vout = 1.8V | _ | 0.33 | 0.60 | | | | louт = 150mA | V _{OUT} = 1.85V | _ | 0.32 | 0.58 | | | Dropout Voltage (Note 9) | | Vout = 2.2V | _ | 0.27 | 0.52 | | | | | Vout = 2.5V | _ | 0.22 | 0.48 | | | | | Vout = 2.8V | _ | 0.19 | 0.40 | | | | | Vout = 3.0V | _ | 0.18 | 0.35 | | | | | V _{OUT} = 3.3V | _ | 0.16 | 0.35 | | | | | Vout = 4.5V | _ | 0.14 | 0.35 | | | EN Input Low Voltage | _ | | _ | _ | 0.4 | V | | EN Input High Voltage | _ | | 1.0 | _ | 5.5 | V | | Active Output Discharge Resistance (Note 10) | VIN = 4.0V, VEN = | 0V | | 35 | _ | Ω | | | | SOT23 | _ | 170 | _ | | | Θ _{JA} Thermal Resistance Junction-to-Ambient | (Note 11) | SOT25 | _ | 162 | _ | °C/W | | | | X2-DFN1010-4 (Type B) | _ | 295 | _ | | | | | SOT23 | _ | 43 | _ | | | Θ _{JC} Thermal Resistance Junction-to-Case | (Note 11) | SOT25 | _ | 38 | _ | °C/W | | | | X2-DFN1010-4 (Type B) | _ | 120 | _ | 1 | Notes: - 7. Short-circuit current is measured with V_{OUT} pulled to GND. - 8. Quiescent current defined as the difference in current between the input and the output. - 9. Dropout voltage is the voltage difference between the input and the output at which the output voltage drops 2% below its nominal value. 10. AP7354 is available with two options: built-in discharge (AP7354D) and non-discharge (AP7354). - 11. Test condition: Device mounted on 1" x 1" FR-4 MRP substrate PCB, 2oz copper, with minimum recommended pad layout. # **Performance Characteristics** Load Transient Response ($C_{IN} = C_{OUT} = 0.1 \mu F$, $t_R = t_F = 5.0 \mu s$, unless otherwise specified.) #### **TURN ON** # V_{IN} = 3.3V, V_{OUT} = 1.2V, I_{OUT} = 0mA, C_{IN} = C_{OUT} = 0.1μF Input Voltage Enable Input Voltage Output Voltage #### **TURN OFF** #### **TURN ON** # VIN = 4.3V, VOUT = 3.3V, IOUT = 150mA, CIN = COUT = 0.1µF Input Voltage Enable Input Voltage Output Voltage #### **TURN OFF** # **Application Information** #### **Output Capacitor** An output capacitor (C_{OUT}) is required to improve transient response and maintain stability. The AP7354 is stable with very small ceramic output capacitors. The equivalent series resistance (ESR) and capacitance drive the selection. If the application has large load variations, it is recommended to utilize low-ESR bulk capacitors. It is recommended to place ceramic capacitors as close as possible to the load and the GND pin. Care must be taken to reduce the impedance in the layout. #### **Input Capacitor** To prevent the input voltage from dropping during load steps, it is recommended to utilize an input capacitor (C_{IN}). A minimum $0.1\mu F$ ceramic capacitor is recommended between V_{IN} and GND pin to decouple input power supply glitch. This input capacitor must be located as close as possible to the device to assure input stability and reduce noise. For PCB layout, a wide copper trace is required for both V_{IN} and GND pin. #### **Enable Control** The AP7354 is turned on by setting the EN pin high, and is turned off by pulling them low. If this feature is not used, the EN pin should be tied to V_{IN} pin to keep the regulator output on at all time. To ensure proper operation, the