Reference	Part number	
STM32F427xx	STM32F427VG, STM32F427ZG, STM32F427IG, STM32F427AG, STM32F427VI, STM32F427ZI, STM32F427II, STM32F427AI	
STM32F429xx	STM32F429VG, STM32F429ZG, STM32F429IG, STM32F429BG, STM32F429NG, STM32F429AG, STM32F429VI, STM32F429ZI, STM32F429II,, STM32F429BI, STM32F429NI,STM32F429AI, STM32F429VE, STM32F429ZE, STM32F429IE, STM32F429BE, STM32F429NE	

Table 1. Device summary

2/239

Contents

1	Introd	duction	13
2	Desci	ription	14
	2.1	Full compatibility throughout the family	18
3	Funct	tional overview	21
	3.1	$Arm^{\texttt{R}}$ Cortex ®-M4 with FPU and embedded Flash and SRAM $\ldots\ldots\ldots$	21
	3.2	Adaptive real-time memory accelerator (ART Accelerator™)	21
	3.3	Memory protection unit	21
	3.4	Embedded Flash memory	22
	3.5	CRC (cyclic redundancy check) calculation unit	22
	3.6	Embedded SRAM	22
	3.7	Multi-AHB bus matrix	22
	3.8	DMA controller (DMA)	23
	3.9	Flexible memory controller (FMC)	24
	3.10	LCD-TFT controller (available only on STM32F429xx)	24
	3.11	Chrom-ART Accelerator™ (DMA2D)	25
	3.12	Nested vectored interrupt controller (NVIC)	25
	3.13	External interrupt/event controller (EXTI)	25
	3.14	Clocks and startup	25
	3.15	Boot modes	26
	3.16	Power supply schemes	26
	3.17	Power supply supervisor	26
		3.17.1 Internal reset ON	. 26
		3.17.2 Internal reset OFF	. 27
	3.18	Voltage regulator	
		3.18.1 Regulator ON	
		3.18.2 Regulator OFF	
	2 40	3.18.3 Regulator ON/OFF and internal reset ON/OFF availability	
	3.19	Real-time clock (RTC), backup SRAM and backup registers	
	3.20	Low-power modes	
	3.21	V _{BAT} operation	34

3.22	Timers and watchdogs	. 34
	3.22.1 Advanced-control timers (TIM1, TIM8)	36
	3.22.2 General-purpose timers (TIMx)	36
	3.22.3 Basic timers TIM6 and TIM7	36
	3.22.4 Independent watchdog	37
	3.22.5 Window watchdog	
	3.22.6 SysTick timer	
3.23	Inter-integrated circuit interface (I ² C)	. 37
3.24	Universal synchronous/asynchronous receiver transmitters (USART) .	. 37
3.25	Serial peripheral interface (SPI)	. 38
3.26	Inter-integrated sound (I ² S)	. 39
3.27	Serial Audio interface (SAI1)	. 39
3.28	Audio PLL (PLLI2S)	. 39
3.29	Audio and LCD PLL(PLLSAI)	. 39
3.30	Secure digital input/output interface (SDIO)	. 40
3.31	Ethernet MAC interface with dedicated DMA and IEEE 1588 support	. 40
3.32	Controller area network (bxCAN)	. 40
3.33	Universal serial bus on-the-go full-speed (OTG_FS)	. 41
3.34	Universal serial bus on-the-go high-speed (OTG_HS)	. 41
8.35	Digital camera interface (DCMI)	. 42
3.36	Random number generator (RNG)	. 42
3.37	General-purpose input/outputs (GPIOs)	. 42
3.38	Analog-to-digital converters (ADCs)	. 42
3.39	Temperature sensor	. 43
3.40	Digital-to-analog converter (DAC)	. 43
3.41	Serial wire JTAG debug port (SWJ-DP)	. 43
3.42	Embedded Trace Macrocell™	. 44
-	uts and pin description	
Mem	ory mapping	. 86
Elect	rical characteristics	. 91
Elect 6.1	Parameter conditions 6.1.1 Minimum and maximum values Minimum and maximum values	. 91

DocID024030 F	Rev 10
---------------	--------

4

5

6

4/239

	6.1.2	Typical values
	6.1.3	Typical curves
	6.1.4	Loading capacitor
	6.1.5	Pin input voltage
	6.1.6	Power supply scheme
	6.1.7	Current consumption measurement
6.2	Absolute	e maximum ratings
6.3	Operatir	ng conditions
	6.3.1	General operating conditions
	6.3.2	VCAP1/VCAP2 external capacitor
	6.3.3	Operating conditions at power-up / power-down (regulator ON) 98
	6.3.4	Operating conditions at power-up / power-down (regulator OFF) 98
	6.3.5	Reset and power control block characteristics
	6.3.6	Over-drive switching characteristics
	6.3.7	Supply current characteristics
	6.3.8	Wakeup time from low-power modes
	6.3.9	External clock source characteristics 118
	6.3.10	Internal clock source characteristics
	6.3.11	PLL characteristics
	6.3.12	PLL spread spectrum clock generation (SSCG) characteristics 127
	6.3.13	Memory characteristics
	6.3.14	EMC characteristics
	6.3.15	Absolute maximum ratings (electrical sensitivity)
	6.3.16	I/O current injection characteristics
	6.3.17	I/O port characteristics
	6.3.18	NRST pin characteristics
	6.3.19	TIM timer characteristics
	6.3.20	Communications interfaces
	6.3.21	12-bit ADC characteristics
	6.3.22	Temperature sensor characteristics
	6.3.23	V_{BAT} monitoring characteristics $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 164$
	6.3.24	Reference voltage
	6.3.25	DAC electrical characteristics
	6.3.26	FMC characteristics
	6.3.27	Camera interface (DCMI) timing specifications
	6.3.28	LCD-TFT controller (LTDC) characteristics
	6.3.29	SD/SDIO MMC card host interface (SDIO) characteristics

		6.3.30 RTC characteristics	
7	Pack	cage information	5
	7.1	LQFP100 package information	;
	7.2	WLCSP143 package information 202)
	7.3	LQFP144 package information 205	;
	7.4	LQFP176 package information 209)
	7.5	LQFP208 package information	;
	7.6	UFBGA169 package information 217	,
	7.7	UFBGA176+25 package information)
	7.8	TFBGA216 package information 223	;
	7.9	Thermal characteristics	;
8	Part	numbering	;
Appene	dix A F	Recommendations when using internal reset OFF	,
	A.1	Operating conditions	,
Append	dix B 🖌	Application block diagrams 228	5
	B.1	USB OTG full speed (FS) interface solutions 228	5
	B.2	USB OTG high speed (HS) interface solutions)
	B.3	Ethernet interface solutions	
9	Revi	sion history	

List of tables

Table 1.	Device summary	2
Table 2.	STM32F427xx and STM32F429xx features and peripheral counts	16
Table 3.	Voltage regulator configuration mode versus device operating mode	29
Table 4.	Regulator ON/OFF and internal reset ON/OFF availability.	
Table 5.	Voltage regulator modes in stop mode	33
Table 6.	Timer feature comparison	
Table 7.	Comparison of I2C analog and digital filters	
Table 8.	USART feature comparison	
Table 9.	Legend/abbreviations used in the pinout table	
Table 10.	STM32F427xx and STM32F429xx pin and ball definitions	
Table 11.	FMC pin definition	
Table 12.	STM32F427xx and STM32F429xx alternate function mapping	75
Table 13.	STM32F427xx and STM32F429xx register boundary addresses	
Table 14.	Voltage characteristics	
Table 15.	Current characteristics	94
Table 16.	Thermal characteristics.	94
Table 17.	General operating conditions	95
Table 18.	Limitations depending on the operating power supply range	97
Table 19.	VCAP1/VCAP2 operating conditions	
Table 20.	Operating conditions at power-up / power-down (regulator ON)	
Table 21.	Operating conditions at power-up / power-down (regulator OFF)	98
Table 22.	reset and power control block characteristics	
Table 23.	Over-drive switching characteristics	. 100
Table 24.	Typical and maximum current consumption in Run mode, code with data processing	
	running from Flash memory (ART accelerator enabled except prefetch) or RAM	. 102
Table 25.	Typical and maximum current consumption in Run mode, code with data processing	
	running from Flash memory (ART accelerator disabled)	. 103
Table 26.	Typical and maximum current consumption in Sleep mode	. 104
Table 27.	Typical and maximum current consumptions in Stop mode	. 105
Table 28.	Typical and maximum current consumptions in Standby mode	. 106
Table 29.	Typical and maximum current consumptions in V _{BAT} mode	. 106
Table 30.	Typical current consumption in Run mode, code with data processing running from	
	Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch),	
	VDD=1.7 V	. 108
Table 31.	Typical current consumption in Run mode, code with data processing running	
	from Flash memory, regulator OFF (ART accelerator enabled except prefetch)	. 109
Table 32.	Typical current consumption in Sleep mode, regulator ON, VDD=1.7 V	. 110
Table 33.	Tyical current consumption in Sleep mode, regulator OFF	. 111
Table 34.	Switching output I/O current consumption	. 113
Table 35.	Peripheral current consumption	. 114
Table 36.	Low-power mode wakeup timings	. 117
Table 37.	High-speed external user clock characteristics.	. 118
Table 38.	Low-speed external user clock characteristics	
Table 39.	HSE 4-26 MHz oscillator characteristics	
Table 40.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	. 121
Table 41.	HSI oscillator characteristics	
Table 42.	LSI oscillator characteristics	. 123
Table 43.	Main PLL characteristics.	. 124

