
# **Document History Information**

| Revision   | Data         | Description                                                                                                                                                                                                                                                                                                                                        |
|------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ver. 1.0.0 | OCT 27, 2005 | Release with W3150A Launching                                                                                                                                                                                                                                                                                                                      |
| Ver. 1.0.1 | NOV 21, 2005 | Replace, 1.8V operation → 3.3V operation (p.3) Change block diagram (p.4) Change figure (p.32) Replace, g_Sn_TX_BASE → g_Sn_RX_BASE (p.33) Replace, memcpy( , ,left_size) → in memcpy( , ,upper_size) (p.40, p.41, p.47, p.48, p.49) Replace, get_offset = Sn_TX_RR & → get_offset = Sn_TX_WR & (p.41, p.49) Replace, SOCK_UDP → SOCK_IPRAW (p.51) |
| Ver. 1.0.2 | DEC 28, 2005 | Add 7.3 Power Dissipation (p.56)                                                                                                                                                                                                                                                                                                                   |
| Ver. 2.0.0 | AUG 15, 2006 | New version release (W3150A -> W3150A+) Add SPI Information Added ND option in socket mode register Remove Memory test mode Add MACRAW mode                                                                                                                                                                                                        |
| Ver. 2.0.1 | JAN 8, 2007  | LB bit in Mode register is not used .<br>W3150A+ used in Big-endian ordering only.                                                                                                                                                                                                                                                                 |
| Ver. 2.0.2 | APR 5, 2007  | Change Operating temperature value (p.57)                                                                                                                                                                                                                                                                                                          |
| Ver. 2.0.3 | May 2, 2007  | Modify explanation of RECV_INT in Sn_IR register (P. 27) Replace reset value of Sn_DHAR register (0x00 to 0xFF, P. 30) Modify explanation of Sn_DIPR, Sn_DPORT register(P. 30) Replace reset value of Sn_MSS register (0xFFFF to 0x00000, P. 31) Modify figure of W3150A+ AC Characteristics(P. 58,59,60,62,63)                                    |
| Ver. 2.0.4 | Oct 5, 2007  | Modify figure of W3150A+ AC Characteristics (Added item NO.7 SCLK high to /SS high, P. 61)                                                                                                                                                                                                                                                         |
| Ver. 2.0.5 | Oct 5, 2015  | Not support SPI mode 3                                                                                                                                                                                                                                                                                                                             |



## WIZnet's Online Technical Support

If you have something to ask about WIZnet Products, Write down your question on <u>Q&A Board</u> of 'Support' menu in WIZnet website (<u>www.wiznet.co.kr</u>). WIZnet Engineer will give an answer as soon as possible.





## W3150A+ Datasheet

## Description

The W3150A+ is an LSI of hardware protocol stack that provides an easy, low-cost solution for high-speed Internet connectivity for digital devices by allowing simple installation of TCP/IP stack in the hardware.

The W3150A+ offers a quick and easy way to add Ethernet networking functionality to any products. Implementing this LSI into a system can completely provide Internet connectivity and process standard protocols by significantly reducing the software development cost as well development time which is most important in today time-to market.

The W3150A+ contains TCP/IP Protocol Stacks such as TCP, UDP, ICMP, IPv4, ARP and PPPoE protocols, as well as Ethernet protocols such as MAC protocol. The total internal memory size is 16Kbytes, which is used as the buffer for data transmission and receipt.

The W3150A+ provides three different interfaces like direct, indirect bus interfaces and SPI(Serial Peripheral Interface) to connect with MCUs and standard MII(Media Independent Interface) composed of nibble data bus to connect with Ethernet PHY devices.

The W3150A+ is a best-fitted device for embedded application including IP-Settop Box, Internet-DVR, Internet phones, VoIP SOC chips, Internet MP3 players, handheld medical devices, various industrial system for monitoring and metering, and any other non-portable electronic devices such as large consumer electronic products.

### **Features**

- Support Hardwired TCP/IP Protocols: TCP, UDP, ICMP, IGMP, IPv4, ARP, PPPoE, Ethernet
- Support ADSL connection (with support PPPoE Protocol with PAP/CHAP Authentication mode)
- Supports 4 independent sockets simultaneously
- Not support IP Fragmentation
- Standard MII Interface for Ethernet-PHY chip
- Supports 10BaseT/100BaseTX
- Supports full-duplex mode
- Internal 16Kbytes Memory for Tx/Rx Buffers
- 0.18 µm CMOS technology
- 3.3V operation with 5V I/O signal tolerance
- Small 64 Pin LQFP Package
- Lead-Free Package
- Support Serial Peripheral Interface(SPI MODE 0)

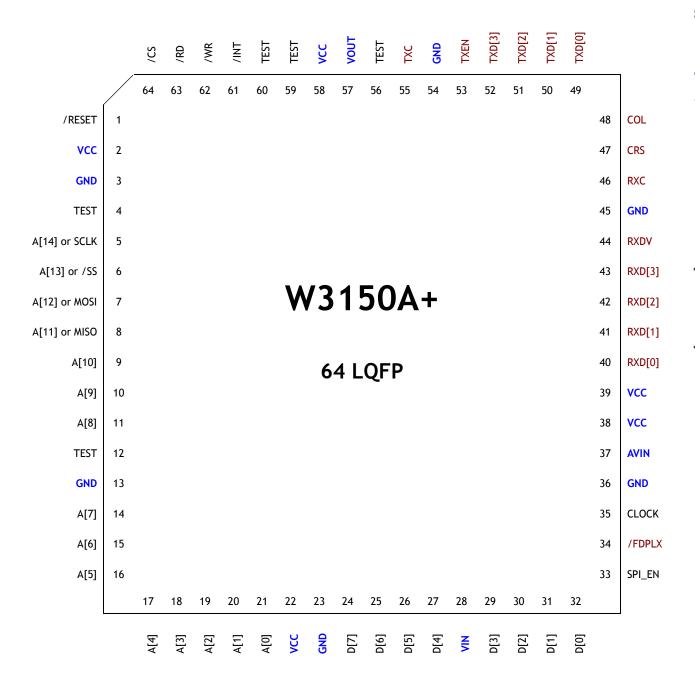


## **Block Diagram**





# **Table of Contents**


| Des                           | cription.      |                       |                                    | 3    |  |  |  |  |
|-------------------------------|----------------|-----------------------|------------------------------------|------|--|--|--|--|
| Fea                           | tures          |                       |                                    | 3    |  |  |  |  |
| Blo                           | ck Diagra      | ım                    |                                    | 4    |  |  |  |  |
| Tab                           | le of Con      | tents                 |                                    | 5    |  |  |  |  |
| 1.                            | Pin Assignment |                       |                                    |      |  |  |  |  |
| 1.1. MII Signal Description   |                |                       |                                    |      |  |  |  |  |
|                               | 1.2.           | MCl                   | J Interface Signal Description     | 9    |  |  |  |  |
|                               | 1.3.           | Misc                  | cellaneous Signal Description      | 11   |  |  |  |  |
|                               | 1.4.           | Pow                   | ver Supply Signal Description      | 12   |  |  |  |  |
| 2.                            | Memory         | / map                 |                                    | 13   |  |  |  |  |
| 3.                            | W3150A         | \+ Reg                | gisters                            | 14   |  |  |  |  |
|                               | 3.1.           | Con                   | nmon Registers                     | 14   |  |  |  |  |
|                               | 3.2.           | Soc                   | ket Registers                      | 15   |  |  |  |  |
| 4.                            | Registe        | r Desc                | riptions                           | 19   |  |  |  |  |
|                               | 4.1.           | Con                   | nmon Registers                     | 19   |  |  |  |  |
|                               | 4.2.           | Soc                   | ket Registers                      | 25   |  |  |  |  |
| 5.                            | Functio        | nal De                | escription                         | 37   |  |  |  |  |
|                               | 5.1.           | Init                  | ialization                         | 37   |  |  |  |  |
|                               | 5.2.           | Dat                   | a communication                    | 39   |  |  |  |  |
|                               | 5.2            | .1.                   | TCP                                | . 39 |  |  |  |  |
|                               | 5.2            | .2.                   | UDP                                | . 47 |  |  |  |  |
|                               | 5.2            | .3.                   | IP raw                             | . 52 |  |  |  |  |
|                               | 5.2            | .4.                   | MAC raw                            | . 54 |  |  |  |  |
| 6.                            | Applica        | tion lı               | nformation                         | 55   |  |  |  |  |
|                               | 6.1.           | Dire                  | ect Bus I/F Mode                   | 55   |  |  |  |  |
|                               | 6.2.           | Indi                  | rect Bus I/F Mode                  | 55   |  |  |  |  |
|                               | 6.3.           | Seri                  | al Peripheral Interface (SPI) Mode | 56   |  |  |  |  |
|                               | 6.4.           | MII                   | (Media Independent Interface)      | 58   |  |  |  |  |
| 7. Electrical Specification   |                | ecification           | 59                                 |      |  |  |  |  |
| 7.1. Absolute Maximum Ratings |                | olute Maximum Ratings | 59                                 |      |  |  |  |  |
| 7.2. DC Characteristics       |                | Characteristics       | 59                                 |      |  |  |  |  |
| 7.3. POWER DISSIPATION        |                | VER DISSIPATION       | 59                                 |      |  |  |  |  |
|                               | 7.4.           | AC                    | Characteristics                    | 60   |  |  |  |  |
|                               | 7.4            | .1.                   | Reset Timing                       | . 60 |  |  |  |  |
|                               | 7 4            | 2                     | Register/Memory READ Timing        | 61   |  |  |  |  |



|    | 7.4.3.        | Register/Memory WRITE Timing            | 62   |
|----|---------------|-----------------------------------------|------|
|    | 7.4.4.        | SPI Timing                              | 63   |
|    | 7.4.5.        | MII(Media Independent Interface) Timing | 64   |
| 8. | IR Reflow Ter | nperature Profile (Lead-Free)           | . 66 |
| a  | Package Dose  | rintion                                 | 6-   |



## 1. Pin Assignment





# 1.1. MII Signal Description

| Pin# | Signal | I/O | Description                                                                    |  |  |
|------|--------|-----|--------------------------------------------------------------------------------|--|--|
|      |        |     | Transmit Clock                                                                 |  |  |
| EE . | TXC    | ı   | This input pin needs a continuous clock as timing reference for TXD[3:0] and   |  |  |
| 55   | IAC    | ı   | TXEN. TXC is supplied by the PHY. TXC is 2.5 MHz in 10 BASE-T nibble mode,     |  |  |
|      |        |     | and 25MHz in 100BASE-TX nibble mode.                                           |  |  |
|      |        |     | Transmit Enable                                                                |  |  |
|      |        |     | This output signal indicates the presence of a valid nibble data on TXD[3:0].  |  |  |
| 53   | TXEN   | 0   | It becomes active when the first nibble data of the packet is valid on         |  |  |
| 33   | IALIN  | U   | TXD[3:0] and goes low after the last nibble data of the packet is clocked out  |  |  |
|      |        |     | of TXD[3:0]. This signal connects directly to the PHY device. This signal is   |  |  |
|      |        |     | active high.                                                                   |  |  |
| 52   | TXD[3] |     | Transmit Data                                                                  |  |  |
| 51   | TXD[2] | 0   | These pins transmit Nibble NRZ data to the PHY synchronously with TXC          |  |  |
| 50   | TXD[1] | U   | when TXEN is asserted.                                                         |  |  |
| 49   | TXD[0] |     |                                                                                |  |  |
|      | RXC    | I   | Receive Clock                                                                  |  |  |
| 46   |        |     | This input pin needs a continuous clock as timing reference for RXDV and       |  |  |
| 40   |        |     | RXD[3:0] signals. RXC is supplied by the PHY. RXC is 2.5MHz in 10BASE-T        |  |  |
|      |        |     | nibble mode, and 25MHz in 100BASE-TX nibble mode.                              |  |  |
|      |        |     | Collision Detect                                                               |  |  |
| 48   | COL    | I   | The active high signal at this input pin indicates that a collision has been   |  |  |
| 10   |        |     | detected in Half-Duplex modes. This signal is asynchronous and is ignored      |  |  |
|      |        |     | during full-duplex operation.                                                  |  |  |
| 47   | CRS    |     | Carrier Sense                                                                  |  |  |
| 47   | 4/ CK3 |     | The active high signal at this input pin detects that carrier is present.      |  |  |
|      |        |     | Receive Data Valid                                                             |  |  |
| 44   | RXDV   | ı   | If signal is detected high on this input pin, valid data is present on the     |  |  |
| 44   | KXDV   | l   | RXD[3:0]. If signal is detected low at the end of the valid packet, the signal |  |  |
|      |        |     | is valid on the rising of the RXC.                                             |  |  |
| 43   | RXD[3] |     | Receive Data                                                                   |  |  |
| 42   | RXD[2] | ı   | These pins receive Nibble NRZ data from the PHY device synchronously with      |  |  |
| 41   | RXD[1] | •   | RXC when RXDV is asserted.                                                     |  |  |
| 40   | RXD[0] |     |                                                                                |  |  |



# 1.2. MCU Interface Signal Description

| Pin#   | Signal         | 1/0 | Description                                                                  |  |  |
|--------|----------------|-----|------------------------------------------------------------------------------|--|--|
|        |                |     | RESET                                                                        |  |  |
|        |                |     | This pin is active Low input to initialize or re-initialize W3150A+.         |  |  |
| 1      | /RESET         | I   | Asserting this pin low for at least 2us will force a reset process to occur  |  |  |
|        |                |     | which will result in all internal registers re-initializing to their default |  |  |
|        |                |     | states.                                                                      |  |  |
|        |                |     | CLOCK                                                                        |  |  |
|        |                |     | This pin is the Primary clock required for internal operation of W3150A+.    |  |  |
|        |                |     | 25MHz is required. In general, PHY driving clock can be shared for saving    |  |  |
| 35     | CLOCK          |     | cost.                                                                        |  |  |
| 33     | CLOCK          | l   | Note) Sharing crystal source clock with multiple devices may cause some      |  |  |
|        |                |     | troubles. In our reference design, we used one crystal for both PHY and      |  |  |
|        |                |     | W3150A+ with verification.                                                   |  |  |
|        |                |     | But for other kind of PHY, please confirm safety prior to decision.          |  |  |
|        | A [ 4 A ] /    |     | ADDRESS PIN or SCLK (Serial Clock) *                                         |  |  |
| 5      | A[14]/<br>SCLK | I   | This pin is used to select a register or memory.                             |  |  |
|        |                |     | When asserting SPI_EN pin high, this pin is used to SPI Clock signal Pin.    |  |  |
|        |                | 1   | ADDRESS PIN or /SS (Slave Select) *                                          |  |  |
| 4      | A[13]/         |     | This pin is used to select a register or memory.                             |  |  |
| 6      | /SS            |     | When asserting SPI_EN pin high, this pin is used to SPI Slave Select signal  |  |  |
|        |                |     | Pin. In only SPI Mode, this pin is active low                                |  |  |
|        | A[12]/<br>MOSI |     | ADDRESS PIN or MOSI (Master Out Slave In) *                                  |  |  |
| 7      |                |     | This pin is used to select a register or memory.                             |  |  |
|        |                |     | When asserting SPI_EN pin high, this pin is used to SPI MOSI signal pin.     |  |  |
|        | A[44]/         |     | ADDRESS PIN or MISO (Master In Slave Out) *                                  |  |  |
| 8      | A[11]/<br>MISO | 1/0 | This pin is used to select a register or memory.                             |  |  |
|        |                |     | When asserting SPI_EN pin high, this pin is used to SPI MISO signal pin.     |  |  |
| 9:11   | A[10:8]        | 1   | ADDRESS PINS                                                                 |  |  |
| 14:21  | A[7:0]         | I   | These pins are used to select a register or memory.                          |  |  |
| 24:27, | D[7:4]         | 1/0 | DATA PINS                                                                    |  |  |
| 29:32  | D[3:0]         | 1/0 | These pins are used to read and write register or memory data.               |  |  |