signal source used to drive the EN pin must be able to swing above and below the specified turn-on/off voltage thresholds listed in the *Electrical Characteristics* section. #### **Layout Considerations** For good ground loop and stability, the input and output capacitors must be located close to the input, output, and GND pin of the device. The regulator GND pin must be connected to the external circuit ground to reduce voltage drop caused by trace impedance. Ground plane is generally used to reduce trace impedance. Wide trace must be used for large current paths from VIN to VOUT and load circuit. #### **ESR vs. Output Current** A ceramic type output capacitor is recommended for this series; however, the other output capacitors with low ESR also can be used. The relations between IouT (output current) and ESR of an output capacitor are shown below. The stable region is marked as the hatched area in the graph. #### Measurement Conditions: Frequency Band: 10Hz to 2MHz Temperature: -40°C to +85°C # ESR vs. Output Current # **Ordering Information** (Note 12) | 2 | 0.0700 | SOT25 | SOT25 | 7" Tape and Reel | | | |----------------|----------------|-------------------|-----------------|------------------|--------------------|--| | Output Voltage | SOT23 | Without Discharge | With Discharge | Quantity | Part Number Suffix | | | 1.2 | AP7354-12SA-7 | AP7354-12W5-7 | AP7354D-12W5-7 | 3000/Tape & Reel | -7 | | | 1.5 | AP7354-15SA-7 | AP7354-15W5-7 | AP7354D-15W5-7 | 3000/Tape & Reel | -7 | | | 1.8 | AP7354-18SA-7 | AP7354-18W5-7 | AP7354D-18W5-7 | 3000/Tape & Reel | -7 | | | 1.85 | AP7354-185SA-7 | AP7354-185W5-7 | AP7354D-185W5-7 | 3000/Tape & Reel | -7 | | | 2.2 | AP7354-22SA-7 | _ | _ | 3000/Tape & Reel | -7 | | | 2.5 | AP7354-25SA-7 | AP7354-25W5-7 | AP7354D-25W5-7 | 3000/Tape & Reel | -7 | | | 2.8 | AP7354-28SA-7 | AP7354-28W5-7 | AP7354D-28W5-7 | 3000/Tape & Reel | -7 | | | 3.0 | AP7354-30SA-7 | AP7354-30W5-7 | AP7354D-30W5-7 | 3000/Tape & Reel | -7 | | | 3.3 | AP7354-33SA-7 | AP7354-33W5-7 | AP7354D-33W5-7 | 3000/Tape & Reel | -7 | | | 4.5 | AP7354-45SA-7 | AP7354-45W5-7 | AP7354D-45W5-7 | 3000/Tape & Reel | -7 | | | Output | X2-DFN1010-4 (Type B) | X2-DFN1010-4 (Type B) With Discharge | 7" Tape | 7" Tape and Reel | | | |---------|-----------------------|--------------------------------------|------------------|--------------------|--|--| | Voltage | Without Discharge | | Quantity | Part Number Suffix | | | | 1.1 | AP7354-11FS4-7 | AP7354D-11FS4-7 | 5000/Tape & Reel | -7 | | | | 1.2 | AP7354-12FS4-7 | AP7354D-12FS4-7 | 5000/Tape & Reel | -7 | | | | 1.5 | AP7354-15FS4-7 | AP7354D-15FS4-7 | 5000/Tape & Reel | -7 | | | | 1.8 | AP7354-18FS4-7 | AP7354D-18FS4-7 | 5000/Tape & Reel | -7 | | | | 1.85 | AP7354-185FS4-7 | AP7354D-185FS4-7 | 5000/Tape & Reel | -7 | | | | 2.5 | AP7354-25FS4-7 | AP7354D-25FS4-7 | 5000/Tape & Reel | -7 | | | | 2.8 | AP7354-28FS4-7 | AP7354D-28FS4-7 | 5000/Tape & Reel | -7 | | | | 3.0 | AP7354-30FS4-7 | AP7354D-30FS4-7 | 5000/Tape & Reel | -7 | | | | 3.3 | AP7354-33FS4-7 | AP7354D-33FS4-7 | 5000/Tape & Reel | -7 | | | | 4.5 | AP7354-45FS4-7 | AP7354D-45FS4-7 | 5000/Tape & Reel | -7 | | | Note: 12. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/. # **Marking Information** (1) SOT23 (Top View) 3 XXX Y W X XXX: Identification Code Y : Year 0 to 9 \underline{W} : Week: A to Z: 1 to 26 week; a to z: 27 to 52 week; z represents 52 and 53 week \underline{X} : Internal Code | Part Number | Package | Identification Code | |----------------|---------|---------------------| | AP7354-12SA-7 | SOT23 | A8A | | AP7354-15SA-7 | SOT23 | A8B | | AP7354-18SA-7 | SOT23 | A8C | | AP7354-185SA-7 | SOT23 | A8D | | AP7354-22SA-7 | SOT23 | A8K | | AP7354-25SA-7 | SOT23 | A8E | | AP7354-28SA-7 | SOT23 | A8F | | AP7354-30SA-7 | SOT23 | A8G | | AP7354-33SA-7 | SOT23 | A8H | | AP7354-45SA-7 | SOT23 | A8J | # Marking Information (continued) # (2) SOT25 # (Top View) XXX: Identification Code Y: Year 0 to 9 \underline{W} : Week: A to Z: 1 to 26 week; a to z : 27 to 52 week; z represents 52 and 53 week X: Internal Code | Part Number | Package | Identification Code | |-----------------|---------|---------------------| | AP7354-12W5-7 | SOT25 | A8A | | AP7354-15W5-7 | SOT25 | A8B | | AP7354-18W5-7 | SOT25 | A8C | | AP7354-185W5-7 | SOT25 | A8D | | AP7354-25W5-7 | SOT25 | A8E | | AP7354-28W5-7 | SOT25 | A8F | | AP7354-30W5-7 | SOT25 | A8G | | AP7354-33W5-7 | SOT25 | A8H | | AP7354-45W5-7 | SOT25 | A8J | | AP7354D-12W5-7 | SOT25 | A9A | | AP7354D-15W5-7 | SOT25 | A9B | | AP7354D-18W5-7 | SOT25 | A9C | | AP7354D-185W5-7 | SOT25 | A9D | | AP7354D-25W5-7 | SOT25 | A9E | | AP7354D-28W5-7 | SOT25 | A9F | | AP7354D-30W5-7 | SOT25 | A9G | | AP7354D-33W5-7 | SOT25 | A9H | | AP7354D-45W5-7 | SOT25 | A9J | # Marking Information (continued) #### (3) X2-DFN1010-4 (Type B) # (Top View) <u>XXX</u> <u>Y W X</u> XXX: Identification Code Y: Year: 0~9 W: Week: A~Z: 1~26 week; a~z: 27~52 week; z represents 52 and 53 week \underline{X} : Internal Code | Part Number | V _{OUT} | Package | Identification Code | |------------------|------------------|-----------------------|---------------------| | AP7354-11FS4-7 | 1.1V | X2-DFN1010-4 (Type B) | A8M | | AP7354-12FS4-7 | 1.2V | X2-DFN1010-4 (Type B) | A8A | | AP7354-15FS4-7 | 1.5V | X2-DFN1010-4 (Type B) | A8B | | AP7354-18FS4-7 | 1.8V | X2-DFN1010-4 (Type B) | A8C | | AP7354-185FS4-7 | 1.85V | X2-DFN1010-4 (Type B) | A8D | | AP7354-25FS4-7 | 2.5V | X2-DFN1010-4 (Type B) | A8E | | AP7354-28FS4-7 | 2.8V | X2-DFN1010-4 (Type B) | A8F | | AP7354-30FS4-7 | 3.0V | X2-DFN1010-4 (Type B) | A8G | | AP7354-33FS4-7 | 3.3V | X2-DFN1010-4 (Type B) | A8H | | AP7354-45FS4-7 | 4.5V | X2-DFN1010-4 (Type B) | A8J | | AP7354D-11FS4-7 | 1.1V | X2-DFN1010-4 (Type B) | A9M | | AP7354D-12FS4-7 | 1.2V | X2-DFN1010-4 (Type B) | A9A | | AP7354D-15FS4-7 | 1.5V | X2-DFN1010-4 (Type B) | A9B | | AP7354D-18FS4-7 | 1.8V | X2-DFN1010-4 (Type B) | A9C | | AP7354D-185FS4-7 | 1.85V | X2-DFN1010-4 (Type B) | A9D | | AP7354D-25FS4-7 | 2.5V | X2-DFN1010-4 (Type B) | A9E | | AP7354D-28FS4-7 | 2.8V | X2-DFN1010-4 (Type B) | A9F | | AP7354D-30FS4-7 | 3.0V | X2-DFN1010-4 (Type B) | A9G | | AP7354D-33FS4-7 | 3.3V | X2-DFN1010-4 (Type B) | А9Н | | AP7354D-45FS4-7 | 4.5V | X2-DFN1010-4 (Type B) | A9J | # **Package Outline Dimensions** $Please see \ http://www.diodes.com/package-outlines.html \ for \ the \ latest \ version.