Table 44. Table 45. Table 46. Table 47. Table 48. Table 49.	PLLI2S (audio PLL) characteristics 12 PLLISAI (audio and LCD-TFT PLL) characteristics 12 SSCG parameters constraint 12 Flash memory characteristics 12 Flash memory programming 12 Flash memory programming with VPP 13 Flash memory programming with VPP 13	26 27 29 29
Table 50. Table 51.	EMS characteristics	51 81
Table 52.	EMI characteristics	
Table 53. Table 54.	ESD absolute maximum ratings	
Table 54.	Electrical sensitivities 13 I/O current injection susceptibility 13	
Table 55.	I/O static characteristics	
Table 57.	Output voltage characteristics	
Table 58.	I/O AC characteristics	
Table 59.	NRST pin characteristics	
Table 60.	TIMx characteristics	
Table 61.	I2C analog filter characteristics	
Table 62.	SPI dynamic characteristics	
Table 63.	I ² S dynamic characteristics	
Table 64.	SAI characteristics	
Table 65.	USB OTG full speed startup time	0
Table 66.	USB OTG full speed DC electrical characteristics	0
Table 67.	USB OTG full speed electrical characteristics	51
Table 68.	USB HS DC electrical characteristics	51
Table 69.	USB HS clock timing parameters	52
Table 70.	Dynamic characteristics: USB ULPI	53
Table 71.	Dynamics characteristics: Ethernet MAC signals for SMI	4
Table 72.	Dynamics characteristics: Ethernet MAC signals for RMII	
Table 73.	Dynamics characteristics: Ethernet MAC signals for MII	
Table 74.	ADC characteristics	
Table 75.	ADC static accuracy at f _{ADC} = 18 MHz15	
Table 76.	ADC static accuracy at f _{ADC} = 30 MHz	
Table 77.	ADC static accuracy at f _{ADC} = 36 MHz	
Table 78.	ADC dynamic accuracy at f_{ADC} = 18 MHz - limited test conditions	
Table 79.	ADC dynamic accuracy at f_{ADC} = 36 MHz - limited test conditions	
Table 80.	Temperature sensor characteristics 16	
Table 81.	Temperature sensor calibration values	
Table 82. Table 83.	V _{BAT} monitoring characteristics	
Table 83.	internal reference voltage	
Table 85.	DAC characteristics	
Table 86.	Asynchronous non-multiplexed SRAM/PSRAM/NOR -	5
	read timings	9
Table 87.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings	
Table 88.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings	1
Table 89.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings	
Table 90.	Asynchronous multiplexed PSRAM/NOR read timings	
Table 91.	Asynchronous multiplexed PSRAM/NOR read-NWAIT timings	
Table 92.	Asynchronous multiplexed PSRAM/NOR write timings	4

Table 93. Table 94.	Asynchronous multiplexed PSRAM/NOR write-NWAIT timings
Table 94. Table 95.	
	Synchronous multiplexed PSRAM write timings
Table 96.	Synchronous non-multiplexed NOR/PSRAM read timings
Table 97.	Synchronous non-multiplexed PSRAM write timings
Table 98.	Switching characteristics for PC Card/CF read and write cycles
Table 99.	in attribute/common space
Table 99.	in I/O space
Table 100.	Switching characteristics for NAND Flash read cycles
Table 101.	Switching characteristics for NAND Flash write cycles
Table 102.	SDRAM read timings
Table 103.	LPSDR SDRAM read timings
Table 104.	SDRAM write timings
Table 105.	LPSDR SDRAM write timings
Table 106.	DCMI characteristics
Table 107.	LTDC characteristics
Table 108.	Dynamic characteristics: SD / MMC characteristics
Table 109.	RTC characteristics
Table 110.	LQPF100 100-pin, 14 x 14 mm low-profile quad flat package mechanical data 199
Table 111.	WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
	package mechanical data
Table 112.	WLCSP143 recommended PCB design rules (0.4 mm pitch)
Table 113.	LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
	mechanical data
Table 114.	LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package
	mechanical data
Table 115.	LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package
	mechanical data
Table 116.	UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array
	package mechanical data
Table 117.	UFBGA169 recommended PCB design rules (0.5 mm pitch BGA)
Table 118.	UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,
	ultra fine pitch ball grid array package mechanical data
Table 119.	UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) 221
Table 120.	TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array
	package mechanical data
Table 121.	Package thermal characteristics
Table 122.	Ordering information scheme
Table 123.	Limitations depending on the operating power supply range
Table 124.	Document revision history

List of figures

Figure 1.	Compatible board design STM32F10xx/STM32F2xx/STM32F4xx	
	for LQFP100 package	18
Figure 2.	Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx	
	for LQFP144 package	19
Figure 3.	Compatible board design between STM32F2xx and STM32F4xx	
	for LQFP176 and UFBGA176 packages	19
Figure 4.	STM32F427xx and STM32F429xx block diagram	20
Figure 5.	STM32F427xx and STM32F429xx Multi-AHB matrix	
Figure 6.	Power supply supervisor interconnection with internal reset OFF	27
Figure 7.	PDR_ON control with internal reset OFF	28
Figure 8.	Regulator OFF	30
Figure 9.	Startup in regulator OFF: slow V _{DD} slope	
-	- power-down reset risen after V _{CAP 1} /V _{CAP 2} stabilization	31
Figure 10.	Startup in regulator OFF mode: fast V _{DD} slope	
-	- power-down reset risen before V _{CAP_1} /V _{CAP_2} stabilization	31
Figure 11.	STM32F42x LQFP100 pinout	
Figure 12.	STM32F42x WLCSP143 ballout	
Figure 13.	STM32F42x LQFP144 pinout	47
Figure 14.	STM32F42x LQFP176 pinout	
Figure 15.	STM32F42x LQFP208 pinout	
Figure 16.	STM32F42x UFBGA169 ballout	
Figure 17.	STM32F42x UFBGA176 ballout	
Figure 18.	STM32F42x TFBGA216 ballout	
Figure 19.	Memory map	86
Figure 20.	Pin loading conditions	
Figure 21.	Pin input voltage	
Figure 22.	Power supply scheme	
Figure 23.	Current consumption measurement scheme	93
Figure 24.	External capacitor C _{EXT}	
Figure 25.	Typical V _{BAT} current consumption (LSE and RTC ON/backup RAM OFF)	
Figure 26.	Typical V _{BAT} current consumption (LSE and RTC ON/backup RAM ON)	
Figure 27.	High-speed external clock source AC timing diagram	119
Figure 28.	Low-speed external clock source AC timing diagram	
Figure 29.	Typical application with an 8 MHz crystal	
Figure 30.	Typical application with a 32.768 kHz crystal	
Figure 31.	ACCHSI accuracy versus temperature	
Figure 32.	ACC _{I SI} versus temperature	124
Figure 33.	PLL output clock waveforms in center spread mode	
Figure 34.	PLL output clock waveforms in down spread mode	
Figure 35.	FT I/O input characteristics	
Figure 36.	I/O AC characteristics definition	
Figure 37.	Recommended NRST pin protection	141
Figure 38.	SPI timing diagram - slave mode and CPHA = 0	
Figure 39.	SPI timing diagram - slave mode and CPHA = 1	
Figure 40.	SPI timing diagram - master mode	145
Figure 41.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾	147
Figure 42.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	147
Figure 43.	SAI master timing waveforms	
-	-	

Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53.	SAI slave timing waveforms . USB OTG full speed timings: definition of data signal rise and fall time . ULPI timing diagram . Ethernet SMI timing diagram . Ethernet RMII timing diagram . Ethernet MII timing diagram . ADC accuracy characteristics . Typical connection diagram using the ADC . Power supply and reference decoupling (V _{REF+} not connected to V _{DDA}). Power supply and reference decoupling (V _{REF+} connected to V _{DDA}).	151 152 154 155 156 160 161 162 163
Figure 54.	12-bit buffered /non-buffered DAC	
Figure 55.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	
Figure 56.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	
Figure 57.	Asynchronous multiplexed PSRAM/NOR read waveforms.	
Figure 58.	Asynchronous multiplexed PSRAM/NOR write waveforms	
Figure 59.	Synchronous multiplexed NOR/PSRAM read timings	
Figure 60.	Synchronous multiplexed PSRAM write timings.	
Figure 61.	Synchronous non-multiplexed NOR/PSRAM read timings	
Figure 62.	Synchronous non-multiplexed PSRAM write timings	
Figure 63.	PC Card/CompactFlash controller waveforms for common memory read access	
Figure 64. Figure 65.	PC Card/CompactFlash controller waveforms for common memory write access	102
Figure 05.	PC Card/CompactFlash controller waveforms for attribute memory read access	102
Figure 66.	PC Card/CompactFlash controller waveforms for attribute memory	
	write access	
Figure 67.	PC Card/CompactFlash controller waveforms for I/O space read access	
Figure 68.	PC Card/CompactFlash controller waveforms for I/O space write access	
Figure 69.	NAND controller waveforms for read access	
Figure 70.	NAND controller waveforms for write access	
Figure 71.	NAND controller waveforms for common memory read access	
Figure 72.	NAND controller waveforms for common memory write access.	
Figure 73.	SDRAM read access waveforms (CL = 1)	
Figure 74.	SDRAM write access waveforms	
Figure 75.		
Figure 76.	LCD-TFT horizontal timing diagram	
Figure 77.	LCD-TFT vertical timing diagram	
Figure 78.	SDIO high-speed mode	
Figure 79.	SD default mode	
Figure 80.	LQFP100 -100-pin, 14 x 14 mm low-profile quad flat package outline	198
Figure 81.	LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat	200
Figure 82.	recommended footprintLQFP100 marking example (package top view)	200
Figure 82.	WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale	201
i igule 05.	package outline	202
Figure 84.	WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale	202
i igule 04.	recommended footprint	203
Figure 85.	WLCSP143 marking example (package top view)	
Figure 86.	LQFP144-144-pin, 20 x 20 mm low-profile quad flat package outline	
Figure 87.	LQPF144- 144-pin, 20 x 20 mm low-profile quad flat package	200
i igui e or .	recommended footprint	207
Figure 88.	LQFP144 marking example (package top view)	
Figure 89.	LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package outline	
0		

Figure 90.	LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint	211
Figure 91.	LQFP176 marking (package top view)	212
Figure 92.	LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline	213
Figure 93.	LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package	
0	recommended footprint	215
Figure 94.	LQFP208 marking example (package top view)	
Figure 95.	UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array	
U	package outline.	217
Figure 96.	UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch	
-	ball grid array recommended footprint	218
Figure 97.	UFBGA169 marking example (package top view)	
Figure 98.	UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch	
-	ball grid array package outline	220
Figure 99.	UFBGA176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch	
	ball grid array package recommended footprint	221
Figure 100.	UFBGA176+25 marking example (package top view)	
Figure 101.	TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch	
-	ball grid array package outline	223
Figure 102.	TFBGA176 marking example (package top view)	
-	USB controller configured as peripheral-only and used	
U	in Full speed mode	228
Figure 104.	USB controller configured as host-only and used in full speed mode	228
	USB controller configured in dual mode and used in full speed mode	
	USB controller configured as peripheral, host, or dual-mode	
U	and used in high speed mode.	230
Figure 107.	MII mode using a 25 MHz crystal	
	RMII with a 50 MHz oscillator	
	RMII with a 25 MHz crystal and PHY with PLL	

1 Introduction

This datasheet provides the description of the STM32F427xx and STM32F429xx line of microcontrollers. For more details on the whole STMicroelectronics STM32 family, please refer to *Section 2.1: Full compatibility throughout the family*.

The STM32F427xx and STM32F429xx datasheet should be read in conjunction with the STM32F4xx reference manual.

For information on the Cortex[®]-M4 core, please refer to the Cortex[®]-M4 programming manual (PM0214), available from *www.st.com*.

2 Description

The STM32F427xx and STM32F429xx devices are based on the high-performance Arm[®] Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 180 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all Arm[®] single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32F427xx and STM32F429xx devices incorporate high-speed embedded memories (Flash memory up to 2 Mbyte, up to 256 Kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. They also feature standard and advanced communication interfaces.

- Up to three I²Cs
- Six SPIs, two I²Ss full duplex. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
- Four USARTs plus four UARTs
- An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI),
- Two CANs
- One SAI serial audio interface
- An SDIO/MMC interface
- Ethernet and camera interface
- LCD-TFT display controller
- Chrom-ART Accelerator™.

Advanced peripherals include an SDIO, a flexible memory control (FMC) interface, a camera interface for CMOS sensors. Refer to *Table 2: STM32F427xx and STM32F429xx features and peripheral counts* for the list of peripherals available on each part number.

The STM32F427xx and STM32F429xx devices operates in the –40 to +105 °C temperature range from a 1.7 to 3.6 V power supply.

The supply voltage can drop to 1.7 V with the use of an external power supply supervisor (refer to *Section 3.17.2: Internal reset OFF*). A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F427xx and STM32F429xx devices offer devices in 8 packages ranging from 100 pins to 216 pins. The set of included peripherals changes with the device chosen.

These features make the STM32F427xx and STM32F429xx microcontrollers suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances

Figure 4 shows the general block diagram of the device family.

arm

48 1024 2048 1024 2048 512 1024 2048 12+16+64+64)							1	1 '										Yes											
8 1024 2048																				140									
1024 2048 12+16+64+64	_								6/2 (full duplex) ⁽²⁾								•	No				24							
9 2	256(112+16+64+64)	4	Yes ⁽¹⁾	Yes	10	N	2	Yes	6/2	3	4/4	Yes	Yes	2	1	Yes	Yes	Yes	Yes	130	3								
1024	256(112																	No		-									
512 1024 2048																						Yes		114					
1024 2048																										No			
512 1024 2048									4/2 (full duplex) ⁽²⁾									Yes		82		16							
1024 2048									4/2 (full									No											
· · 1	E	Backup	ontroller		General- purpose	Advanced -control	Basic	r generator	SPI / I ² S	I ² C	USART/ UART	USBOTG FS	USB OTG HS	CAN	SAI	SDIO	ě	32F429xx	celerator TM			Inels							
Flash memory in Kbytes 1	Syste		FMC memory co	Ethernet		Timers		Random numbe				Communication					Camera interfac	LCD-TFT (STM: only)	Chrom-ART Acc	GPIOs	12-bit ADC	Number of chan							
102			SRAM in System Kbytes Backup	Iory col	Iory coi		lory co	Iory co	umber	Inmber	Inmber	Inmber	ation and a	ation Landon	ation and co	ation Landon L	umber ation	ation Laterface	ation attin	ory co Lumber lefface (STM3 CTM3	ation attion (STM3)	ation Large Sation Satisfy Satisf							