<sup>\*\*</sup> Difference from W3150A



|    |      |       | INTERRUPT                                                                      |
|----|------|-------|--------------------------------------------------------------------------------|
|    |      | 0     | This pin Indicates that W3150A+ requires MCU attention after socket            |
| 61 | /INT |       | connecting, disconnecting, receiving data or timeout. The interrupt is         |
|    |      |       | cleared by writing IR(Interrupt Register) or Sn_IR (Socket nth Interrupt       |
|    |      |       | Register). All interrupts are maskable. This signal is active low.             |
|    |      | I     | CHIP SELECT                                                                    |
| 64 | /CS  |       | Chip Select is for MCU access to internal registers/memory. /WR and /RD        |
|    |      |       | select direction of data transfer. This signal is active low.                  |
|    | /WR  | I     | WRITE ENABLE                                                                   |
| 62 |      |       | Strobe from MCU to write an internal register/memory selected by A[14:0].      |
| 02 |      |       | Data is latched into the W3150A+ on the rising edge of this input. This signal |
|    |      |       | is active low.                                                                 |
|    | /RD  | /RD I | READ ENABLE                                                                    |
| 63 |      |       | Strobe from MCU to read an internal register/memory selected by A[14:0].       |
|    |      |       | This signal is active low.                                                     |



# 1.3. Miscellaneous Signal Description

| Pin#              | Signal  | I/O  | Description                                                                           |
|-------------------|---------|------|---------------------------------------------------------------------------------------|
|                   |         | I    | FULL/HALF DUPLEX SELECT                                                               |
|                   |         |      | This pin selects Half/Full Duplex operation mode.                                     |
| 34                | /FDPI X |      | This pin must be externally pulled low (typically x $k\Omega$ ) in order to configure |
| 34                | /I DPLX |      | the W3150A+ for Full Duplex operation.                                                |
|                   |         |      | Low = Full Duplex                                                                     |
|                   |         |      | High = Half Duplex                                                                    |
|                   | SPI_EN  | I    | SPI Enable*                                                                           |
|                   |         |      | This pin selects Enable/disable of the SPI Mode.                                      |
|                   |         |      | This pin is internally pulled down for previous W3150A users. Even if there           |
| 33                |         |      | is no signal connection to this pin, it asserts low internally. Thereby, in case      |
|                   |         |      | of change to W3150A+, there is no effort to change previous board design.             |
|                   |         |      | Low = SPI Mode Disable                                                                |
|                   |         |      | High = SPI Mode Enable                                                                |
| 4,12,56,<br>59,60 | TEST    | ST I | FACTORY TEST INPUT                                                                    |
|                   |         |      | Used to check the chip's internal functions. This should be tied low (pull-           |
|                   |         |      | down) during normal operation.                                                        |

<sup>\* \*</sup> Difference from W3150A



# 1.4. Power Supply Signal Description

| Pin#                  | Signal | I/O | Description                                                    |
|-----------------------|--------|-----|----------------------------------------------------------------|
| 2, 22, 38, 39, 58     | VCC    |     | POSITIVE 3.3V SUPPLY PINS                                      |
| 28                    | VIN    |     | 1.8V power input                                               |
| 20                    | VIN    |     | 1.8V power supply                                              |
|                       |        |     | 1.8V Analog power input                                        |
| 37                    | AVIN   |     | 1.8V power supply for analog circuit ; should be well          |
| 37                    |        |     | decoupled.                                                     |
|                       |        |     | Refer Figure 1-1. Reference Schematic for Power input.         |
|                       |        |     | 1.8V power out                                                 |
| 57                    | VOLIT  |     | Be sure to connect 10uF tantalum capacitor and a 0.1uF         |
| 57                    | VOUT   |     | capacitor for noise de-coupling. Then connect this pin through |
|                       |        |     | a ferrite bead to VIN and AVIN.                                |
| 3, 13, 23, 36, 45, 54 | GND    |     | NEGATIVE (GROUND) SUPPLY PINS                                  |

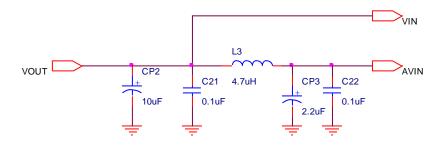



Figure 1-1. Reference Schematic for Power input



## 2. Memory map

W3150A+ is composed of Common Register, Socket Register, TX Memory, and RX Memory. Each fields are shown as below.

| 0x0000 | Common Registers |
|--------|------------------|
| 0x0030 | Reserved         |
| 0x0400 | Socket Registers |
| 0x0800 |                  |
|        | Reserved         |
| 0x4000 |                  |
|        | TX memory        |
| 0x6000 | RX memory        |
| 0x8000 |                  |



# 3. W3150A+ Registers

## 3.1. Common Registers

| Address | Register                |
|---------|-------------------------|
| 0x0000  | Mode (MR)               |
|         | Gateway Address         |
| 0x0001  | (GAR0)                  |
| 0x0002  | (GAR1)                  |
| 0x0003  | (GAR2)                  |
| 0x0004  | (GAR3)                  |
|         | Subnet mask Address     |
| 0x0005  | (SUBRO)                 |
| 0x0006  | (SUBR1)                 |
| 0x0007  | (SUBR2)                 |
| 0x0008  | (SUBR3)                 |
|         | Source Hardware Address |
| 0x0009  | (SHARO)                 |
| 0x000A  | (SHAR1)                 |
| 0x000B  | (SHAR2)                 |
| 0x000C  | (SHAR3)                 |
| 0x000D  | (SHAR4)                 |
| 0x000E  | (SHAR5)                 |
|         | Source IP Address       |
| 0x000F  | (SIPRO)                 |
| 0x0010  | (SIPR1)                 |
| 0x0011  | (SIPR2)                 |
| 0x0012  | (SIPR3)                 |
| 0x0013  | Reserved                |
| 0x0014  |                         |
| 0x0015  | Interrupt (IR)          |
| 0x0016  | Interrupt Mask (IMR)    |
|         | Retry Time              |
| 0x0017  | (RTR0)                  |
| 0x0018  | (RTR1)                  |
| 0x0019  | Retry Count (RCR)       |

| Address | Register                       |
|---------|--------------------------------|
| 0x001A  | RX Memory Size (RMSR)          |
| 0x001B  | TX Memory Size (TMSR)          |
|         | Authentication Type in PPPoE   |
| 0x001C  | (PATRO)                        |
| 0x001D  | (PATR1)                        |
| 0x001E  |                                |
| ~       | Reserved                       |
| 0x0027  |                                |
| 0x0028  | PPP LCP Request Timer (PTIMER) |
| 0x0029  | PPP LCP Magic number (PMAGIC)  |
|         | Unreachable IP Address         |
| 0x002A  | (UIPR0)                        |
| 0x002B  | (UIPR1)                        |
| 0x002C  | (UIPR2)                        |
| 0x002D  | (UIPR3)                        |
|         | Unreachable Port               |
| 0x002E  | (UPORT0)                       |
| 0x002F  | (UPORT1)                       |
| 0x0030  |                                |
| ~       | Reserved                       |
| 0x03FF  |                                |



# 3.2. Socket Registers

| Address | Register                              |
|---------|---------------------------------------|
| 0x0400  | Socket 0 Mode (S0_MR)                 |
| 0x0401  | Socket 0 Command (S0_CR)              |
| 0x0402  | Socket 0 Interrupt (S0_IR)            |
| 0x0403  | Socket 0 Status (S0_SR)               |
|         | Socket 0 Source Port                  |
| 0x0404  | (S0_PORT0)                            |
| 0x0405  | (S0_PORT1)                            |
|         | Socket 0 Destination Hardware Address |
| 0x0406  | (SO_DHARO)                            |
| 0x0407  | (SO_DHAR1)                            |
| 0x0408  | (SO_DHAR2)                            |
| 0x0409  | (SO_DHAR3)                            |
| 0x040A  | (SO_DHAR4)                            |
| 0x040B  | (SO_DHAR5)                            |
|         | Socket 0 Destination IP Address       |
| 0x040C  | (SO_DIPRO)                            |
| 0x040D  | (SO_DIPR1)                            |
| 0x040E  | (SO_DIPR2)                            |
| 0x040F  | (SO_DIPR3)                            |
|         | Socket 0 Destination Port             |
| 0x0410  | (SO_DPORTO)                           |
| 0x0411  | (S0_DPORT1)                           |
|         | Socket 0 Maximum Segment Size         |
| 0x0412  | (S0_MSSR0)                            |
| 0x0413  | (S0_MSSR1)                            |
|         | Socket 0 Protocol in IP Raw mode      |
| 0x0414  | (SO_PROTO)                            |

| Address | Register                  |
|---------|---------------------------|
| 0x0415  | Socket 0 IP TOS (S0_TOS)  |
| 0x0416  | Socket 0 IP TTL (S0_TTL)  |
| 0x0417  |                           |
| ~       | Reserved                  |
| 0x041F  |                           |
|         | Socket 0 TX Free Size     |
| 0x0420  | (SO_TX_FSRO)              |
| 0x0421  | (S0_TX_FSR1)              |
|         | Socket 0 TX Read Pointer  |
| 0x0422  | (S0_TX_RD0)               |
| 0x0423  | (S0_TX_RD1)               |
|         | Socket 0 TX Write Pointer |
| 0x0424  | (S0_TX_WR0)               |
| 0x0425  | (S0_TX_WR1)               |
|         | Socket 0 RX Received Size |
| 0x0426  | (SO_RX_RSRO)              |
| 0x0427  | (SO_RX_RSR1)              |
|         | Socket 0 RX Read Pointer  |
| 0x0428  | (S0_RX_RD0)               |
| 0x0429  | (S0_RX_RD1)               |
| 0x042A  | Reserved                  |
| 0x042B  |                           |
| 0x042C  |                           |
| ~       | Reserved                  |
| 0x04FF  |                           |



| Address | Register                              |  |  |
|---------|---------------------------------------|--|--|
| 0x0500  | Socket 1 Mode (S1_MR)                 |  |  |
| 0x0501  | Socket 1 Command (S1_CR)              |  |  |
| 0x0502  | Socket 1 Interrupt (S1_IR)            |  |  |
| 0x0503  | Socket 1 Status (S1_SR)               |  |  |
|         | Socket 1 Source Port                  |  |  |
| 0x0504  | (S1_PORT0)                            |  |  |
| 0x0505  | (S1_PORT1)                            |  |  |
|         | Socket 1 Destination Hardware Address |  |  |
|         | (S1_DHAR0)                            |  |  |
| 0x0506  | (S1_DHAR1)                            |  |  |
| 0x0507  | (S1_DHAR2)                            |  |  |
| 0x0508  | (S1_DHAR3)                            |  |  |
| 0x0509  | (S1_DHAR4)                            |  |  |
| 0x050A  | (S1_DHAR5)                            |  |  |
| 0x050B  |                                       |  |  |
|         | Socket 1 Destination IP Address       |  |  |
| 0x050C  | (S1_DIPRO)                            |  |  |
| 0x050D  | (S1_DIPR1)                            |  |  |
| 0x050E  | (S1_DIPR2)                            |  |  |
| 0x050F  | (S1_DIPR3)                            |  |  |
|         | Socket 1 Destination Port             |  |  |
| 0x0510  | (S1_DPORT0)                           |  |  |
| 0x0511  | (S1_DPORT1)                           |  |  |
|         | Socket 1 Maximum Segment Size         |  |  |
| 0x0512  | (S1_MSSR0)                            |  |  |
| 0x0513  | (S1_MSSR1)                            |  |  |
|         | Socket 1 Protocol in IP Raw mode      |  |  |
| 0x0514  | (S1_PROTO)                            |  |  |

| Address | Register                  |
|---------|---------------------------|
| 0x0515  | Socket 1 IP TOS (S1_TOS)  |
| 0x0516  | Socket 1 IP TTL (S1_TTL)  |
| 0x0517  |                           |
| ~       | Reserved                  |
| 0x051F  |                           |
|         | Socket 1 TX Free Size     |
| 0x0520  | (S1_TX_FSR0)              |
| 0x0521  | (S1_TX_FSR1)              |
|         | Socket 1 TX Read Pointer  |
| 0x0522  | (S1_TX_RD0)               |
| 0x0523  | (S1_TX_RD1)               |
|         | Socket 1 TX Write Pointer |
| 0x0524  | (S1_TX_WR0)               |
| 0x0525  | (S1_TX_WR1)               |
|         | Socket 1 RX Received Size |
| 0x0526  | (S1_RX_RSR0)              |
| 0x0527  | (S1_RX_RSR1)              |
|         | Socket 1 RX Read Pointer  |
| 0x0528  | (S1_RX_RD0)               |
| 0x0529  | (S1_RX_RD1)               |
| 0x052A  | Reserved                  |
| 0x052B  |                           |
| 0x052C  |                           |
| ~       | Reserved                  |
| 0x05FF  |                           |