$ #### (1) Package Type: SOT23 | | so | T23 | | |-----|--------|---------|-------| | Dim | Min | Max | Тур | | Α | 0.37 | 0.51 | 0.40 | | В | 1.20 | 1.40 | 1.30 | | С | 2.30 | 2.50 | 2.40 | | D | 0.89 | 1.03 | 0.915 | | F | 0.45 | 0.60 | 0.535 | | G | 1.78 | 2.05 | 1.83 | | Н | 2.80 | 3.00 | 2.90 | | J | 0.013 | 0.10 | 0.05 | | K | 0.890 | 1.00 | 0.975 | | K1 | 0.903 | 1.10 | 1.025 | | L | 0.45 | 0.61 | 0.55 | | L1 | 0.25 | 0.55 | 0.40 | | М | 0.085 | 0.150 | 0.110 | | а | 0° | 8° | | | All | Dimens | ions in | mm | #### (2) Package Type: SOT25 | | SOT | 25 | | |-------|--------|--------|------| | Dim | Min | Max | Тур | | Α | 0.35 | 0.50 | 0.38 | | В | 1.50 | 1.70 | 1.60 | | ပ | 2.70 | 3.00 | 2.80 | | D | - | - | 0.95 | | Н | 2.90 | 3.10 | 3.00 | | ۲ | 0.013 | 0.10 | 0.05 | | K | 1.00 | 1.30 | 1.10 | | Г | 0.35 | 0.55 | 0.40 | | М | 0.10 | 0.20 | 0.15 | | N | 0.70 | 0.80 | 0.75 | | α | 0° | 8° | - | | All D | imensi | ons in | mm | # Package Outline Dimensions (continued) Please see http://www.diodes.com/package-outlines.html for the latest version. #### (3) Package Type: X2-DFN1010-4 (Type B) | X2- | DFN1010 |)-4 (Typ | e B) | |-----|---------|----------|-------| | Dim | Min | Max | Тур | | Α | - | 0.40 | 0.39 | | A1 | 0.00 | 0.05 | 0.02 | | A3 | - | - | 0.13 | | b | 0.20 | 0.30 | 0.25 | | D | 0.95 | 1.05 | 1.00 | | D2 | 0.43 | 0.53 | 0.48 | | Е | 0.95 | 1.05 | 1.00 | | E2 | 0.43 | 0.53 | 0.48 | | е | - | - | 0.65 | | k | 0.19 | 0.29 | 0.24 | | L | 0.20 | 0.30 | 0.25 | | L1 | 0.02 | 0.12 | 0.07 | | R | 0.02 | 0.08 | 0.05 | | Z | - | - | 0.050 | | All | Dimensi | ions in | mm | # **Suggested Pad Layout** $\label{prop:lease} Please see \ http://www.diodes.com/package-outlines.html for the latest version.$ #### (1) Package Type: SOT23 | Dimensions | Value (in mm) | |------------|---------------| | С | 2.0 | | Х | 0.8 | | X1 | 1.35 | | Y | 0.9 | | Y1 | 2 9 | #### (2) Package Type: SOT25 | Dimensions | Value | |------------|-------| | Z | 3.20 | | G | 1.60 | | Х | 0.55 | | Y | 0.80 | | C1 | 2.40 | | C2 | 0.95 | # Suggested Pad Layout (continued) Please see http://www.diodes.com/package-outlines.html for the latest version. #### (3) Package Type: X2-DFN1010-4 (Type B) | Dimensions | Value
(in mm) | | |------------|------------------|--| | С | 0.650 | | | Х | 0.350 | | | X1 | 0.112 | | | X2 | 0.530 | | | Х3 | 1.00 | | | Y | 0.350 | | | Y1 | 0.530 | | | Y2 | 1.100 | | #### **IMPORTANT NOTICE** DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages. Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated. #### LIFE SUPPORT Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein: - A. Life support devices or systems are devices or systems which: - 1. are intended to implant into the body, or - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user. - B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness. Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems. Copyright © 2020, Diodes Incorporated www.diodes.com