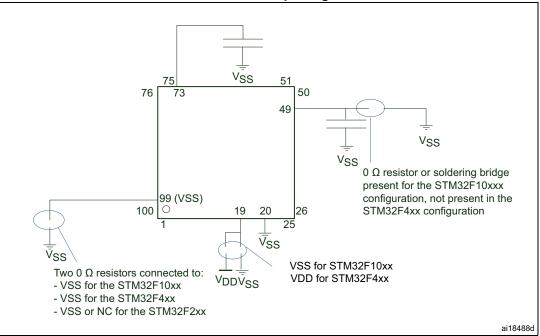
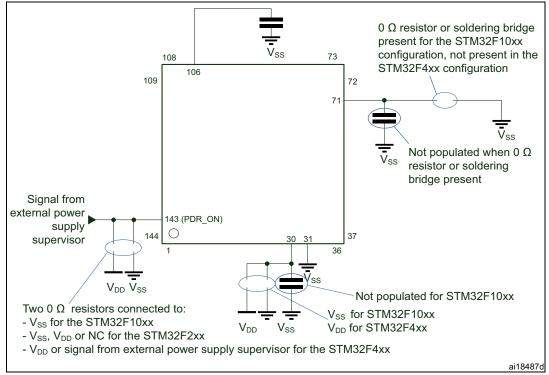
12-bit DAC Number of channels Vestination Vestination <th< th=""><th></th><th>Peripherals</th><th>STM32F427 Vx</th><th>STM32F429Vx</th><th>STM32F427 Zx</th><th>STM32F429Zx</th><th>STM32F427 Ax</th><th>STM32F429 STM32F427 Ax lx</th><th>STM32F427 lx</th><th>STM32F429Ix</th><th>STM32F429Bx</th><th>STM32F429Nx</th></th<>		Peripherals	STM32F427 Vx	STM32F429Vx	STM32F427 Zx	STM32F429Zx	STM32F427 Ax	STM32F429 STM32F427 Ax lx	STM32F427 lx	STM32F429Ix	STM32F429Bx	STM32F429Nx
$\frac{Maximum CPU frequency}{Maximum CPU frequency} = \frac{160 MHz}{1.8 to 3.6 \sqrt{3}} = \frac{1.8 to 3.6 \sqrt{3}}{1.8 to 3.6 \sqrt{3}} = \frac{1.8 to 3.6 \sqrt{3}}{1.6 T^{10}} = \frac{1.6 \sqrt{3}}{1.6 \sqrt{3}} = \frac{1.6 \sqrt{3}}{1.6 \sqrt{3}$	- 2	2-bit DAC Jumber of channels						Yes 2				
Operating voltage $1.8 \text{ to } 3.6 \text{ v}^{(3)}$ Operating voltage $1.8 \text{ to } 3.6 \text{ v}^{(3)}$ Operating temperatures $1.8 \text{ to } 3.6 \text{ v}^{(3)}$ Operating temperatures $1.8 \text{ to } 3.6 \text{ v}^{(3)}$ Operating temperatures $1.8 \text{ to } 3.6 \text{ v}^{(3)}$ Operating temperatures $1.6 \text{ to } 1.15 \text{ °C}$ Packages L_{OFP100 $WLCSP143$ $UFBGA169$ $UFBGA176$ L_{OFP176 1. For the LQFP100 package. only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NC2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. For UFBGA169 package. only SUPAM, NAND and multiplexed static memories are supported. 2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. 3. V_{OP} minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset reset and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset reset and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset reset and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset reset and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset reset and with the use of an	2	Aaximum CPU frequency					18	0 MHz				
Ambient temperatures: -40 to +85 °C /-40 to +105 °C Operating temperatures Junction temperatures: -40 to +125 °C Packages LQFP100 WLCSP143 UFBGA169 UFBGA176 LQFP208 TFBGA216 1 For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. The interrupt line cannot be used since Port G is not available in this package. For UFBGA169 package, only SDRAM, NAND and multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a f6- or 8-bit static memories are supported. 2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. 3. VDPVDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset reset in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset reset in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset in test or an external power supply supervisor (refer to Section 3.17.2: Internal reset in test or an external power supply supervisor (refer to Section 3.17.2: Internal reset in test or and with the use	0	Derating voltage					1.8 tc	3.6 V ⁽³⁾				
Operating temperatures Junction temperature: -40 to + 125 °C Deckages LQFP100 MLCSP143 UFBGA169 UFBGA176 LQFP208 TFBGA216 1. For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. The interrupt line cannot be used since Port G is not available in this package. For UFBGA169 package, only SDRAM, NAND and multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a static memories are supported. 16. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. 2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. 3. VpMV _{DDA} minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset).						Ambient te	smperatures: ⊸	40 to +85 °C /-	40 to +105 °C			
Packages LQFP100 WLCSP143 UFBGA169 UFBGA176 LQFP208 TFBGA216 1. For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit static memories are supported. LQFP208 TFBGA216 2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. TF BIGA169 package, only SDRAM, NAND and multiplexed SOLA169 package, only SDRAM, NAND and multiplexed SOLA169 package, only SDRAM, NAND and multiplexed SOLA169 package, only SDRAM, NAND and multiplexed SOLA160 package, only SUPAN, NAND and SOLA160 package, only SUPAN, NAND and SOLA170 package, only SUPAN, NAND and SOLA172 package, only SUPAN, NAND and SOLA170 package, only	ر	uperating temperatures				Jul	nction tempera	ture: -40 to + 1	125 °C			
 For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit static memories are supported. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S and io mode. VpD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset). 	ш	ackages	ГО	FP100		CSP143 FP144	UFBC	3A169	LC	BGA176 2FP176	LQFP208	TFBGA216
 The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. VpD/VpDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFP). 		For the LQFP100 packac NAND Flash memory usi static memories are supp	ge, only FMC Ban ing the NCE2 Chil ported.	k1 or Bank2 are ava 5 Select. The interru	iilable. Bank1 ca pt line cannot be	an only support a m e used since Port G	ultiplexed NOF is not availabl	k/PSRAM mem e in this packa	lory using the N ge. For UFBGA	JE1 Chip Select. Bai 169 package, only (rk2 can only support SDRAM, NAND and	a 16- or 8-bit multiplexed
3. VDP/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).	N		faces give the flex	ibility to work in an ∈	sxclusive way in	either the SPI mod	te or the I2S au	Idio mode.				
	ė	VDD/VDDA minimum value	ie of 1.7 V is obtai	ned when the device	operates in red	uced temperature r	ange, and with	the use of an ϵ	external power s	supply supervisor (re	efer to Section 3.17.2	: Internal reset

2.1 Full compatibility throughout the family

The STM32F427xx and STM32F429xx devices are part of the STM32F4 family. They are fully pin-to-pin, software and feature compatible with the STM32F2xx devices, allowing the user to try different memory densities, peripherals, and performances (FPU, higher frequency) for a greater degree of freedom during the development cycle.

The STM32F427xx and STM32F429xx devices maintain a close compatibility with the whole STM32F10xx family. All functional pins are pin-to-pin compatible. The STM32F427xx and STM32F429xx, however, are not drop-in replacements for the STM32F10xx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xx to the STM32F42x family remains simple as only a few pins are impacted.

Figure 1, *Figure 2*, and *Figure 3*, give compatible board designs between the STM32F4xx, STM32F2xx, and STM32F10xx families.

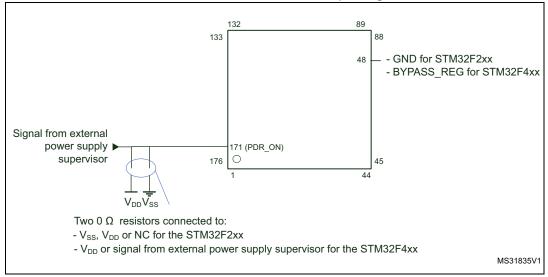

Figure 1. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package

Figure 2. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package

Figure 3. Compatible board design between STM32F2xx and STM32F4xx for LQFP176 and UFBGA176 packages

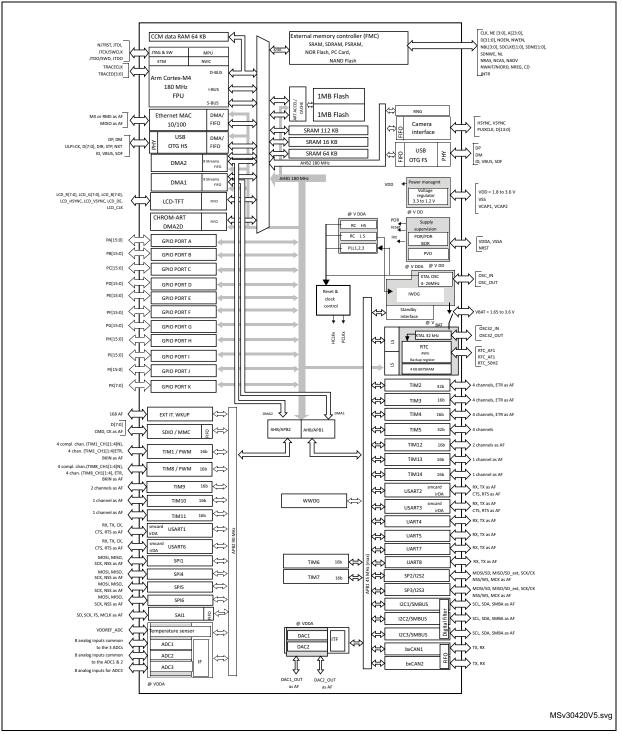


Figure 4. STM32F427xx and STM32F429xx block diagram

 The timers connected to APB2 are clocked from TIMxCLK up to 180 MHz, while the timers connected to APB1 are clocked from TIMxCLK either up to 90 MHz or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

2. The LCD-TFT is available only on STM32F429xx devices.

3 Functional overview

3.1 Arm[®] Cortex[®]-M4 with FPU and embedded Flash and SRAM

The Arm[®] Cortex[®]-M4 with FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The Arm[®] Cortex[®]-M4 with FPU core is a 32-bit RISC processor that features exceptional code-efficiency, delivering the high-performance expected from an Arm core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

The STM32F42x family is compatible with all Arm tools and software.