| Address | Register                              |
|---------|---------------------------------------|
| 0x0600  | Socket 2 Mode (S2_MR)                 |
| 0x0601  | Socket 2 Command (S2_CR)              |
| 0x0602  | Socket 2 Interrupt (S2_IR)            |
| 0x0603  | Socket 2 Status (S2_SR)               |
|         | Socket 2 Source Port                  |
| 0x0604  | (S2_PORT0)                            |
| 0x0605  | (S2_PORT1)                            |
|         | Socket 2 Destination Hardware Address |
|         | (S2_DHAR0)                            |
| 0x0606  | (S2_DHAR1)                            |
| 0x0607  | (S2_DHAR2)                            |
| 0x0608  | (S2_DHAR3)                            |
| 0x0609  | (S2_DHAR4)                            |
| 0x060A  | (S2_DHAR5)                            |
| 0x060B  |                                       |
|         | Socket 2 Destination IP Address       |
| 0x060C  | (S2_DIPR0)                            |
| 0x060D  | (S2_DIPR1)                            |
| 0x060E  | (S2_DIPR2)                            |
| 0x060F  | (S2_DIPR3)                            |
|         | Socket 2 Destination Port             |
| 0x0610  | (S2_DPORT0)                           |
| 0x0611  | (S2_DPORT1)                           |
|         | Socket 2 Maximum Segment Size         |
| 0x0612  | (S2_MSSR0)                            |
| 0x0613  | (S2_MSSR1)                            |
|         | Socket 2 Protocol in IP Raw mode      |
| 0x0614  | (S2_PROTO)                            |

| Address | Register                  |
|---------|---------------------------|
| 0x0615  | Socket 2 IP TOS (S2_TOS)  |
| 0x0616  | Socket 2 IP TTL (S2_TTL)  |
| 0x0617  |                           |
| ~       | Reserved                  |
| 0x061F  |                           |
|         | Socket 2 TX Free Size     |
| 0x0620  | (S2_TX_FSR0)              |
| 0x0621  | (S2_TX_FSR1)              |
|         | Socket 2 TX Read Pointer  |
| 0x0622  | (S2_TX_RD0)               |
| 0x0623  | (S2_TX_RD1)               |
|         | Socket 2 TX Write Pointer |
| 0x0624  | (S2_TX_WR0)               |
| 0x0625  | (S2_TX_WR1)               |
|         | Socket 2 RX Received Size |
| 0x0626  | (S2_RX_RSR0)              |
| 0x0627  | (S2_RX_RSR1)              |
|         | Socket 2 RX Read Pointer  |
| 0x0628  | (S2_RX_RD0)               |
| 0x0629  | (S2_RX_RD1)               |
| 0x062A  | Reserved                  |
| 0x062B  |                           |
| 0x062C  |                           |
| ~       | Reserved                  |
| 0x06FF  |                           |



| Address | Register                              |
|---------|---------------------------------------|
| 0x0700  | Socket 3 Mode (S3_MR)                 |
| 0x0701  | Socket 3 Command (S3_CR)              |
| 0x0702  | Socket 3 Interrupt (S3_IR)            |
| 0x0703  | Socket 3 Status (S3_SR)               |
|         | Socket 3 Source Port                  |
| 0x0704  | (S3_PORT0)                            |
| 0x0705  | (S3_PORT1)                            |
|         | Socket 3 Destination Hardware Address |
|         | (S3_DHAR0)                            |
| 0x0706  | (S3_DHAR1)                            |
| 0x0707  | (S3_DHAR2)                            |
| 0x0708  | (S3_DHAR3)                            |
| 0x0709  | (S3_DHAR4)                            |
| 0x070A  | (S3_DHAR5)                            |
| 0x070B  |                                       |
|         | Socket 3 Destination IP Address       |
| 0x070C  | (S3_DIPRO)                            |
| 0x070D  | (S3_DIPR1)                            |
| 0x070E  | (S3_DIPR2)                            |
| 0x070F  | (S3_DIPR3)                            |
|         | Socket 3 Destination Port             |
| 0x0710  | (S3_DPORT0)                           |
| 0x0711  | (S3_DPORT1)                           |
|         | Socket 3 Maximum Segment Size         |
| 0x0712  | (S3_MSSR0)                            |
| 0x0713  | (S3_MSSR1)                            |
|         | Socket 3 Protocol in IP Raw mode      |
| 0x0714  | (S3_PROTO)                            |

| Address | Register                  |  |
|---------|---------------------------|--|
| 0x0715  | Socket 3 IP TOS (S3_TOS)  |  |
| 0x0716  | Socket 3 IP TTL (S3_TTL)  |  |
| 0x0717  |                           |  |
| ~       | Reserved                  |  |
| 0x071F  |                           |  |
|         | Socket 3 TX Free Size     |  |
| 0x0720  | (S3_TX_FSR0)              |  |
| 0x0721  | (S3_TX_FSR1)              |  |
|         | Socket 3 TX Read Pointer  |  |
| 0x0722  | (S3_TX_RD0)               |  |
| 0x0723  | (S3_TX_RD1)               |  |
|         | Socket 3 TX Write Pointer |  |
| 0x0724  | (S3_TX_WR0)               |  |
| 0x0725  | (S3_TX_WR1)               |  |
|         | Socket 3 RX Received Size |  |
| 0x0726  | (S3_RX_RSR0)              |  |
| 0x0727  | (S3_RX_RSR1)              |  |
|         | Socket 3 RX Read Pointer  |  |
| 0x0728  | (S3_RX_RD0)               |  |
| 0x0729  | (S3_RX_RD1)               |  |
| 0x072A  | Reserved                  |  |
| 0x072B  |                           |  |
| 0x072C  |                           |  |
| ~       | Reserved                  |  |
| 0x07FF  |                           |  |



## 4. Register Descriptions

## 4.1. Common Registers

#### MR (Mode Register) [R/W] [0x0000] [0x00]<sup>1</sup>

This register is used for S/W Reset, memory test mode, ping block mode, PPPoE mode and Indirect bus I/F.

| 7   | 6 | 5 | 4  | 3     | 2 | 1  | 0   |
|-----|---|---|----|-------|---|----|-----|
| RST |   |   | РВ | PPPoE |   | Al | IND |

| Bit | Symbol   | Description                                                                                 |
|-----|----------|---------------------------------------------------------------------------------------------|
| 7   |          | S/W Reset                                                                                   |
| 7   | RST      | If this bit is '1', internal register will be initialized. It will be automatically cleared |
|     |          | after reset.                                                                                |
| 6   | Reserved | Reserved                                                                                    |
| 5   | Reserved | Reserved                                                                                    |
|     |          | Ping Block Mode                                                                             |
| 4   | PB       | 0 : Disable Ping block                                                                      |
| 4   | PD       | 1 : Enable Ping block                                                                       |
|     |          | If the bit is set as '1', there is no response to the ping request.                         |
|     |          | PPPoE Mode                                                                                  |
|     |          | 0 : Disable PPPoE mode                                                                      |
| 3   | PPPoE    | 1 : Enable PPPoE mode                                                                       |
| 3   | PPPOE    | If you use ADSL without router or etc, you should set the bit as '1', and connect to ADSL   |
|     |          | Server. For more detail, refer to the application note, "How to connect ADSL".              |
|     |          |                                                                                             |
| 2   | Not used | Not used.                                                                                   |
|     |          | Address Auto-Increment in Indirect Bus I/F                                                  |
|     |          | 0 : Disable auto-increment                                                                  |
|     | 4.1      | 1 : Enable auto-increment                                                                   |
| 1   | Al       | At the Indirect Bus I/F mode, if this bit is set as '1', the address will be automatically  |
|     |          | increased by 1 whenever Read and Write are performed. For more detail, refer to 6.1.2       |
|     |          | Indirect Bus IF Mode.                                                                       |
|     | INID     | Indirect Bus I/F mode                                                                       |
| 0   | IND      | 0 : Disable Indirect bus I/F mode                                                           |

<sup>\* [</sup>Read/Write] [Address] [Reset value]



1: Enable Indirect bus I/F mode

If this bit is set as '1', Indirect BUS I/F mode is set. For more detail, refer to 6. Application Information, 6.1.2. Indirect Bus IF Mode.

#### GWR (Gateway IP Address Register) [R/W] [0x0001 - 0x0004] [0x00]

This Register sets up the default gateway address.

Ex) in case of "192.168.0.1"

| 0x0001 |            | 0x0002     | 0x0003   | 0x0004   |
|--------|------------|------------|----------|----------|
|        | 192 (0xC0) | 168 (0xA8) | 0 (0x00) | 1 (0x01) |

#### SUBR (Subnet Mask Register) [R/W] [0x0005 - 0x0008] [0x00]

This register sets up the subnet mask address.

Ex) in case of "255.255.255.0"

| 0x0005     | 0x0006     | 0x0007     | 0x0008   |
|------------|------------|------------|----------|
| 255 (0xFF) | 255 (0xFF) | 255 (0xFF) | 0 (0x00) |

#### SHAR (Source Hardware Address Register) [R/W] [0x0009 - 0x000E] [0x00]

This register sets up the Source Hardware address.

Ex) In case of "00.08.DC.01.02.03"

| 0x0009 | 0x000A | 0x000B | 0x000C | 0x000D | 0x000E |
|--------|--------|--------|--------|--------|--------|
| 0x00   | 0x08   | 0xDC   | 0x01   | 0x02   | 0x03   |

### SIPR (Source IP Address Register) [R/W] [0x000F - 0x0012] [0x00]

This register sets up the Source IP address.

Ex) in case of "192.168.0.3"

| 0x000F     | 0x0010     | 0x0011   | 0x0012   |  |
|------------|------------|----------|----------|--|
| 192 (0xC0) | 168 (0xA8) | 0 (0x00) | 3 (0x03) |  |



#### IR (Interrupt Register) [R] [0x0015] [0x00]

This register is accessed by the host processor to know the cause of an interrupt.

Any interrupt can be masked in the Interrupt Mask Register (IMR). The /INT signal retain low as long as any masked signal is set, and will not go high until all masked bits in this Register have been cleared.

| 7        | 6       | 5     | 4        | 3      | 2      | 1      | 0      |
|----------|---------|-------|----------|--------|--------|--------|--------|
| CONFLICT | UNREACH | PPPoE | Reserved | S3_INT | S2_INT | S1_INT | SO_INT |

| Bit | Symbol              | Description                                                                                |  |  |
|-----|---------------------|--------------------------------------------------------------------------------------------|--|--|
|     | ,                   | IP Conflict                                                                                |  |  |
| 7   | CONFLICT            | It is set as '1', when there is ARP request with same IP address as Source IP address.     |  |  |
|     |                     | This bit is cleared to '0' by writing '1' to this bit.*                                    |  |  |
|     |                     | Destination unreachable                                                                    |  |  |
|     |                     | W3150A+ will receive ICMP(Destination Unreachable) packet if not-existing destination      |  |  |
|     | III IDEA CII        | IP address is transmitted during UDP data transmission. (Refer to 5.2.2. UDP). In this     |  |  |
| 6   | UNREACH             | case, the IP address and the port number will be saved in Unreachable IP Address (UIPR)    |  |  |
|     |                     | and Unreachable Port Register (UPORT), and the bit will be set as '1'. This bit will be    |  |  |
|     |                     | cleared to '0' by writing '1' to this bit.*                                                |  |  |
|     |                     | PPPoE Close                                                                                |  |  |
| 5   | PPPoE               | In the PPPoE Mode, if the PPPoE connection is closed, '1' is set. This bit will be cleared |  |  |
|     |                     | to '0' by writing '1' to this bit.*                                                        |  |  |
| 4   | 4 Reserved Reserved |                                                                                            |  |  |
|     | S3_INT              | Occurrence of Socket 3 Socket Interrupt                                                    |  |  |
| 3   |                     | It is set in case that interrupt occurs at the socket 3. For more detailed information of  |  |  |
| ٥   |                     | socket interrupt, refer to "Socket 3 Interrupt Register (S3_IR). This bit will be          |  |  |
|     |                     | automatically cleared when S3_IR is cleared to 0x00.                                       |  |  |
|     |                     | Occurrence of Socket 2 Socket Interrupt                                                    |  |  |
| 2   | S2_INT              | It is set in case that interrupt occurs at the socket 2. For more detailed information of  |  |  |
|     | 32_1111             | socket interrupt, refer to "Socket 2 Interrupt Register(S2_IR). This bit will be           |  |  |
|     |                     | automatically cleared when S2_IR is cleared to 0x00.                                       |  |  |
|     |                     | Occurrence of Socket 1 Socket Interrupt                                                    |  |  |
| 1   | S1_INT              | It is set in case that interrupt occurs at the socket 1. For more detailed information of  |  |  |
| '   | 31_1111             | socket interrupt, refer to "Socket 1 Interrupt Register (S1_IR). This bit will be          |  |  |
|     |                     | automatically cleared when S1_IR is cleared to 0x00.                                       |  |  |

<sup>\*</sup> Difference from W3150A



|   | S0_INT | Occurrence of Socket 0 Socket Interrupt                                                   |
|---|--------|-------------------------------------------------------------------------------------------|
|   |        | It is set in case that interrupt occurs at the socket 0. For more detailed information of |
| 0 |        | socket interrupt, refer to "Socket 0 Interrupt Register (SO_IR). This bit will be         |
|   |        | automatically cleared when SO_IR is cleared to 0x00.                                      |

#### IMR (Interrupt Mask Register) [R/W] [0x0016] [0x00]

The Interrupt Mask Register is used to mask interrupts. Each interrupt mask bit corresponds to a bit in the Interrupt Register (IR). If an interrupt mask bit is set, an interrupt will be issued whenever the corresponding bit in the IR is set. If any bit in the IMR is set as '0', an interrupt will not occur though the bit in the IR is set.

| 7      | 6      | 5      | 4        | 3      | 2      | 1      | 0      |
|--------|--------|--------|----------|--------|--------|--------|--------|
| IM_IR7 | IM_IR6 | IM_IR5 | Reserved | IM_IR3 | IM_IR2 | IM_IR1 | IM_IR0 |

| Bit | Symbol   | Description                                    |  |  |
|-----|----------|------------------------------------------------|--|--|
| 7   | IM_IR7   | IP Conflict Enable                             |  |  |
| 6   | IM_IR6   | Destination unreachable Enable                 |  |  |
| 5   | IM_IR5   | PPPoE Close Enable                             |  |  |
| 4   | Reserved | It should be set as '0'                        |  |  |
| 3   | IM_IR3   | Occurrence of Socket 3 Socket Interrupt Enable |  |  |
| 2   | IM_IR2   | Occurrence of Socket 2 Socket Interrupt Enable |  |  |
| 1   | IM_IR1   | Occurrence of Socket 1 Socket Interrupt Enable |  |  |
| 0   | IM_IR0   | Occurrence of Socket 0 Socket Interrupt Enable |  |  |

#### RTR (Retry Time-value Register) [R/W] [0x0017 - 0x0018] [0x07D0]

This register sets the period of timeout. Value 1 means 100us. The initial value is 2000(0x07D0). That will be set as 200ms.

