

IRF350 2N6768

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit	
	STATIC ELECTRICAL RATINGS	<u>I</u>		1				
BV _{DSS}	Drain – Source Breakdown Voltage	V _{GS} = 0V	I _D = 1mA	400			V	
ΔBV _{DSS}	Temperature Coefficient of	Reference to 25°C			0.40	0.40	V/00	
ΔT_{J}	Breakdown Voltage	$I_D = 1mA$			0.46		V/°C	
R _{DS(on)}	Static Drain - Source On-State	V _{GS} = 10V	I _D = 9.0A			0.300		
	Resistance	V _{GS} = 10V	I _D = 14A			0.400	Ω	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	$I_D = 250 \mu A$	2.0		4.0	V	
g _{fs}	Forward Transconductance	$V_{DS} \ge 15V$	I _{DS} = 9.0A	6.0			S (v)	
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0V	V _{DS} = 320V			25	μΑ	
			T _J = 125°C			250		
I _{GSS}	Gate – Source Leakage Forward	V _{GS} = +20V				+100	nA	
I _{GSS}	Gate – Source Leakage Reverse	$V_{GS} = -20V$				-100] ''^	
	DYNAMIC CHARACTERISTICS			•				
C _{iss}	Input Capacitance	$V_{GS} = 0V$			2660			
C _{oss}	Output Capacitance	$V_{DS} = 25V$		680		pF		
C _{rss}	Reverse Transfer Capacitance	f = 1MHz			250		<u>l</u>	
Q_g	Total Gate Charge	V _{GS} = 10V		52		110		
Q_gs	Gate - Source Charge	I _D = 14A		5.0		18	nC	
Q_gd	Gate - Drain ("Miller") Charge	$V_{DS} = 200V$		25		65		
t _{d(on)}	Turn-On Delay Time	V _{DD} = 200V				35		
t _r	Rise Time	$I_D = 14A$ $R_G = 2.35\Omega$				190	ns	
t _{d(off)}	Turn-Off Delay Time					170		
t _f	Fall Time					130		
	SOURCE - DRAIN DIODE CHARAC	TERISTICS		_				
I _S	Continuous Source Current					14	A	
I _{SM}	Pulse Source Current ²					56		
V_{SD}	Diode Forward Voltage ¹	$I_S = 28A$ $V_{GS} = 0$	$T_J = 25^{\circ}C$			1.7	V	
t _{rr}	Reverse Recovery Time		$T_J = 25^{\circ}C$			1200	ns	
Q _{rr}	Reverse Recovery Charge ¹	$\int d_{i} / d_{t} \le 100 A/\mu$	ıs V _{DD} ≤50V			250	μС	
t _{on}	Forward Turn-On Time				Negligible			
	PACKAGE CHARACTERISTICS							
L _{D +} L _S	Total Inductance (measured from the centre of drain pad to center of source pad)				6.1		nH	
	THERMAL CHARACTERISTICS							
R_{thJC}	Thermal Resistance Junction – Case					0.83	°C/W	
R _{thJA}	Thermal Resistance Junction – Ambi	ent (Typical socket mount)				30	0, 00	

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Website: http://www.semelab.co.uk

Document Number 6252 Issue 1