Figure 4 shows the general block diagram of the STM32F42x family.

Note: Cortex-M4 with FPU core is binary compatible with the Cortex-M3 core.

3.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator which is optimized for STM32 industrystandard Arm[®] Cortex[®]-M4 with FPU processors. It balances the inherent performance advantage of the Arm[®] Cortex[®]-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor full 225 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 180 MHz.

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

3.4 Embedded Flash memory

The devices embed a Flash memory of up to 2 Mbytes available for storing programs and data.

3.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.6 Embedded SRAM

All devices embed:

- Up to 256Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory) data RAM
 - RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
- 4 Kbytes of backup SRAM

This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

3.7 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM, FMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

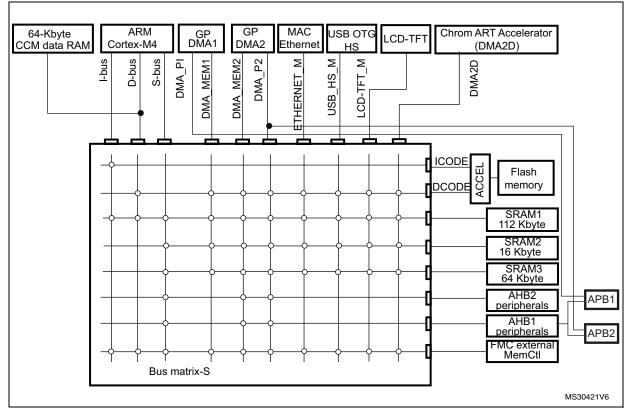


Figure 5. STM32F427xx and STM32F429xx Multi-AHB matrix

3.8 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDIO
- Camera interface (DCMI)
- ADC
- SAI1.

3.9 Flexible memory controller (FMC)

All devices embed an FMC. It has four Chip Select outputs supporting the following modes: PCCard/Compact Flash, SDRAM/LPSDR SDRAM, SRAM, PSRAM, NOR Flash and NAND Flash.

Functionality overview:

- 8-,16-, 32-bit data bus width
- Read FIFO for SDRAM controller
- Write FIFO
- Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is 90 MHz.

LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

3.10 LCD-TFT controller (available only on STM32F429xx)

The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features:

- 2 displays layers with dedicated FIFO (64x32-bit)
- Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
- Up to 8 Input color formats selectable per layer
- Flexible blending between two layers using alpha value (per pixel or constant)
- Flexible programmable parameters for each layer
- Color keying (transparency color)
- Up to 4 programmable interrupt events.

3.11 Chrom-ART Accelerator[™] (DMA2D)

The Chrom-Art Accelerator [™] (DMA2D) is a graphic accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions:

- Rectangle filling with a fixed color
- Rectangle copy
- Rectangle copy with pixel format conversion
- Rectangle composition with blending and pixel format conversion.

Various image format coding are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables.

An interrupt can be generated when an operation is complete or at a programmed watermark.

All the operations are fully automatized and are running independently from the CPU or the DMAs.

3.12 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 91 maskable interrupt channels plus the 16 interrupt lines of the $Cortex^{\$}$ -M4 with FPU core.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

3.13 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 168 GPIOs can be connected to the 16 external interrupt lines.

3.14 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full temperature range. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is

detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 180 MHz while the maximum frequency of the high-speed APB domains is 90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.

The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio class performance. In this case, the I^2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

3.15 Boot modes

At startup, boot pins are used to select one out of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial interface. Refer to application note AN2606 for details.

3.16 Power supply schemes

- V_{DD} = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

Note: V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode versus device operating mode to identify the packages supporting this option.

3.17 Power supply supervisor

3.17.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is

reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.17.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.

An external power supply supervisor should monitor V_{DD} and should maintain the device in reset mode as long as V_{DD} is below a specified threshold. PDR_ON should be connected to this external power supply supervisor. Refer to *Figure 6: Power supply supervisor interconnection with internal reset OFF*.

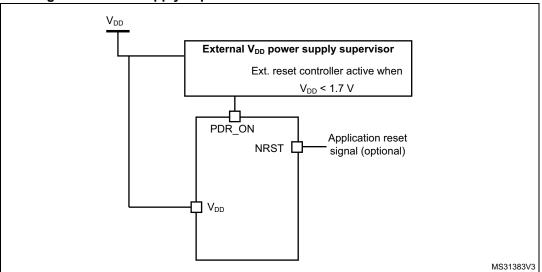


Figure 6. Power supply supervisor interconnection with internal reset OFF

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V (see *Figure 7*).

A comprehensive set of power-saving mode allows to design low-power applications.

When the internal reset is OFF, the following integrated features are no more supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD}.

All packages, except for the LQFP100, allow to disable the internal reset through the PDR_ON signal.

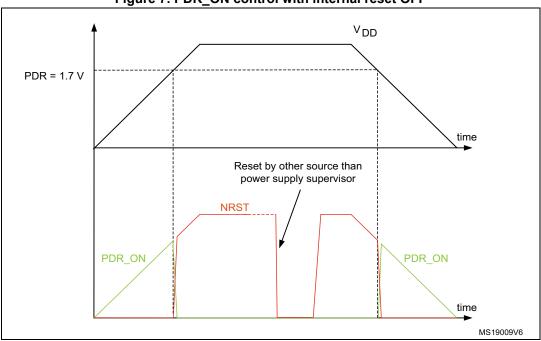


Figure 7. PDR_ON control with internal reset OFF

3.18 Voltage regulator

The regulator has four operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low power regulator (LPR)
 - Power-down
- Regulator OFF

3.18.1 Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.

There are three power modes configured by software when the regulator is ON:

- MR mode used in Run/sleep modes or in Stop modes
 - In Run/Sleep mode

The MR mode is used either in the normal mode (default mode) or the over-drive mode (enabled by software). Different voltages scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption.

The over-drive mode allows operating at a higher frequency than the normal mode for a given voltage scaling.

In Stop modes

The MR can be configured in two ways during stop mode: MR operates in normal mode (default mode of MR in stop mode) MR operates in under-drive mode (reduced leakage mode).

LPR is used in the Stop modes:

The LP regulator mode is configured by software when entering Stop mode.

Like the MR mode, the LPR can be configured in two ways during stop mode:

- LPR operates in normal mode (default mode when LPR is ON)
- LPR operates in under-drive mode (reduced leakage mode).
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Refer to *Table 3* for a summary of voltage regulator modes versus device operating modes.

Two external ceramic capacitors should be connected on V_{CAP_1} and V_{CAP_2} pin. Refer to *Figure 22: Power supply scheme* and *Table 19: VCAP1/VCAP2 operating conditions*.

All packages have the regulator ON feature.

Voltage regulator configuration	Run mode	Sleep mode	Stop mode	Standby mode
Normal mode	MR	MR	MR or LPR	-
Over-drive mode ⁽²⁾	MR	MR	-	-
Under-drive mode	-	-	MR or LPR	-
Power-down mode	-	-	-	Yes

Table 3. Voltage regulator configuration mode versus device operating mode⁽¹⁾

1. '-' means that the corresponding configuration is not available.

2. The over-drive mode is not available when V_{DD} = 1.7 to 2.1 V.

3.18.2 Regulator OFF

This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V₁₂ voltage source through V_{CAP 1} and V_{CAP 2} pins.

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. Refer to *Table 17: General operating conditions*. The two 2.2 μ F ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Figure 22: Power supply scheme*.

When the regulator is OFF, there is no more internal monitoring on V_{12} . An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V₁₂ logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.
- The over-drive and under-drive modes are not available.
- The Standby mode is not available.

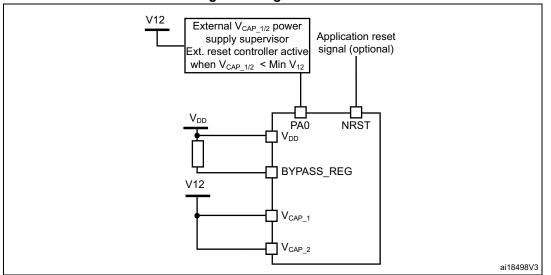


Figure 8. Regulator OFF

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 9*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 10*).
- If V_{CAP_1} and V_{CAP_2} go below V₁₂ minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.
- Note: The minimum value of V_{12} depends on the maximum frequency targeted in the application (see Table 17: General operating conditions).