Ex) For 400ms configuration, set as 4000(0x0FA0)

| 0x0017 | 0x0018 |
|--------|--------|
| 0x0F   | 0xA0   |

Re-transmission will occur if there is no response from the remote peer to the commands of CONNECT, DISCON, CLOSE, SEND, SEND\_MAC and SEND\_KEEP, or the response is delayed.



#### RCR (Retry Count Register) [R/W] [0x0019] [0x08]

This register sets the number of re-transmission. If retransmission occurs more than the number recorded in RCR, Timeout Interrupt (TIMEOUT bit of Socket n Interrupt Register (Sn\_IR) is set as '1') will occur.

#### RMSR(RX Memory Size Register) [R/W] [0x001A] [0x55]

This register assigns total 8K RX Memory to each socket.

| 7          | 6     | 5    | 4     | 3    | 2     | 1          | 0     |
|------------|-------|------|-------|------|-------|------------|-------|
| Soc        | ket 3 | Sock | ket 2 | Sock | ket 1 | Sock       | ket 0 |
| <b>S</b> 1 | S0    | S1   | S0    | S1   | S0    | <b>S</b> 1 | S0    |

The memory size according to the configuration of S1, S0, is as below.

| <b>S1</b> | S0 | Memory size |  |
|-----------|----|-------------|--|
| 0         | 0  | 1KB         |  |
| 0         | 1  | 2KB         |  |
| 1         | 0  | 4KB         |  |
| 1         | 1  | 8KB         |  |

According to the value of S1 and S0, the memory is assigned to the sockets from socket 0 within the range of 8KB. If there is not enough memory to be assigned, the socket should not be used. The initial value is 0x55 and the 2K memory is assigned to each 4 sockets respectively.

Ex) When setting as 0xAA, the 4KB memory should be assigned to each socket.

However, the total memory size is 8KB. The memory is normally assigned to the socket 0 and 1, but not to the socket 2 and 3. Therefore, socket 2 and 3 are not absolutely used.

| Socket 3 | Socket 2 | Socket 1 | Socket 0 |  |
|----------|----------|----------|----------|--|
| 0KB      | 0KB      | 4KB      | 4KB      |  |

#### TMSR(TX Memory Size Register) [R/W] [0x001B] [0x55]

This register is used in assigning total 8K TX Memory to sockets. Configuration can be done in the same way of RX Memory Size Register (RMSR). The initial value is 0x55 and it is to assign 2K memory to 4 sockets respectively.



#### PATR (Authentication Type in PPPoE mode) [R] [0x001C-0x001D] [0x0000]

This register notifies authentication method that has been agreed at the connection with PPPoE Server. W3150A+ supports two types of Authentication method - PAP and CHAP.

| Value  | Authentication Type |  |
|--------|---------------------|--|
| 0xC023 | PAP                 |  |
| 0xC223 | СНАР                |  |

#### PTIMER (PPP Link Control Protocol Request Timer Register) [R/W] [0x0028] [0x28]

This register indicates the duration for sending LCP Echo Request. Vaule 1 is about 25ms.

Ex) in case that PTIMER is 200,

200 \* 25(ms) = 5000(ms) = 5 seconds

#### PMAGIC (PPP Link Control Protocol Magic number Register) [R/W] [0x0029] [0x001

This register is used in Magic number option during LCP negotiation. Refer to the application note, "How to connect ADSL".

#### UIPR (Unreachable IP Address Register) [R] [0x002A - 0x002D] [0x00]

In case of data transmission by using UDP (refer to 5.2.2. UDP), if transmitting to non-existing IP address, ICMP (Destination Unreachable) packet will be received. In this case, that IP address and port number will be respectively saved in the Unreachable IP Address Register(UIPR) and Unreachable Port Register(UPORT). Ex) in case of "192.168.0.11",

| 0x002A 0x002B |            | 0x002C   | 0x002D    |  |
|---------------|------------|----------|-----------|--|
| 192 (0xC0)    | 168 (0xA8) | 0 (0x00) | 11 (0x0B) |  |

#### UPORT (Unreachable Port Register) [R] [0x002E - 0x002F] [0x0000]

Refer to Unreachable IP Address Register (UIPR)

Ex) In case of 5000(0x1388),

| 0x002E | 0x002F |
|--------|--------|
| 0x13   | 0x88   |



## 4.2. Socket Registers

Sn<sup>1</sup>\_MR (Socket n Mode Register) [R/W] [0x0400, 0x0500, 0x0600, 0x0700] [0x00]<sup>2</sup>

This register sets up socket option or protocol type for each socket.

| 7     | 6 | 5       | 4 | 3  | 2  | 1  | 0  |
|-------|---|---------|---|----|----|----|----|
| MULTI |   | ND / MC |   | P3 | P2 | P1 | Р0 |

| Bit | Symbol   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | MULTI    | <ul> <li>Multicasting</li> <li>0: disable Multicasting</li> <li>1: enable Multicasting</li> <li>It is applied only in case of UDP.</li> <li>For using multicasting, write multicast group address to Socket n Destination IP and multicast group port number to Socket n Destination Port Register, before OPEN command.</li> </ul>                                                                                                          |
| 6   | Reserved | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5   | ND/MC    | Use No Delayed ACK  0: Disable No Delayed ACK option  1: Enable No Delayed ACK option,  It is applied only in case of TCP. If this bit is set as '1', ACK packet is transmitted whenever receiving data packet from the peer. If this bit is cleared to '0', ACK packet is transmitted according to internal Timeout mechanism.  Multicast  0: using IGMP version 2  1: using IGMP version 1  It is applied only in case of MULTI bit is '1' |
| 4   | Reserved | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                     |

<sup>&</sup>lt;sup>1</sup> *n* is socket number (0, 1, 2, 3).

<sup>&</sup>lt;sup>2</sup> [Read/Write] [address of socket 0, address of socket 1, address of socket 2, address of socket 3] [Reset value]



|   | P3 | Protoco                                                  | ol |    |    |         |  |  |
|---|----|----------------------------------------------------------|----|----|----|---------|--|--|
| 3 |    | Sets up corresponding socket as TCP, UDP, or IP RAW mode |    |    |    |         |  |  |
|   |    | Р3                                                       | P2 | P1 | P0 | Meaning |  |  |
|   |    | 0                                                        | 0  | 0  | 0  | Closed  |  |  |
| 2 | P2 | 0                                                        | 0  | 0  | 1  | ТСР     |  |  |
|   |    | 0                                                        | 0  | 1  | 0  | UDP     |  |  |
| 1 | P1 | 0                                                        | 0  | 1  | 1  | IPRAW   |  |  |
| ' | PI |                                                          |    |    |    |         |  |  |
|   |    | * In case of socket 0, MACRAW and PPPoE mode exist.      |    |    |    |         |  |  |
|   |    | P3                                                       | P2 | P1 | P0 | Meaning |  |  |
| 0 | P0 | 0                                                        | 1  | 0  | 0  | MACRAW  |  |  |
|   |    | 0                                                        | 1  | 0  | 1  | PPPoE   |  |  |

### Sn\_CR (Socket n Command Register) [R/W] [0x0401, 0x0501, 0x0601, 0x0701] [0x00]

This register is utilized for socket n initialization, close, connection establishment, termination, data transmission and command receipt. After performing the commands, the register value will be automatically cleared to 0x00.

| Value | Symbol  | Description                                                                             |
|-------|---------|-----------------------------------------------------------------------------------------|
|       |         | It is used to initialize the socket. According to the value of Socket $n$ Mode Register |
| 0x01  | OPEN    | $(Sn\_MR)$ , Socket $n$ Status Register $(Sn\_SR)$ value is changed to SOCK_INIT,       |
| UXU1  | OPEN    | SOCK_UDP, SOCK_IPRAW, or SOCK_MACRAW.                                                   |
|       |         | For more detail, refer to 5. Functional Description.                                    |
|       |         | It is only used in TCP mode.                                                            |
| 0x02  | LISTEN  | It changes the value of Socket <i>n</i> Status Register (Sn_SR) to SOCK_LISTEN in order |
| 0.002 | LISTLIN | to wait for a connection request from any remote peer (TCP Client).                     |
|       |         | For more detail, refer to 5.2.1.1. SERVER.                                              |
|       | CONNECT | It is only used in TCP mode.                                                            |
| 0x04  |         | It sends a connection request to remote peer(TCP SERVER). If the connection is          |
| 0.04  |         | failed, Timeout interrupt will occur.                                                   |
|       |         | For more detail, refer to 5.2.1.2. CLIENT.                                              |
|       |         | It is only used in TCP mode.                                                            |
|       |         | It sends a connection termination request. If connection termination is failed,         |
| 0x08  | DISCON  | Timeout interrupt will occur. For more detail, refer to 5.2.1.1. SERVER.                |
| 0.000 | DISCON  | * In case of using CLOSE command instead of DISCON, only the value of Socket n          |
|       |         | Status Register(Sn_SR) is changed to SOCK_CLOSED without the connection                 |
|       |         | termination process.                                                                    |



| 0x10 | CLOSE     | It is used to close the socket. It changes the value of Socket $n$ Status Register(S $n$ _SR) to SOCK_CLOSED.                                                                                                                                                                                                                 |  |  |  |  |
|------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0x20 | SEND      | It transmits the data as much as the increased size of Socket $n$ TX Write Pointer. For more detail, refert to Socket $n$ TX Free Size Register ( $Sn_TX_FSR$ ), Socket $n$ TX Write Pointer Register( $Sn_TX_WR$ ), and Socket $n$ TX Read Pointer Register( $Sn_TX_RR$ ) or 5.2.1.1. SERVER.                                |  |  |  |  |
| 0x21 | SEND_MAC  | It is used in UDP mode.  The basic operation is same as SEND. Normally SEND operation needs Destination Hardware Address that is received in ARP(Address Resolution Protocol) process.  SEND_MAC uses Socket <i>n</i> Destination Hardware Address(S <i>n</i> _DHAR) that is written by users without ARP process.            |  |  |  |  |
| 0x22 | SEND_KEEP | It is only used in TCP mode.  It checks the connection status by sending 1byte data. If the connection is already terminated or peer has no response, Timeout interrupt will occur.                                                                                                                                           |  |  |  |  |
| 0x40 | RECV      | Receiving is processed with the value of Socket $n$ RX Read Pointer Register( $Sn_RX_RD$ ).  For more detail, refer to 5.2.1.1. SERVER Receiving Process with Socket $n$ RX Received Size Register ( $Sn_RX_RSR$ ), Socket $n$ RX Write Pointer Register( $Sn_RX_WR$ ), and Socket $n$ RX Read Pointer Register( $Sn_RX_RD$ ) |  |  |  |  |

#### Sn\_IR (Socket n Interrupt Register) [R] [0x0402, 0x0502, 0x0602, 0x0702] [0x00]

This register is used for notifying connection establishment and termination, receiving data and Timeout. The Socket *n* Interrupt Register must be cleared by writing '1'. \*

| 7        | 6        | 5        | 4       | 3       | 2    | 1      | 0   |
|----------|----------|----------|---------|---------|------|--------|-----|
| Reserved | Reserved | Reserved | SEND_OK | TIMEOUT | RECV | DISCON | CON |

| Bit | Symbol   | Description                                                                                           |  |  |  |
|-----|----------|-------------------------------------------------------------------------------------------------------|--|--|--|
| 7   | Reserved | Reserved                                                                                              |  |  |  |
| 6   | Reserved | leserved                                                                                              |  |  |  |
| 5   | Reserved | Reserved                                                                                              |  |  |  |
| 4   | SEND_OK  | It is set as '1' if send operation is completed.**                                                    |  |  |  |
| 3   | TIMEOUT  | It is set as '1' if Timeout occurs during connection establishment or terminat and data transmission. |  |  |  |
| 2   | RECV     | It is set as '1' whenever w3150a+ receives data.                                                      |  |  |  |

<sup>\*</sup> Difference from W3150A \*\* SEND\_OK Interrupt is added in W3150A+



|  |  | And it is also set as '1' if received data remains after CMD_RECV executes. |
|--|--|-----------------------------------------------------------------------------|
|--|--|-----------------------------------------------------------------------------|

| 1 | DISCON | It is set as '1' if connection termination is requested or finished. |
|---|--------|----------------------------------------------------------------------|
| 0 | CON    | It is set as '1' if connection is established.                       |

#### Sn\_SR (Socket n Status Register) [R] [0x0403, 0x0503, 0x0603, 0x0703] [0x00]

This register has the status vaule of socket n. The main status is shown in the below diagram.

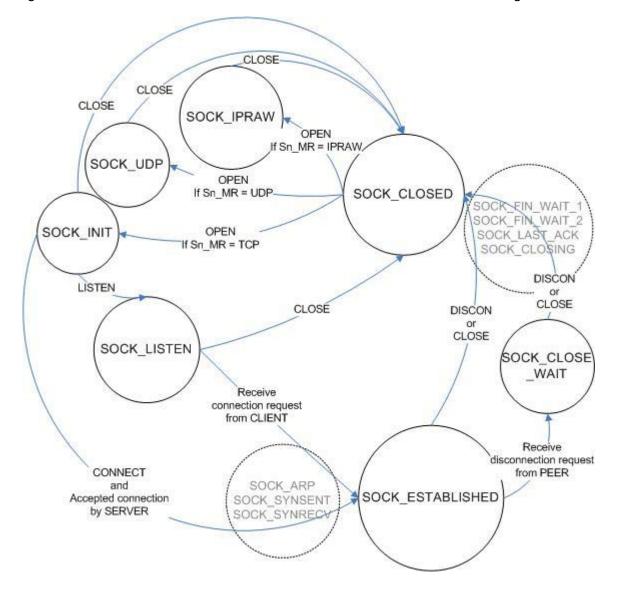



Figure 4-1. State Diagram



| Value | Symbol           | Description                                                              |
|-------|------------------|--------------------------------------------------------------------------|
| 0x00  | SOCK_CLOSED      | It is shown in case that CLOSE commands are given to $Sn_{CR}$ , and     |
|       |                  | Timeout interrupt is asserted or connection is terminated.               |
| 0x13  | SOCK_INIT        | It is shown in case that Sn_MR is set as TCP and OPEN commands are       |
|       |                  | given to Sn_CR.                                                          |
| 0x14  | SOCK_LISTEN      | It is shown in case that LISTEN commands are given to Sn_CR at the       |
|       |                  | SOCK_INIT status                                                         |
| 0x17  | SOCK_ESTABLISHED | It is shown in case that connection is established.                      |
| 0x1C  | SOCK_CLOSE_WAIT  | It is shown in case that connection termination request is received from |
|       |                  | peer host.                                                               |
|       |                  |                                                                          |
| 0x22  | SOCK_UDP         | It is shown in case that OPEN commands are given to $Sn_CR$ when $Sn_MR$ |
|       |                  | is set as UDP.                                                           |
| 0x32  | SOCK_IPRAW       | It is shown in case that OPEN commands are given to Sn_CR when Sn_MR     |
|       |                  | is set as IPRAW.                                                         |
| 0x42  | SOCK_MACRAW      | It is shown in case that OPEN commands are given to SO_CR when SO_MR     |
|       |                  | is set as MACRAW.                                                        |
| 0x5F  | SOCK_PPPOE       | It is shown in case that OPEN commands are given to SO_CR when SO_MR     |
|       |                  | is set as PPPoE.                                                         |

### Below is shown during changing the status.

| Value | Symbol         | Description                                                                                           |  |  |  |
|-------|----------------|-------------------------------------------------------------------------------------------------------|--|--|--|
| 0x15  | SOCK_SYNSENT   | It is shown in case that CONNECT commands are given to Socket $n$                                     |  |  |  |
|       |                | Command Register(Sn_CR) at the SOCK_INIT status. It is automatically                                  |  |  |  |
|       |                | changed to SOCK_ESTABLISH when the connection is established.                                         |  |  |  |
| 0x16  | SOCK_SYNRECV   | It is shown in case that connection request is received from remote                                   |  |  |  |
|       |                | peer(CLIENT). It normally responds to the requests and changes to                                     |  |  |  |
|       |                | SOCK_ESTABLISH.                                                                                       |  |  |  |
| 0x18  | SOCK_FIN_WAIT  | It is shown in the process of connection termination. If the termination                              |  |  |  |
| 0x1A  | SOCK_CLOSING   | It is shown in the process of connection termination. If the terminati                                |  |  |  |
| 0X1B  | SOCK_TIME_WAIT | is normally processed or Timeout interrupt is asserted, it will automatically changed to SOCK_CLOSED. |  |  |  |
| 0X1D  | SOCK_LAST_ACK  | automatically changed to SOCK_CLOSED.                                                                 |  |  |  |
| 0x11  | SOCK_ARP       | It is shown when ARP Request is sent in order to acquire Hardware                                     |  |  |  |
| 0x21  |                | Address of remote peer when it sends connection request in TCP mode                                   |  |  |  |
| 0x31  |                | or sends data in UDP mode. If ARP Reply is received, it changes to the                                |  |  |  |
|       |                | status, SOCK_SYNSENT, SOCK_UDP or SOCK_ICMP, for the next operation.                                  |  |  |  |



## Sn\_PORT (Socket n Source Port Register) [R/W] [0x0404-0x0405, 0x0504-0x0505, 0x0604-0x0605, 0x0704-0x0705] [0x00]

This register sets the Source Port number for each Socket when using TCP or UDP mode, and the set-up needs to be made before executing the OPEN Command.

Ex) In case of Socket 0 Port = 5000(0x1388), configure as below,

| 0x0404 | 0x0405 |
|--------|--------|
| 0x13   | 0x88   |

## Sn\_DHAR (Socket n Destination Hardware Address Register) [R/W] [0x0406-0x040B, 0x0506-0x050B, 0x0606-0x060B, 0x0706-0x070B] [0xFF]

This register sets the Destination Hardware address of each Socket.

Ex) In case of Socket 0 Destination Hardware address = 08.DC.00.01.02.10, configuration is as below,

| 0x0406 | 0x0407 | 0x0408 | 0x0409 | 0x040A | 0x040B |
|--------|--------|--------|--------|--------|--------|
| 0x08   | 0xDC   | 0×00   | 0x01   | 0x02   | 0x0A   |

### Sn\_DIPR (Socket n Destination IP Address Register) [R/W] [0x040C-0x040F, 0x050C-0x050F, 0x060C-0x060F, 0x070C-0x070F] [0x00]

This register sets the Destination IP Address of each Socket to be used in setting the TCP connection. In active mode, IP address needs to be set before executing the Connect command. In passive mode, W3150A+ sets up the connection and then is internally updated with peer IP.

In UDP mode, this register value decided to user's written value after receiving peer's ARP response. Before receving peer's ARP response, this register has reset value.

Ex) In case of Socket 0 Destination IP address = 192.168.0.11, configure as below.

| 0x040C     | 0x040D     | 0x040E   | 0x040F    |
|------------|------------|----------|-----------|
| 192 (0xC0) | 168 (0xA8) | 0 (0x00) | 11 (0x0B) |

### Sn\_DPORT (Socket n Destination Port Register) [R/W] [0x0410-0x0411, 0x0510-0x0511, 0x0610-0x0611, 0x0710-0x0711] [0x00]

This register sets the Destination Port number of each socket to be used in setting the TCP connection. In active mode, port number needs to be set before executing the Connect command. In passive mode,



W3150A+ sets up the connection and then is internally updated with peer port number.

In UDP mode, this register value decided to user's written value after receiving peer's ARP response. Before receving peer's ARP response, this register has reset value.

Ex) In case of Socket 0 Destination Port = 5000(0x1388), configure as below,

| 0x0410 | 0x0411 |
|--------|--------|
| 0x13   | 0x88   |

## Sn\_MSS (Socket n Maximum Segment Size Register) [R/W] [0x0412-0x0413, 0x0512-0x0513, 0x0612-0x0613, 0x0712-0x0713] [0x0000]

This register is used for MSS (Maximum Segment Size) of a Packet.

According to communication mode, this register has different values.

- Ex) 1. In normal TCP mode, MSS = 1460(0x05B4)
  - 2. In PPPoE-TCP mode, MSS = 1452(0x05AC)
  - 3. In normal UDP mode, MSS = 1472(0x05C0)
  - 4. In PPPoE-UDP mode, MSS = 1464(0x05B8)

Normal TCP mode configure as below,

| 0x0412 | 0x0413 |
|--------|--------|
| 0x05   | 0xB4   |

#### Sn\_PROTO (Socket n IP Protocol Register) [R/W] [0x0414, 0x0514, 0x0614, 0x0714] [0x00]

This IP Protocol Register is used to set up the Protocol Field of IP Header at the IP Layer RAW Mode. There are several protocol numbers defined in advance by registering to IANA. For the overall list of upper level protocol identification number that IP is using, refer to online documents of IANA (http://www.iana.org/assignments/protocol-numbers).

Ex) Internet Control Message Protocol (ICMP) = 0x01, Internet Group Management Protocol = 0x02

Sn\_TOS (Socket n IP Type Of Service Register) [R/W] [0x0415,0x0515,0x0615,0x0715] [0x00] This register sets up at the TOS Field of IP Header.

Sn\_TTL (Socket n IP Time To Live Register) [R/W] [0x0416,0x0516,0x0616,0x0716] [0x80]



This register sets up at the TTL Field of IP Header.

### Sn\_TX\_FSR (Socket n TX Free Size Register) [R] [0x0420-0x0421, 0x0520-0x0521, 0x0620-0x0621, 0x0720-0x0721] [0x0800]

This register notifies the information of data size that user can transmit. For data transmission, user should check this value first and control the size of transmitting data. When checking this register, user should upper byte(0x0420,0x0520,0x0620,0x0720) first and lower byte(0x0421,0x0521,0x0621,0x0721) later to get the correct value.

Ex) In case of 2048(0x0800) in S0\_TX\_FSR,

| 0x0420 | 0x0421 |
|--------|--------|
| 0x08   | 0x00   |

Total size can be decided according to the value of TX Memory Size Register. In the process of transmission, it will be reduced by the size of transmitting data, and automatically increased after transmission finished.

### Sn\_TX\_RR (Socket n TX Read Pointer Register) [R] [0x0422-0x0423, 0x0522-0x0523, 0x0622-0x0623, 0x0722-0x0723] [0x0000]

This register shows the address that transmission is finished at the TX Memory. With the SEND command of Socket n Command Register, it transmits data from current  $Sn_TX_RR$  to  $Sn_TX_WR$  and automatically changes after transmission is finished. Therefore, after transmission is finished, Sn\_TX\_RR and Sn\_TX\_WR will have same value. When reading this register, user should read upper byte (0x0422, 0x0522, 0x0622, 0x0722) first and lower byte (0x0423, 0x0523, 0x0623, 0x0723) later to get the correct value.

## Sn\_TX\_WR (Socket n TX Write Pointer Register) [R/W] [0x0424-0x0425, 0x0524-0x0525, 0x0624-0x0625, 0x0724-0x0725] [0x0000]

This register offers the location information to write the transmission data. When reading this register, user should read upper byte (0x0424, 0x0524, 0x0624, 0x0724) first and lower byte (0x0425, 0x0525, 0x0625, 0x0725) later to get the correct value.

Ex) In case of 2048(0x0800) in S0\_TX\_WR,

| 0x0424 | 0x0425 |
|--------|--------|
| 0x08   | 0x00   |



But this value itself is not the physical address to write. So, the physical address should be calculated as follow.

- 1. Socket n TX Base Address (hereafter we'll call  $gSn_TX_BASE$ ) and Socket n TX Mask Address (hereafter we'll call gSn\_TX\_MASK) are calculated on TMSR value. Refer to the psedo code of the 5.1 Initialization if the detail is needed.
- 2. The bitwise-AND operation of two values, Sn\_TX\_WR and gSn\_TX\_MASK give result the offset address(hereafter we'll call get\_offset) in TX memory range of the socket.
- 3. Two values get\_offset and gSn\_TX\_BASE are added together to give result the physical address(hereafter, we'll call get\_start\_address).

Now, write the transmission data to get\_start\_address as large as you want. (\* There's a case that it exceeds the TX memory upper-bound of the socket while writing. In this case, write the transmission data to the upper-bound, and change the physical address to the gSn\_TX\_BASE. Next, write the rest of the transmission data.)

After that, be sure to increase the Sn\_TX\_WR value as much as the data size, that indicates the size of writing data. Finally, give SEND command to Sn\_CR(Socket n Command Register).

Refer to the psedo code of the transmission part on 5.2.1.1. TCP Server mode if the detail is needed.



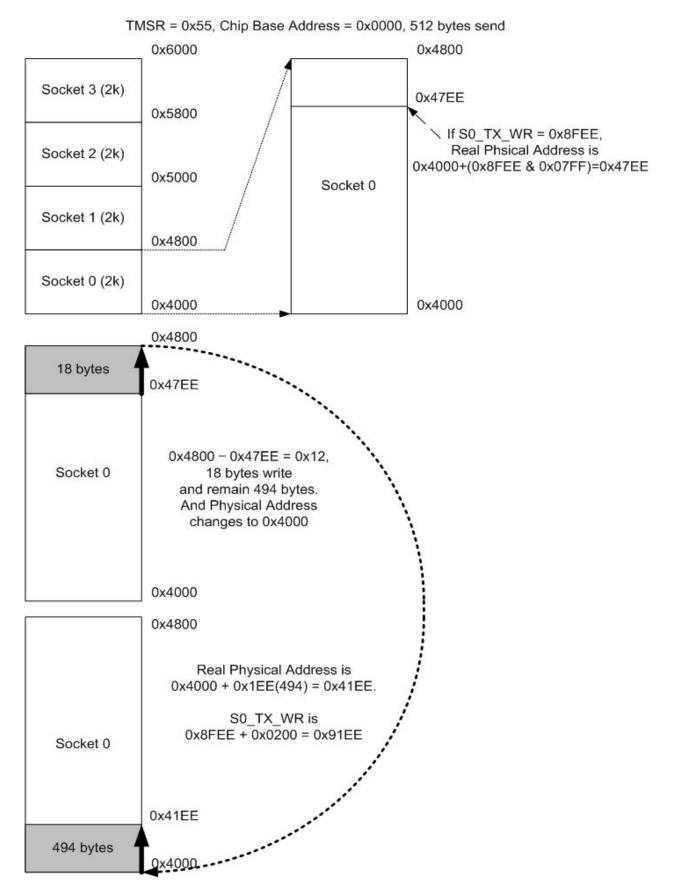



Figure 4-2. Calculate physical address



### Sn\_RX\_RSR (RX Received Size Register) [R] [0x0426-0x0427, 0x0526-0x0527, 0x0626-0x0627, 0x0726-0x0727] [0x0000]

This register notifies the data size received in RX Memory. As this value is internally calculated with the values of Sn\_RX\_RD and Sn\_RX\_WR, it is automatically changed by RECV command of Socket n Command Register(Sn\_CR) and receiving data for remote peer. When reading this register, user should read upper byte(0x0426,0x0526,0x0626,0x0726) first and lower byte(0x0427,0x0527,0x0627,0x0727) later to get the correct value.

Ex) In case of 2048(0x0800) in S0\_RX\_RSR,

| 0x0426 | 0x0427 |
|--------|--------|
| 0x08   | 0x00   |

The total size of this value can be decided according to the value of RX Memory Size Register.

### Sn\_RX\_RD (Socket n RX Read Pointer Register) [R/W] [0x0428-0x0429, 0x0528-0x0529, 0x0628-0x0629, 0x0728-0x0729] [0x0000]

This register offers the location information to read the receiving data. When reading this register, user should read upper byte (0x0428, 0x0528, 0x0628, 0x0728) first and lower byte (0x0429, 0x0529, 0x0629, 0x0729) later to get the correct value.

Ex) In case of 2048(0x0800) in S0\_RX\_RD,

| 0x0428 | 0x0429 |
|--------|--------|
| 0x08   | 0x00   |

But this value itself is not the physical address to read. So, the physical address should be calculated as follow.

- 1. Socket n RX Base Address (hereafter we'll call  $qSn_RX_BASE$ ) and Socket n RX Mask Address (hereafter we'll call gSn\_RX\_MASK) are calculated on RMSR value. Refer to the psedo code of the 5.1 Initialization if the detail is needed.
- 2. The bitwise-AND operation of two values, Sn\_RX\_RD and gSn\_RX\_MASK give result the offset address(hereafter we'll call get\_offset), in RX memory range of the socket.
- 3. Two values get\_offset and gSn\_RX\_BASE are added together to give result the physical address(hereafter, we'll call get\_start\_address).

Now, read the receiving data from get\_start\_address as large as you want. (\* There's a case that it exceeds the RX memory upper-bound of the socket while reading. In this case, read the receiving data to the upper-bound, and change the physical address to the gSn\_RX\_BASE. Next, read the rest of the



receiving data.)