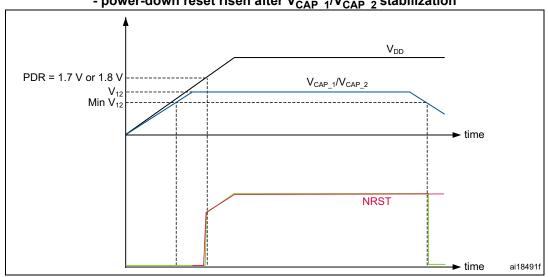


Figure 9. Startup in regulator OFF: slow V_{DD} slope - power-down reset risen after V_{CAP} $_1/V_{CAP}$ $_2$ stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

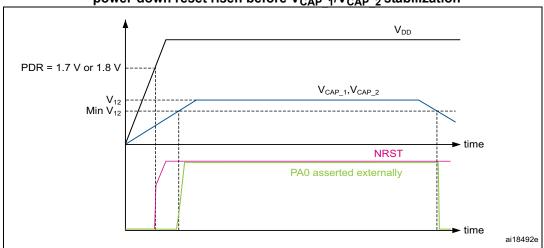


Figure 10. Startup in regulator OFF mode: fast V_{DD} slope - power-down reset risen before V_{CAP_1}/V_{CAP_2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

3.18.3 Regulator ON/OFF and internal reset ON/OFF availability

Table	4. Regulator ON/		leset ON/OIT ava	anability
Package	Regulator ON	Regulator OFF	Internal reset ON	Internal reset OFF
LQFP100	Yes	Νο	Yes	No
LQFP144, LQFP208	165	NO		Yes
WLCSP143, LQFP176, UFBGA169, UFBGA176, TFBGA216	Yes BYPASS_REG set to V _{SS}	Yes BYPASS_REG set to V _{DD}	Yes PDR_ON set to V _{DD}	PDR_ON connected to an external power supply supervisor

Table 4. Regulator ON/OFF and internal reset ON/OFF availability

3.19 Real-time clock (RTC), backup SRAM and backup registers

The backup domain includes:

- The real-time clock (RTC)
- 4 Kbytes of backup SRAM
- 20 backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format.

It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.

Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.

A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data which need to be retained in VBAT and standby mode. This memory area is disabled by default to minimize power consumption (see *Section 3.20: Low-power modes*). It can be enabled by software.

The backup registers are 32-bit registers used to store 80 bytes of user application data when V_{DD} power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 3.20: Low-power modes).

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date.

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or from the V_{BAT} pin.

3.20 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see *Table 5: Voltage regulator modes in stop mode*):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)
Normal mode	MR ON	LPR ON
Under-drive mode	MR in under-drive mode	LPR in under-drive mode

Table 5. Voltage regulator modes in stop mode

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

The standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

3.21 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present.

 V_{BAT} operation is activated when V_{DD} is not present.

The V_{BAT} pin supplies the RTC, the backup registers and the backup SRAM.

Note: When the microcontroller is supplied from V_{BAT} , external interrupts and RTC alarm/events do not exit it from V_{BAT} operation.

When PDR_ON pin is not connected to V_{DD} (Internal Reset OFF), the V_{BAT} functionality is no more available and V_{BAT} pin should be connected to VDD.

3.22 Timers and watchdogs

The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 6 compares the features of the advanced-control, general-purpose and basic timers.

STM32F427xx STM32F429xx

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary output	Max interface clock (MHz)	Max timer clock (MHz) (1)
Advanced -control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	90	180
	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	45	90/180
	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	45	90/180
General	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	90	180
purpose	TIM10 , TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	90	180
	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	45	90/180
	TIM13 , TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	45	90/180
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	45	90/180

1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

3.22.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

3.22.2 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F42x devices (see *Table 6* for differences).

• TIM2, TIM3, TIM4, TIM5

The STM32F42x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

• TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

3.22.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

36/239

3.22.4 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

3.22.5 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.22.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

3.23 Inter-integrated circuit interface (I²C)

Up to three I²C bus interfaces can operate in multimaster and slave modes. They can support the standard (up to 100 KHz), and fast (up to 400 KHz) modes. They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

The devices also include programmable analog and digital noise filters (see Table 7).

	Analog filter	Digital filter
Pulse width of suppressed spikes	12 50 MS	Programmable length from 1 to 15 I2C peripheral clocks

Table 7. Comparison of I2C analog and digital filters

3.24 Universal synchronous/asynchronous receiver transmitters (USART)

The devices embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and four universal asynchronous receiver transmitters (UART4, UART5, UART7, and UART8).

These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to

communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate at up to 5.62 bit/s.

USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversampling by 16)	Max. baud rate in Mbit/s (oversampling by 8)	APB mapping
USART1	х	х	x	х	x	х	5.62	11.25	APB2 (max. 90 MHz)
USART2	х	х	х	х	х	х	2.81	5.62	APB1 (max. 45 MHz)
USART3	х	х	х	х	х	х	2.81	5.62	APB1 (max. 45 MHz)
UART4	х	-	х	-	x	-	2.81	5.62	APB1 (max. 45 MHz)
UART5	х	-	x	-	x	-	2.81	5.62	APB1 (max. 45 MHz)
USART6	х	х	х	х	х	х	5.62	11.25	APB2 (max. 90 MHz)
UART7	х	-	x	-	х	-	2.81	5.62	APB1 (max. 45 MHz)
UART8	х	-	х	-	х	-	2.81	5.62	APB1 (max. 45 MHz)

1. X = feature supported.

3.25 Serial peripheral interface (SPI)

The devices feature up to six SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 45 Mbits/s, SPI2 and SPI3 can communicate at up to 22.5 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

3.26 Inter-integrated sound (I²S)

Two standard I^2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I^2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx can be served by the DMA controller.

Note: For I2S2 full-duplex mode, I2S2_CK and I2S2_WS signals can be used only on GPIO Port B and GPIO Port D.

3.27 Serial Audio interface (SAI1)

The serial audio interface (SAI1) is based on two independent audio sub-blocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub-blocks can be configured in master or in slave mode.

In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency.

The two sub-blocks can be configured in synchronous mode when full-duplex mode is required.

SAI1 can be served by the DMA controller.

3.28 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S and SAI applications. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I²S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I²S/SAI flow with an external PLL (or Codec output).

3.29 Audio and LCD PLL(PLLSAI)

An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

The PLLSAI is also used to generate the LCD-TFT clock.

3.30 Secure digital input/output interface (SDIO)

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

3.31 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.

The devices include the following features:

- Supports 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F4xx reference manual for details)
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes.
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

3.32 Controller area network (bxCAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive

40/239

FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN.

3.33 Universal serial bus on-the-go full-speed (OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:

- Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 4 bidirectional endpoints
- 8 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

3.34 Universal serial bus on-the-go high-speed (OTG_HS)

The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The major features are:

- Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 6 bidirectional endpoints
- 12 host channels with periodic OUT support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected

3.35 Digital camera interface (DCMI)

The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image

3.36 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.37 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allowing maximum I/O toggling up to 90 MHz.