After that, be sure to increase the Sn\_RX\_RD value as large as the data size, that indicates the size of reading data. (\* Must not increase more than the size of received data. So must check Sn\_RX\_RSR before receiving process.) Finally, give RECV command to Sn\_CR(Socket n Command Register).

Refer to the psedo code of the receiving part on 5.2.1.1. TCP Server mode if the detail is needed.



## 5. Functional Description

By setting some register and memory operation, W3150A+ provides internet connectivity. This chapter describes how it can be operated.

## 5.1. Initialization

Setting network information

Below register is for basic network configuration information to be configured according to the network environment.

- 1. Gateway Address Register (GAR)
- 2. Source Hardware Address Register (SHAR)
- 3. Subnet Mask Register (SUBR)
- 4. Source IP Address Register (SIPR)

The Source Hardware Address Regiter (SHAR) is the H/W address to be used in MAC layer, and can be used with the address that manufacturer has been assigned. The MAC address can be assigned from IEEE. For more detail, refer to IEEE homepage.

## Set socket memory information

This stage sets the socket tx/rx memory information. The base address and mask address of each socket are fixed and saved in this stage.

```
In case of, assign 2K rx memory per socket.
   RMSR = 0x55; // assign 2K rx memory per socket.
   gSO_RX_BASE = chip_base_address + RX_memory_base_address(0x6000);
   gS0_RX_MASK = 2K - 1; // 0x07FF, for getting offset address within assigned socket 0 RX memory.
   gS1_RX_BASE = gS0_BASE + (gS0_MASK + 1);
   gS1_RX_MASK = 2K - 1;
   gS2_RX_BASE = gS1_BASE + (gS1_MASK + 1);
   gS2_RX_MASK = 2K - 1;
   gS3_RX_BASE = gS2_BASE + (gS2_MASK + 1);
   gS3_RX_MASK = 2K - 1;
   TMSR = 0x55; // assign 2K tx memory per socket.
   Same method, set gS0_TX_BASE, gS0_TX_MASK, gS1_TX_BASE, gS1_TX_MASK,
                                                                                     gS2_TX_BASE,
   gS2_TX_MASK, gS3_TX_BASE and gS3_TX_MASK.
}
```



```
In case of, assign 4K,2K,1K,1K.
   RMSR = 0x06; // assign 4K,2K,1K,1K rx memory per socket.
   gS0_RX_BASE = chip_base_address + RX_memory_base_address(0x6000);
   gS0_RX_MASK = 4K - 1; // 0x0FFF, for getting offset address within assigned socket 0 RX memory.
   gS1_RX_BASE = gS0_BASE + (gS0_MASK + 1);
  gS1_RX_MASK = 2K - 1; // 0x07FF
   gS2_RX_BASE = gS1_BASE + (gS1_MASK + 1);
   gS2_RX_MASK = 1K - 1 ; // 0x03FF
   gS3_RX_BASE = gS2_BASE + (gS2_MASK + 1);
   gS3_RX_MASK = 1K - 1; // 0x03FF
  TMSR = 0x06; // assign 4K,2K,1K,1K rx memory per socket.
   Same method, set gS0_TX_BASE, gS0_TX_MASK, gS1_TX_BASE, gS1_TX_MASK,
                                                                                      gS2_TX_BASE,
   gS2_TX_MASK, gS3_TX_BASE and gS3_TX_MASK.
```

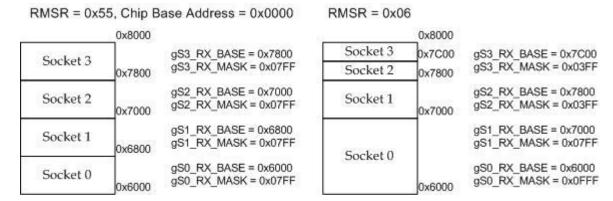



Figure 5-1. In case of RMSR = 0x55

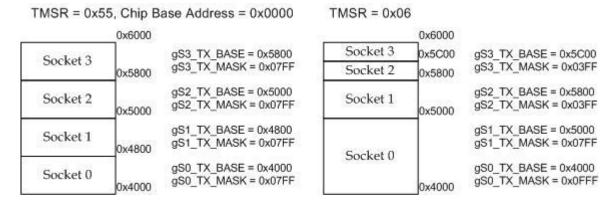
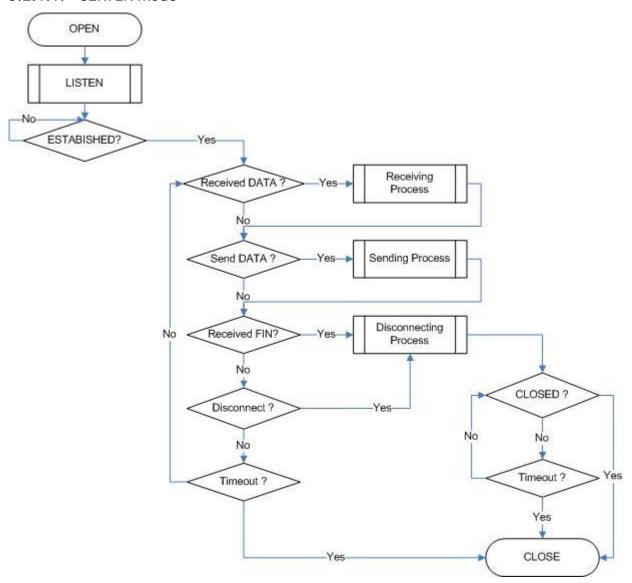



Figure 5-2. In case of TMSR = 0x55




## 5.2. Data communication

Data communication is available through TCP ,UDP ,IP-Raw and MAC-Raw . In order to select it, configure protocol field of Socket n Mode Register(Sn\_MR) of the communcation sockets (W3150A+ supports total 4 sockets).

#### 5.2.1. **TCP**

TCP is connection oriented communication method that will establish connection in advance and deliver the data through the connection by using IP Address and Port number of the systems. There are two methods to establish the connection. One is SERVER mode(passive open) that is waiting for connection request. The other is CLIENT mode(active open) that sends connection request to SERVER.

## 5.2.1.1. SERVER mode



- 39 -© Copyright 2006 WIZnet Co., Ltd. All rights reserved.



## Socket Initialization

It initializes the socket *n* as TCP,

```
START:
   /* sets TCP mode */
   Sn_MR = 0x01;
   /* sets source port number */
   Sn_PORT = source_port;
   /* sets OPEN command */
   Sn_CR = OPEN;
   if (Sn_SR != SOCK_INIT) Sn_CR = CLOSE; goto START;
```

### ■ LISTEN

In order to wait for a connection request from peer host.

```
{
   /* listen socket */
   Sn_CR = LISTEN;
   if (Sn_SR != SOCK_LISTEN) Sn_CR = CLOSE; goto START; // check socket status
```

### ESTABLISHED?

If received connection request from remote peer (the stauts of SOCK\_SYNRECV), W3150A+ sends ACK packet and changes to SOCK\_ESTABLISHED status. This status can be checked as below.

```
First method:
{
   If (Sn_IR(CON bit) == '1') goto ESTABLISHED stage;
   /* In this case, if the interrupt of Socket n is activated, interrupt occurs. Refer to Interrupt
     Register(IR), Interrupt Mask Register (IMR) and Socket n Interrupt Register (Sn_IR). */
Second method:
   If (Sn_SR == SOCK_ESTABLISHED) goto ESTABLISHED stage;
}
```



As connection is established, data transmission and receipt can be performed.

ESTABLISHED: Received Data?

Check as below to know if data is received from remote peer or not.

```
First method:
   if (Sn_RX_RSR != 0x0000) goto Receving Process stage;
}
Second Method:
   If (Sn_IR(RECV bit) == '1') goto Receving Process stage;
   /* In this case, if the interrupt of Socket n is activated, interrupt occurs. Refer to Interrupt
     Register(IR), Interrupt Mask Register (IMR) and Socket n Interrupt Register (Sn_IR). */
```

■ ESTABLISHED : Receving Process

Recevied data can be processed as below.

```
{
   /* first, get the received size */
   get_size = Sn_RX_RSR;
   /* calculate offset address */
   get_offset = Sn_RX_RD & gSn_RX_MASK;
   /* calculate start address(physical address) */
   get_start_address = gSn_RX_BASE + get_offset;
   /* if overflow socket RX memory */
   if ( (get_offset + get_size) > (gSn_RX_MASK + 1) )
   {
      /* copy upper_size bytes of get_start_address to destination_addr */
      upper_size = (gSn_RX_MASK + 1) - get_offset;
      memcpy(get_start_address, destination_addr, upper_size);
      /* update destination_addr*/
      destination_addr += upper_size;
      /* copy left_size bytes of gSn_RX_BASE to destination_addr */
      left_size = get_size - upper_size;
      memcpy(gSn_RX_BASE, destination_addr, left_size);
   }
   else
```



```
/* copy get_size bytes of get_start_address to destination_addr */
      memcpy(get_start_address, destination_addr, get_size);
   }
   /* increase Sn_RX_RD as length of get_size */
   Sn_RX_RD += get_size;
   /* set RECV command */
   Sn_CR = RECV;
}
```

■ ESTABLISHED : Send DATA? / Sending Process

The sending procedure is as below.

```
/* first, get the free TX memory size */
FREESIZE:
   get_free_size = Sn_TX_FSR;
   if (get_free_size < send_size) goto FREESIZE;</pre>
   /* calculate offset address */
   get_offset = Sn_TX_WR & gSn_TX_MASK;
   /* calculate start address(physical address) */
   get_start_address = gSn_TX_BASE + get_offset;
   /* if overflow socket TX memory */
   if ( (get_offset + send_size) > (gSn_TX_MASK + 1) )
   {
      /* copy upper_size bytes of source_addr to get_start_address */
      upper_size = (gSn_TX_MASK + 1) - get_offset;
      memcpy(source_addr, get_start_address, upper_size);
      /* update source_addr*/
      source_addr += upper_size;
      /* copy left_size bytes of source_addr to gSn_TX_BASE */
      left_size = send_size - upper_size;
      memcpy(source_addr, gSn_TX_BASE, left_size);
   }
   else
   {
```



```
/* copy send_size bytes of source_addr to get_start_address */
   memcpy(source_addr, get_start_address, send_size);
}
/* increase Sn_TX_WR as length of send_size */
Sn_TX_WR += send_size;
/* set SEND command */
Sn_CR = SEND;
```

■ ESTABLISHED : Received FIN?

Waiting for a connection termination request from remote peer.

It can be checked as below if it received connection termination request of remote peer.

```
First method:
   If (Sn_IR(DISCON bit) == '1') goto CLOSED stage;
   /* In this case, if the interrupt of Socket n is activated, interrupt occurs. Refer to Interrupt
     Register(IR), Interrupt Mask Register (IMR) and Socket n Interrupt Register (Sn_IR). */
Second method:
   If (Sn_SR == SOCK_CLOSE_WAIT) goto CLOSED stage;
}
```

■ ESTABLISHED : Disconnect ? / Disconnecting Process

Check if user requests to terminate this connection.

To terminate the connection, proceed as below,

```
/* set DISCON command */
Sn_CR = DISCON;
```

ESTABLISHED : CLOSED ?

No connection state at all. It can be checked as below,

```
First method:
{
   If (Sn_IR(DISCON bit) == '1') goto CLOSED stage;
   /* In this case, if the interrupt of Socket n is activated, interrupt occurs. Refer to Interrupt
```



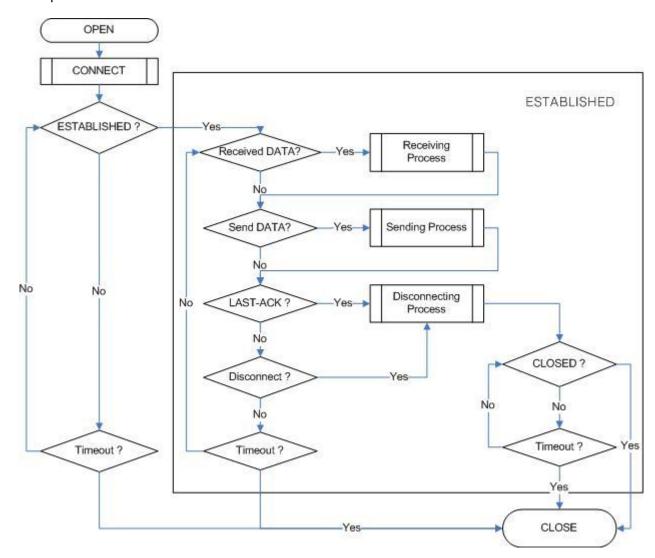
```
Register(IR), Interrupt Mask Register (IMR) and Socket n Interrupt Register (Sn_IR). */
Second method:
   If (Sn_SR == SOCK_CLOSED) goto CLOSED stage;
}
```

### **ESTABLISHED**: Timeout

In case that connection is closed due to the error of remote peer during data receving or connection closing process, data transmission can not be normally processed. At this time Timeout occurs after some time.

```
First method:
   If (Sn_IR(TIMEOUT bit) == '1') goto CLOSED stage;
   /* In this case, if the interrupt of Socket n is activated, interrupt occurs. Refer to Interrupt
     Register(IR), Interrupt Mask Register (IMR) and Socket n Interrupt Register (Sn_IR). */
Second method:
   If (Sn_SR == SOCK_CLOSED) goto CLOSED stage;
}
```

### Socket Close


This process should be processed in case that connection is closed after data exchage, socket should be closed with Timeout occurrence, or forcible disconnection is necessary due to abonormal operation.

```
{
   /* set CLOSE command */
   Sn_CR = CLOSE;
}
```



## 5.2.1.2. CLIENT mode

Whole process is shown as below.



■ Socket Initialization

Refer to 5.2.1.1 SERVER (The operation is same as SERVER).

CONNECT

Send connection request to remote HOST(SERVER) is as below.

```
{
    /* Write the value of server_ip, server_port to the Socket n Destination IP Address Register(Sn_DIPR),
    Socket n Destination Port Register(Sn_DPORT). */
    Sn_DIPR = server_ip;
    Sn_DPORT = server_port;
    /* set CONNECT command */
    Sn_CR = CONNECT;
}
```



## **ESTABLISHED?**

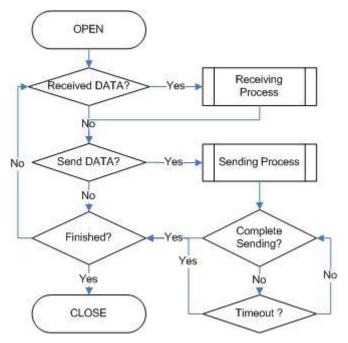
The connection is established. It can be checked as below,

```
First method:
{
   If (Sn_IR(CON bit) == '1') goto ESTABLISHED stage;
   /* In this case, if the interrupt of Socket n is activated, interrupt occurs. Refer to Interrupt
     Register(IR), Interrupt Mask Register (IMR) and Socket n Interrupt Register (Sn_IR). */
Second method:
   If (Sn_SR == SOCK_ESTABLISHED) goto ESTABLISHED stage;
}
```

### ■ Timeout

Socket is closed as Timeout occurs as there is not response from remote peer. It can be checked as below.

```
First method:
   If (Sn_IR(TIMEOUT bit) == '1') goto CLOSED stage;
   /* In this case, if the interrupt of Socket n is activated, interrupt occurs. Refer to Interrupt
     Register(IR), Interrupt Mask Register (IMR) and Socket n Interrupt Register (Sn_IR). */
}
Second method:
   If (Sn_SR == SOCK_CLOSED) goto CLOSED stage;
```


## **ESTABLISHED**

Refer to 5.2.1.1. SERVER (The operation is same as SERVER mode)



#### 5.2.2. **UDP**

UDP provides unreliable and connectionless datagram transmission structure. It processes data without connection establishment. Therefore, UDP message can be lost, overlapped or reversed. As packets can arrive faster, recipient can not process all of them. In this case, user application should guarantee the reliability of data transmission. UDP transmission can be processed as below,



## Socket Initialization

Initialize the socket *n* as UDP.

```
{
START:
   /* sets UDP mode */
   Sn_MR = 0x02;
   /* sets source port number */
    /* * The value of Source Port can be appropriately delivered when remote HOST knows it. */
   Sn_PORT = source_port;
   /* sets OPEN command */
   Sn_CR = OPEN;
   /* Check if the value of Socket n Status Register(Sn_SR) is SOCK_UDP. */
   if (Sn_SR != SOCK_UDP) Sn_CR = CLOSE; goto START;
}
```



### Received DATA?

It can be checked as below if data is received from remote peer.

```
First method:
{
   if (Sn_RX_RSR != 0x0000) goto Receving Process stage;
}
Second Method:
   If (Sn_IR(RECV bit) == '1') goto Receving Process stage;
   /* In this case, if the interrupt of Socket n is activated, interrupt occurs. Refer to Interrupt
     Register(IR), Interrupt Mask Register (IMR) and Socket n Interrupt Register (Sn_IR). */
```

### Receiving Process

Received data can be processed as below. In case of UDP, 8byte header is attached to receiving data. The structure of the header is as below.

```
Destination IP Address (4)
                                Destination Port (2)
                                                       Data size (2) (*data size except for 8byte of header)
```

```
/* first, get the received size */
get_size = Sn_RX_RSR;
/* calculate offset address */
get_offset = Sn_RX_RD & gSn_RX_MASK;
/* calculate start address(physical address) */
get_start_address = gSn_RX_BASE + get_offset;
/* read head information (8 bytes) */
header_size = 8;
/* if overflow socket RX memory */
if ( (get_offset + header_size) > (gSn_RX_MASK + 1) )
{
   /* copy upper_size bytes of get_start_address to header_addr */
   upper_size = (gSn_RX_MASK + 1) - get_offset;
   memcpy(get_start_address, header_addr, upper_size);
   /* update header_addr*/
   header_addr += upper_size;
   /* copy left_size bytes of gSn_RX_BASE to header_addr */
```



```
left_size = header_size - upper_size;
   memcpy(gSn_RX_BASE, header_addr, left_size);
   /* update get_offset */
   get_offset = left_size;
}
else
{
   /* copy header_size bytes of get_start_address to header_addr */
   memcpy(get_start_address, header_addr, header_size);
   /* update get_offset */
   get_offset += header_size;
}
/* update get_start_address */
get_start_address = gSn_RX_BASE + get_offset;
/* save remote peer information & received data size */
peer_ip = header[0 to 3];
peer_port = header[4 to 5];
get_size = header[6 to 7];
/* if overflow socket RX memory */
if ( (get_offset + get_size) > (gSn_RX_MASK + 1) )
{
   /* copy upper_size bytes of get_start_address to destination_addr */
   upper_size = (gSn_RX_MASK + 1) - get_offset;
   memcpy(get_start_address, destination_addr, upper_size);
   /* update destination_addr*/
   destination_addr += upper_size;
   /* copy left_size bytes of gSn_RX_BASE to destination_addr */
   left_size = get_size - upper_size;
   memcpy(gSn_RX_BASE, destination_addr, left_size);
}
else
{
   /* copy get_size bytes of get_start_address to destination_addr */
   memcpy(get_start_address, destination_addr, get_size);
}
```



```
/* increase Sn_RX_RD as length of get_size+header_size */
Sn_RX_RD = Sn_RX_RD + get_size + header_size;
/* set RECV command */
Sn_CR = RECV;
```

Send Data? / Sending Process

Data transmission process is as below.

```
/* first, get the free TX memory size */
FREESIZE:
   get_free_size = Sn_TX_FSR;
   if (get_free_size < send_size) goto FREESIZE;</pre>
   /* Write the value of remote_ip, remote_port to the Socket n Destination IP Address Register(Sn_DIPR),
     Socket n Destination Port Register(Sn_DPORT). */
   Sn_DIPR = remote_ip;
   Sn_DPORT = remote_port;
   /* calculate offset address */
   get_offset = Sn_TX_WR & gSn_TX_MASK;
   /* calculate start address(physical address) */
   get_start_address = gSn_TX_BASE + get_offset;
   /* if overflow socket TX memory */
   if ( (get_offset + send_size) > (gSn_TX_MASK + 1) )
   {
      /* copy upper_size bytes of source_addr to get_start_address */
      upper_size = (gSn_TX_MASK + 1) - get_offset;
      memcpy(source_addr, get_start_address, upper_size);
      /* update source_addr*/
      source_addr += upper_size;
      /* copy left_size bytes of source_addr to gSn_TX_BASE */
      left_size = send_size - upper_size;
      memcpy(source_addr, gSn_TX_BASE, left_size);
   }
   else
```



```
/* copy send_size bytes of source_addr to get_start_address */
      memcpy(source_addr, get_start_address, send_size);
   }
   /* increase Sn_TX_WR as length of send_size */
   Sn_TX_WR += send_size;
   /* set SEND command */
   Sn_CR = SEND;
}
```

## Complete Sending?

The sending completion should be checked after SEND command.

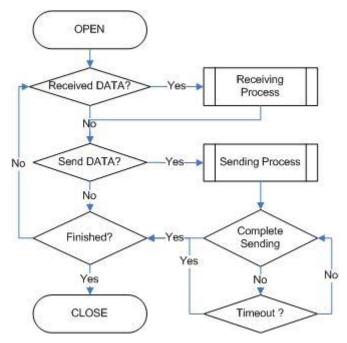
```
If (Sn_CR == 0x00) transmission is completed.
```

### Timeout

Timeout occurs if remote peer does not exist or data transmission is not normally processed. It can be checked as below.

```
{
    If (Sn_IR(TIMEOUT bit) == '1') goto next stage;
    /* In this case, if the interrupt of Socket n is activated, interrupt occurs. Refer to Interrupt
        Register(IR), Interrupt Mask Register (IMR) and Socket n Interrupt Register (Sn_IR). */
```

### Finished? / Socket Close


If all the actions are finished, close the socket.

```
{
   /* set CLOSE command */
   Sn_CR = CLOSE;
```



#### 5.2.3. IP raw

IP Raw mode can be utilized if transport layer protocol of some ICMP or IGMP that W3150A+ does not support, needs to be processed.



## Socket Initialization

It initializes the socket as IP raw.

```
{
START:
    /* sets IP raw mode */
   Sn_MR = 0x03;
    /* sets Protocol value */
    /* The value of Protocol is the value used in Protocol Field of IP Header.
    For the list of protocol identification number of upper classification, refer to on line documents of
    IANA (<a href="http://www.iana.org/assignments/protocol-numbers">http://www.iana.org/assignments/protocol-numbers</a>). */
   Sn_PROTO = protocol_value;
   /* sets OPEN command */
   Sn_CR = OPEN;
    /* Check if the value of Socket n Status Register(Sn_SR) is SOCK_IPRAW. */
   if (Sn_SR != SOCK_IPRAW) Sn_CR = CLOSE; goto START;
}
```



## Received DATA?

It is same as UDP. Refer to 5.2.2 UDP.

## **Receiving Process**

This is same as UDP. Refer to 5.2.2 UDP except the header information and header size.

In case of IP raw, 6byte header is attached to the data received. The header structure is as below.

Destination IP Address (4) Data Size (2) (\*Data size except for 6 bytes of header)

## Send DATA? / Sending Process

This is same as UDP. Refer to 5.2.2 UDP except that remote\_port information is not needed.

- **Complete Sending**
- Timeout
- Finished? / Socket Closed

Next actions are same as UDP. Refer to 5.2.2 UDP.



#### 5.2.4. MAC raw

MAC Raw mode(only supported in socket 0) can be utilized.

Socket Initialization

It initializes the socket as MAC raw.

```
{
START:
   /* sets MAC raw mode */
   Sn_MR = 0x04;
   /* sets OPEN command */
   Sn_CR = OPEN;
   /* Check if the value of Socket n Status Register(Sn_SR) is SOCK_MACRAW. */
   if (Sn_SR != SOCK_MACRAW) Sn_CR = CLOSE; goto START;
```

Received DATA?

This is same as UDP. Refer to 5.2.2 UDP.

**Receiving Process** 

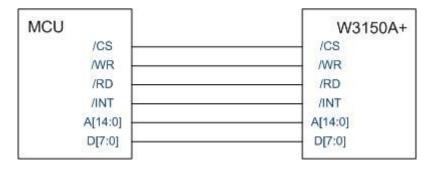
MAC raw received Ethernet packet having packet size information.

In case of MAC raw, 2byte header is attached to the data received. The header structure is as below.

```
Data Size (2) (*Data size include 2 bytes of header)
```

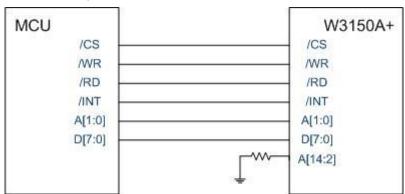
■ Send DATA? / Sending Process

This is same as UDP. Refer to 5.2.2 UDP except that remote\_port information is not needed.




# 6. Application Information

For the communication with MCU, W3150A+ provides Direct and Indirect Bus I/F, and SPI I/F modes. For the communication with Ethernet PHY, MII is used.


## 6.1. Direct Bus I/F Mode.

Direct Bus I/F mode uses 15bit address line and 8bit data line, /CS, /RD, /WR, /INT.



## 6.2. Indirect Bus I/F Mode.

Indirect Bus I/F mode uses 2bit address line and 8bit data line, /CS, /RD, /WR, /INT. [14:2], other address lines should process Pull-down.





Indirect bus I/F mode related register is as below.

| Value | Symbol  | Description                                                           |          |  |
|-------|---------|-----------------------------------------------------------------------|----------|--|
| 0x00  | MR      | It performs the selection of Indirect bus I/F mode, address automatic |          |  |
| 0.000 | MIX     | increase. Refer to 4. Register Description for more detail.           |          |  |
|       |         | Indirect bus I/F mode address Register                                |          |  |
|       |         | W3150A+ used in Big-endian ordering only.                             |          |  |
|       |         | . In case of Big-endian ordering                                      |          |  |
| 0x01  | IDM_AR0 | 0x01 0x02                                                             |          |  |
| 0x02  | IDM_AR1 | IDM_ARO: MSB IDM_A                                                    | R1 : LSB |  |
|       |         | Ex) In case of reading S0_CR(0x0401),                                 |          |  |
|       |         | 0x01(IDM_AR0)                                                         | 1)       |  |
|       |         | 0x04 0x01                                                             |          |  |
| 0x03  | IDM_DR  | Indirect bus I/F mode data Register                                   |          |  |

In order to read or write the internal register or internal TX/RX Memory,

- 1. Write the address to read or write on IDM\_ARO,1.
- 2. Read or Write IDM\_DR.

In order to read or write the data on the sequential address, set AI bit of MR(Mode Register). With this, user performs above 1 only one time. Whenever read or write IDM\_DR, IDM\_AR value is automatically increased by 1. So, the value can be processed on the sequential address just by continuous reading or writing of IDM\_DR.

## 6.3. Serial Peripheral Interface (SPI) Mode

Serial Peripheral Interface Mode uses only four pins for data communication.

Four pins are SCLK, /SS, MOSI, MISO.

W3150A+ uses one more pin for Enabling SPI Operation. This pin is SPI\_EN pin.

By asserting SPI\_EN pin high, A[14-11] pins turn to SCLK, /SS, MOSI, MISO pins.

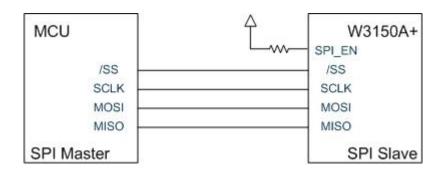



Figure 6-1. Connection between MCU and W3150A+



## • 6.3.1 Device Operation

The W3150A+ is controlled by a set of instruntion that is sent from a host controller, commonly referred to as the SPI Master. The SPI Master communicates with W3150A+ via the SPI bus which is composed of four signal lines: Slave Select(/SS), Serial Clock(SCLK), MOSI(Master Out Slave In), MISO(Master In Slave Out).

The SPI protocol defines four modes for its operation (Mode 0, 1, 2, 3). Each mode differs according to the SCLK polarity and phase - how the polarity and phase control the flow of data on the SPI bus.

The W3150A+ is SPI Slave device and supports the most common mode - SPI Mode 0.

With SPI Mode 0, data is always latched in on the rising edge of SCLK and always output on the falling edge of SCLK.

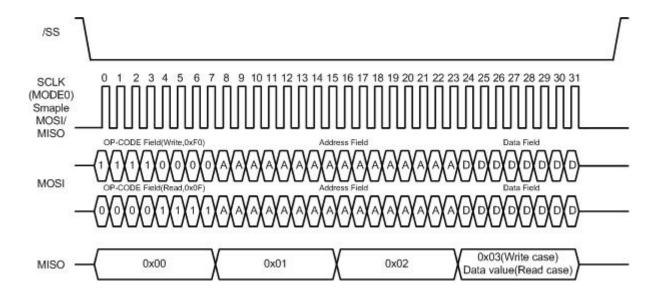
### • 6.3.2 Commands

According to SPI protocol, there are only two data lines between SPI devices. So, it is necessary to define OP-Code. W3150A+ uses two kinds of OP-Code, Read OP-Code and Write OP-Code. Except for those two OP-Codes, W3150A+ will be ignored and no operation will be started.