3.38 Analog-to-digital converters (ADCs)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer.

3.39 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V_{BAT}, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V_{BAT} conversion are enabled at the same time, only V_{BAT} conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

3.40 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 10-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

3.41 Serial wire JTAG debug port (SWJ-DP)

The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.42 Embedded Trace Macrocell™

The Arm Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F42x through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

44/239

4 Pinouts and pin description

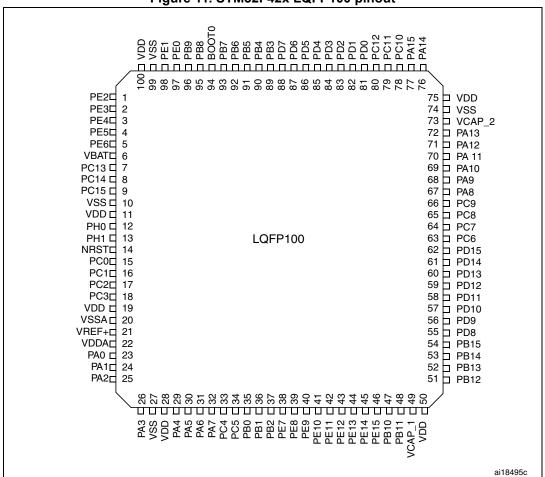
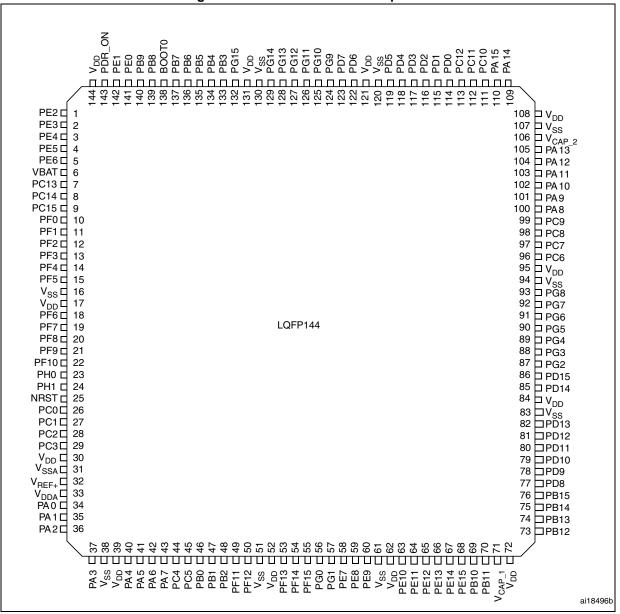


Figure 11. STM32F42x LQFP100 pinout

1. The above figure shows the package top view.



			Figur	e 12. J	TWIJZF	428 88	LUGFI	45 Dai	iout		
r	11	10	9	8	7	6	5	4	3	2	1
А		(PE1)	(PB8)	PB6	PG15	PG12	PD7	PD5	PD2	PC10	VDD
В	PE4	PEO	(PB9)	(PB7)	(PB3)	PG11	PD4	(PD3)	PD0	PC11	PA14
с	VBAT	(PE3)		(PB5)	(PB4)	PG10	VDD	(PD1)	PC12	PA15	VDD
D	PC14	PC13	PE5	PE2	VDD	PG13	(PA10)	(PA11)	(PA13)	vss	VCAP _2
Е	PC15	VDD	(PF1)	PE6	vss	VDD	PG9	PC8	PC9	PA9	(PA12)
F	PF0	(PF2)	(PF4)	PF5	(PF7)	PG14	vss	PD6	PC7	PC6	PA8
G	PF3	PF6	(PF10)	(PF9)	VDD	PG5	PG4	PG6	(PG3)	PG8	VDD
н	PF8	(PH1)	NRST	PC0	vss	PD12	(PD13)	PD10	vss	vss	PG7
J	(PH0)	PC2	PC3	VDD	VDD	VDD	VDD	(PE10)	(PB15)	(PD14)	(PG2)
к	PC1	VSSA	PAO	(PA1)	(PB1)	(PF13)	(PG1)	(PE11)	(PB14)	(PD11)	PD15
L	VREF +	VDDA	(PA2)	(PA7)	(PB2)	(PF14)	PE7	PE12	PE15	PD8	VDD
м	(PA3)	(PA4)	PA5	PC4	(PF11)	PF15	PE8	PE14	(PB10)	(PB12)	(PD9)
N	BYPASS_ REG	(PA6)	PC5	РВО	(PF12)	PG0	PE9	PE13	(PB11)	VCAP _1	PB13
l											м

Figure 12. STM32F42x WLCSP143 ballout

1. The above figure shows the package bump view.

Figure 13. STM32F42x LQFP144 pinout

1. The above figure shows the package top view.

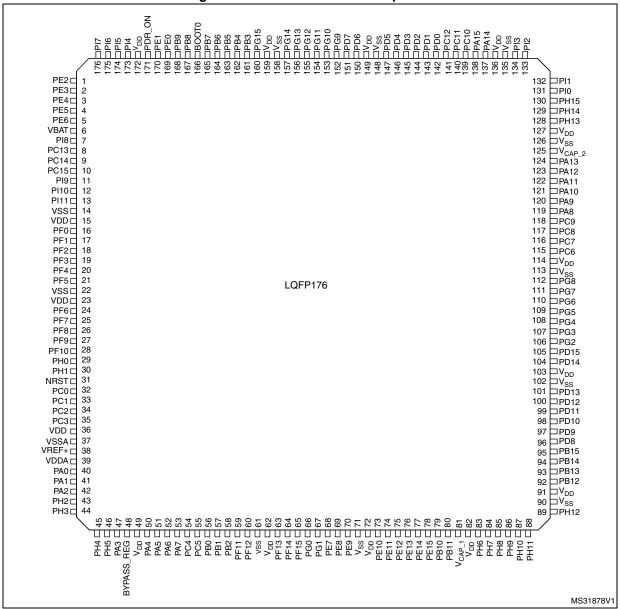
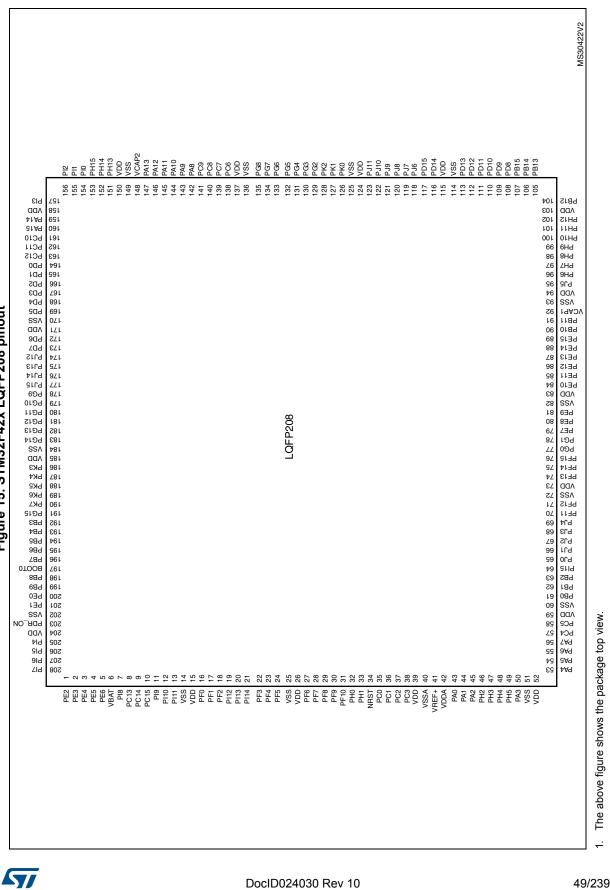