In SPI Mode, W3150A+ operates in "unit of 32-bit stream".

The unit of 32-bit stream is composed of 1 byte OP-Code Field, 2 bytes Address Field and 1 byte data Field. OP-Code, Address and data bytes are transferred with the most significant bit(MSB) first and least significant bit(LSB) last. In other words, The first bit of SPI data is MSB of OP-Code Field and the last bit of SPI data is LSB of Data-Field. W3150A+ SPI data format is as below.

| Command         | OP-Code Field |           | -Code Field Address Field |        |
|-----------------|---------------|-----------|---------------------------|--------|
| Write operation | 0xF0          | 1111 0000 | 2 bytes                   | 1 byte |
| Read operation  | 0x0F          | 0000 1111 | 2 bytes                   | 1 byte |


## • 6.3.3 Process of using general SPI Master device (According to SPI protocol)

- 1. Configure Input/Output direction on SPI Master device pins.
  - \* /SS (Slave Select): Output pin
  - \* SCLK (Serial Clock): Output pin
  - \* MOSI (Master Out Slave In): Output pin
  - \* MISO (Master In Slave Out): Input pin)
- 2. Configure /SS as 'High'
- 3. Configure the registers on SPI Master device.
  - \* SPI Enable bit on SPCR register (SPI Control Register)
  - \* Master/Slave select bit on SPCR register
  - \* SPI Mode bit on SPCR register
  - \* SPI data rate bit on SPCR register ans SPSR register (SPI State Register)
- 4. Write desired value for transmission on SPDR register (SPI Data Register).



- 5. Configure /SS as 'Low' (data transfer start)
- 6. Wait for reception complete
- 7. If all data transmission ends, configure /SS as 'High'

SPI write/read operation timing is as below.



## MII (Media Independent Interface)

The MII handles the data transfer between the W3150A+ and the Physical Layer Device.

The MII is composed of TX\_CLK, TXE, and TXD[0:3] signals for sending data and RX\_CLK, CRS, RXDV, RXD[0:3], and COL signals for receiving data.

When sending data from the W3150A+, TXE and TXD[0:3] are output in synchronization with the falling edges of TX\_CLK input from the Physical Layer Device because Physical Layer Devices generally recognize the rising edges of TX\_CLK.

When receiving data, in general, the Physical Layer Devices output CRS, RXDV, RXD[0:3], and COL signals in synchronization with the falling edges of RX\_CLK, so the W3150A+ recognizes the signals at the rising edges of RX\_CLK.



# 7. Electrical Specification

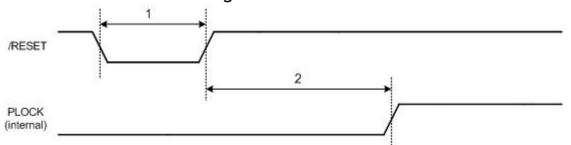
## 7.1. Absolute Maximum Ratings

| Symbol           | Parameter             | Rating                                                     | Unit |
|------------------|-----------------------|------------------------------------------------------------|------|
| $V_{DD}$         | DC Supply voltage     | -0.5 to 3.6                                                | ٧    |
| V <sub>IN</sub>  | DC input voltage      | -0.5 to 5.5 (5V tolerant)                                  | ٧    |
| I <sub>IN</sub>  | DC input current      | ±5                                                         | mA   |
| T <sub>OP</sub>  | Operating temperature | -40 to 80 (* refer to qualification report in our website) | °C   |
| T <sub>STG</sub> | Storage temperature   | -55 to 125                                                 | °C   |

<sup>\*</sup>COMMENT: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage.

## 7.2. DC Characteristics

| Symbol          | Parameter                 | Test Condition                              | Min   | Тур | Max | Unit |
|-----------------|---------------------------|---------------------------------------------|-------|-----|-----|------|
| $V_{DD}$        | DC Supply voltage         | Junction temperature is from -55°C to 125°C | 3.0   |     | 3.6 | ٧    |
| V <sub>IH</sub> | High level input voltage  |                                             | 2.0   |     | 5.5 | ٧    |
| V <sub>IL</sub> | Low level input voltage   |                                             | - 0.5 |     | 0.8 | ٧    |
| V <sub>OH</sub> | High level output voltage | IOH = 2, 4, 8, 12, 16, 24 mA                | 2.0   |     | 3.6 | ٧    |
| V <sub>OL</sub> | Low level output voltage  | IOL = -2, -4, -8, -12, -16, -24 mA          | 0.0   |     | 0.4 | ٧    |
| I <sub>1</sub>  | Input Current             | $V_{IN} = V_{DD}$                           |       |     | ±5  | μА   |


## 7.3. POWER DISSIPATION

| Symbol               | Parameter                     | Test Condition | Min | Тур | Max | Unit |
|----------------------|-------------------------------|----------------|-----|-----|-----|------|
| P <sub>10Base</sub>  | Power consumption in 10BaseT  |                |     | 16  |     | mA   |
| P <sub>100Base</sub> | Power consumption in 100BaseT |                |     | 24  |     | mA   |



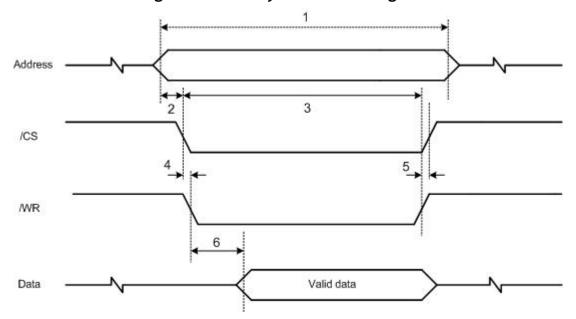
## 7.4. AC Characteristics


## 7.4.1. Reset Timing



| Description                 | Min  | Max   |
|-----------------------------|------|-------|
| 1. Reset Cycle Time         | 2 us | -     |
| 2. /RESET to internal PLOCK | -    | 10 ms |

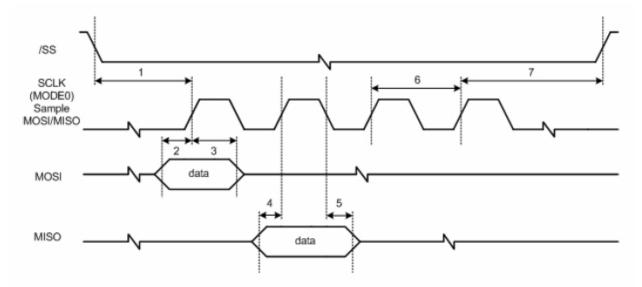



## 7.4.2. Register/Memory READ Timing



| Description                            | Min   | Max   |
|----------------------------------------|-------|-------|
| 1. Read Cycle Time                     | 80 ns | -     |
| 2. Valid Address to /CS low time       | 8 ns  | -     |
| 3. /CS low to /RD low time             | -     | 1 ns  |
| 4. /RD high to /CS high time           | -     | 1 ns  |
| 5. /RD low to Valid Data Output time   | -     | 80 ns |
| 6. /RD high to Data High-Z Output time | -     | 1 ns  |



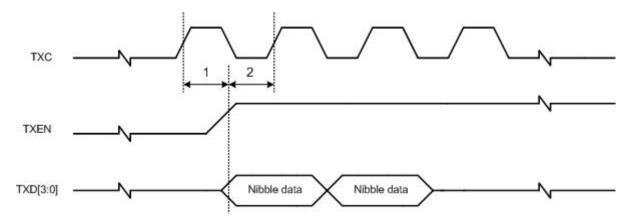

## 7.4.3. Register/Memory WRITE Timing



| Description                      | Min   | Max   |
|----------------------------------|-------|-------|
| 1. Write Cycle Time              | 70 ns | -     |
| 2. Valid Address to /CS low time | 7 ns  | -     |
| 3. /CS low to /WR high time      | 70 ns |       |
| 4. /CS low to /WR low time       | -     | 1 ns  |
| 5. /WR high to /CS high time     | -     | 1 ns  |
| 6. /WR low to Valid Data time    | -     | 14 ns |



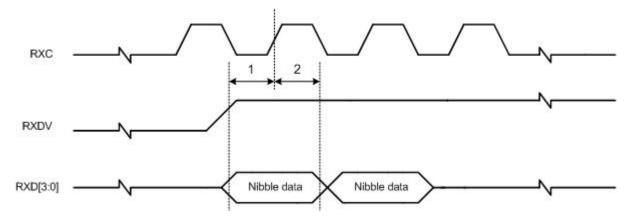
# 7.4.4. SPI Timing




|   | Description           | Mode  | Min   | Max   |
|---|-----------------------|-------|-------|-------|
| 1 | /SS low to SCLK       | Slave | 21 ns | -     |
| 2 | Input setup time      | Slave | 7 ns  | -     |
| 3 | Input hold time       | Slave | 28 ns | -     |
| 4 | Output setup time     | Slave | 7 ns  | 14 ns |
| 5 | Output hold time      | Slave | 21 ns | -     |
| 6 | SCLK time             | Slave | 70 ns | -     |
| 7 | SCLK high to /SS high | Slave | 21ns  | -     |



## 7.4.5. MII(Media Independent Interface) Timing


## ■ MII Tx TIMING

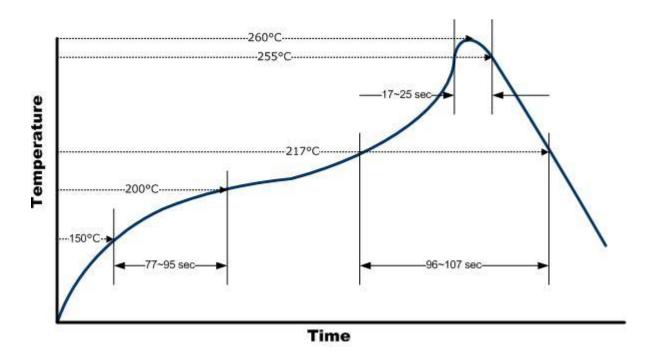


| Description                        | Notes    | Min    | Тур | Max    |
|------------------------------------|----------|--------|-----|--------|
| 1. TX_CLK to TXD, TX_EN            | 10 Mbps  | 202 ns | -   | 205 ns |
| 2. TXD, TX_EN setup time to TX_CLK | 10 Mbps  | 195 ns | -   | 198 ns |
| 1. TX_CLK to TXD, TX_EN            | 100 Mbps | 22 ns  | -   | 25 ns  |
| 2. TXD, TX_EN setup time to TX_CLK | 100 Mbps | 15 ns  | -   | 18 ns  |



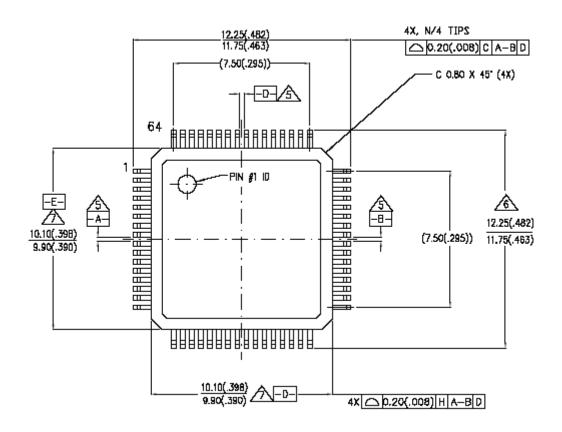
## MII Rx TIMING

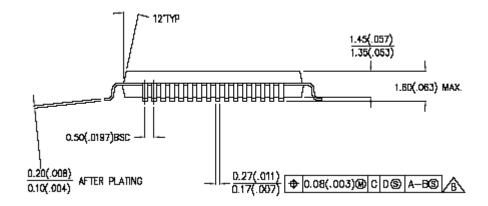



| Description                               | Notes    | Min  | Тур | Max |
|-------------------------------------------|----------|------|-----|-----|
| 1. Valid Data to RX_CLK time (setup time) | 10 Mbps  | 5 ns | -   | -   |
| 2. RX_CLK to Valid Data time (hold time)  | 10 Mbps  | 5 ns | -   | -   |
| 1. Valid Data to RX_CLK time (setup time) | 100 Mbps | 5 ns | -   | -   |
| 2. RX_CLK to Valid Data time (hold time)  | 100 Mbps | 5 ns | -   | -   |

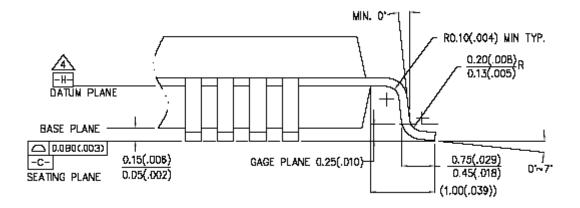


# 8. IR Reflow Temperature Profile (Lead-Free)


- Moisture Sensitivity Level at 260oC IR Condition: 2.
- Dry Bag Required: Yes
- 1 year out of bag time at max 30°C /60%RH.


| Max. Temperature 260°C                     |                |
|--------------------------------------------|----------------|
| Ramp up rate                               | < 3°C /second  |
| Pre-heat temperature at 175°C(±25°C)       | 77-95 seconds  |
| Temperature above 217°C                    | 96-107 seconds |
| Time within 5°C of actual peak temperature | 17-25 seconds  |
| Peak temperature range                     | 258-260°C      |
| Ramp-down rate                             | < 6°C /second  |






# 9. Package Description









## NOTES:

- 1. PACKAGE DIMENSIONS CONFORM TO JEDEC REGISTRATION MO - 138 - BCD.
- 2. CONTROLLING DIMENSIONS : MILLIMETERS. INCH ARE SHOWN IN PARENTHESES.
- 3. DIMENSIONS AND TOLERANCING PER ANSI Y 14.5-1982.
- A DATUM PLANE "H" IS LOCATED AT MOLD PARTING LINE AND IS COINCIDENT WITH THE LEAD EXITS THE PLASTIC BODY AT BOTTOM OF THE PARTING LINE.
- △ DATUMS "A-B" AND "D" TO BE DETERMINED AT DATUM PLANE "H".
- 6 TO BE DETERMINED AT THE SEATING PLANE "C"
- THESE DIMENSIONS TO BE DETERMINED AT DATUM PLANE "H".

  DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25MM(.010") PER SIDE.
- LEAD WIDTH DOES NOT INCLUDE DAMBAR PROTRUSION.
  ALLOWABLE DAMBAR PROTRUSION SHALL BE
  0.08 MM/0.003" TOTAL IN EXCESS OF THIS
  DIMENSIONS AT MAXIMUM MATERIAL CONDITION.