Figure 14. STM32F42x LQFP176 pinout

1. The above figure shows the package top view.

Pinouts and pin description

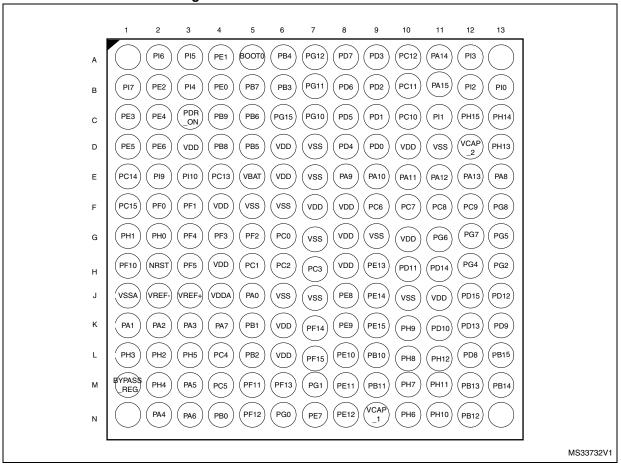


Figure 16. STM32F42x UFBGA169 ballout

1. The above figure shows the package top view.

2. The 4 corners balls, A1,A13, N1 and N13, are not bonded internally and should be left not connected on the PCB.

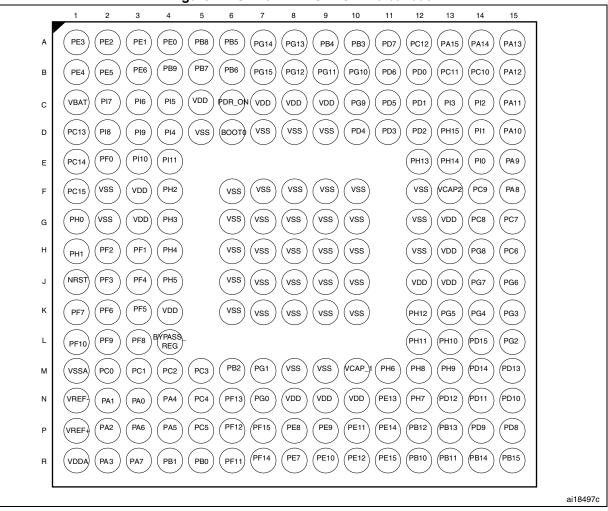
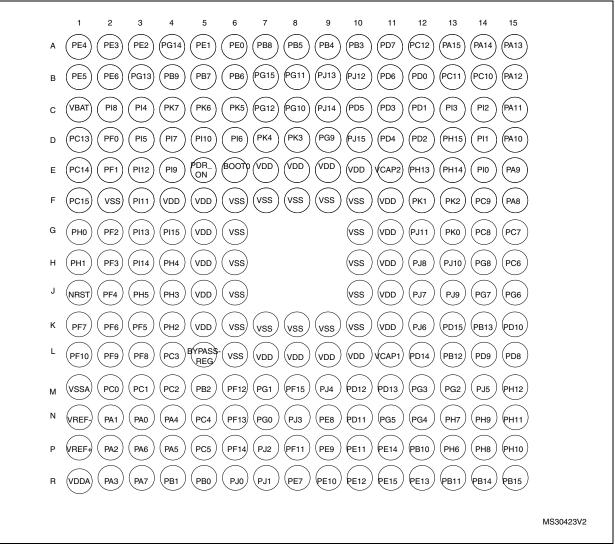



Figure 17. STM32F42x UFBGA176 ballout

1. The above figure shows the package top view.

Figure 18. STM32F42x TFBGA216 ballout

1. The above figure shows the package top view.

Name	Abbreviation	Definition							
Pin name		specified in brackets below the pin name, the pin function during and after as the actual pin name							
	S	Supply pin							
Pin type	I	Input only pin							
	I/O Input / output pin								
	FT	5 V tolerant I/O							
I/O structure	TTa	3.3 V tolerant I/O directly connected to ADC							
NO structure	В	Dedicated BOOT0 pin							
	RST	Bidirectional reset pin with weak pull-up resistor							
Notes	Unless otherwise	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset							
Alternate functions	Functions selected	Functions selected through GPIOx_AFR registers							
Additional functions	Functions directly selected/enabled through peripheral registers								

Table 9. Legend/abbreviations used in the pinout table

Table 10. STM32F427xx and STM32F429xx pin and ball definitions

	Pin number									-			
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
1	1	B2	A2	1	D8	1	A3	PE2	I/O	FT	-	TRACECLK, SPI4_SCK, SAI1_MCLK_A, ETH_MII_TXD3, FMC_A23, EVENTOUT	-
2	2	C1	A1	2	C10	2	A2	PE3	I/O	FT	-	TRACED0, SAI1_SD_B, FMC_A19, EVENTOUT	-
3	3	C2	B1	3	B11	3	A1	PE4	I/O	FT	-	TRACED1, SPI4_NSS, SAI1_FS_A, FMC_A20, DCMI_D4, LCD_B0, EVENTOUT	-

			Pin nu	ımbeı	r			-					
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
4	4	D1	B2	4	D9	4	B1	PE5	I/O	FT	-	TRACED2, TIM9_CH1, SPI4_MISO, SAI1_SCK_A, FMC_A21, DCMI_D6, LCD_G0, EVENTOUT	-
5	5	D2	В3	5	E8	5	B2	PE6	I/O	FT	-	TRACED3, TIM9_CH2, SPI4_MOSI, SAI1_SD_A, FMC_A22, DCMI_D7, LCD_G1, EVENTOUT	-
-	-	-	-	-	-	-	G6	V_{SS}	S	-	-	-	-
-	I	-	-	-	-	-	F5	V _{DD}	S	-	-	-	-
6	6	E5	C1	6	C11	6	C1	V _{BAT}	S	-	-	-	-
-	-	NC (2)	D2	7	-	7	C2	PI8	I/O	FT	(3) (4)	EVENTOUT	TAMP_2
7	7	E4	D1	8	D10	8	D1	PC13	I/O	FT	(3) (4)	EVENTOUT	TAMP_1
8	8	E1	E1	9	D11	9	E1	PC14- OSC32_IN (PC14)	I/O	FT	(3) (4)	EVENTOUT	OSC32_IN
9	9	F1	F1	10	E11	10	F1	PC15- OSC32_OUT (PC15)	I/O	FT	(3) (4)	EVENTOUT	OSC32_ OUT ⁽⁵⁾
-	-	-	-	-	-	-	G5	V_{DD}	S	-	-	-	-
-	-	E2	D3	11	-	11	E4	PI9	I/O	FT	-	CAN1_RX, FMC_D30, LCD_VSYNC, EVENTOUT	-
-	-	E3	E3	12	-	12	D5	PI10	I/O	FT	-	ETH_MII_RX_ER, FMC_D31, LCD_HSYNC, EVENTOUT	-
-	-	NC (2)	E4	13	-	13	F3	PI11	I/O	FT	-	OTG_HS_ULPI_DIR, EVENTOUT	-
-	-	F6	F2	14	E7	14	F2	V _{SS}	S	-	-	-	-
-	-	F4	F3	15	E10	15	F4	V _{DD}	S	-	-	-	-

Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
--

			Pin nı	ımbei	r							· ·	,
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
-	10	F2	E2	16	F11	16	D2	PF0	I/O	FT	-	I2C2_SDA, FMC_A0, EVENTOUT	-
-	11	F3	H3	17	E9	17	E2	PF1	I/O	FT	-	I2C2_SCL, FMC_A1, EVENTOUT	-
-	12	G5	H2	18	F10	18	G2	PF2	I/O	FT	-	I2C2_SMBA, FMC_A2, EVENTOUT	-
-	-	-	-	-	-	19	E3	PI12	I/O	FT	-	LCD_HSYNC, EVENTOUT	-
-	-	-	-	-	-	20	G3	PI13	I/O	FT	-	LCD_VSYNC, EVENTOUT	-
-	-	-	-	-	-	21	H3	PI14	I/O	FT		LCD_CLK, EVENTOUT	-
-	13	G4	J2	19	G11	22	H2	PF3	I/O	FT	(5)	FMC_A3, EVENTOUT	ADC3_IN9
-	14	G3	J3	20	F9	23	J2	PF4	I/O	FT	(5)	FMC_A4, EVENTOUT	ADC3_ IN14
-	15	H3	K3	21	F8	24	K3	PF5	I/O	FT	(5)	FMC_A5, EVENTOUT	ADC3_ IN15
10	16	G7	G2	22	H7	25	H6	V _{SS}	S	-	-	-	-
11	17	G8	G3	23	-	26	H5	V _{DD}	S	-	-	-	-
-	18	NC (2)	K2	24	G10	27	K2	PF6	I/O	FT	(5)	TIM10_CH1, SPI5_NSS, SAI1_SD_B, UART7_Rx, FMC_NIORD, EVENTOUT	ADC3_IN4
-	19	NC (2)	K1	25	F7	28	K1	PF7	I/O	FT	(5)	TIM11_CH1, SPI5_SCK, SAI1_MCLK_B, UART7_Tx, FMC_NREG, EVENTOUT	ADC3_IN5
-	20	NC (2)	L3	26	H11	29	L3	PF8	I/O	FT	(5)	SPI5_MISO, SAI1_SCK_B, TIM13_CH1, FMC_NIOWR, EVENTOUT	ADC3_IN6

Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)

			Pin nu					1 WIJZI 423XX P				lefinitions (continued	, []
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
-	21	NC (2)	L2	27	G8	30	L2	PF9	I/O	FT	(5)	SPI5_MOSI, SAI1_FS_B, TIM14_CH1, FMC_CD, EVENTOUT	ADC3_IN7
-	22	H1	L1	28	G9	31	L1	PF10	I/O	FT	(5)	FMC_INTR, DCMI_D11, LCD_DE, EVENTOUT	ADC3_IN8
12	23	G2	G1	29	J11	32	G1	PH0-OSC_IN (PH0)	I/O	FT	-	EVENTOUT	OSC_IN ⁽⁵⁾
13	24	G1	H1	30	H10	33	H1	PH1- OSC_OUT (PH1)	I/O	FT	-	EVENTOUT	OSC_OUT
14	25	H2	J1	31	H9	34	J1	NRST	I/O	RS T	-	-	-
15	26	G6	M2	32	H8	35	M2	PC0	I/O	FT	(5)	OTG_HS_ULPI_STP, FMC_SDNWE, EVENTOUT	ADC123_ IN10
16	27	H5	М3	33	K11	36	М3	PC1	I/O	FT	(5)	ETH_MDC, EVENTOUT	ADC123_ IN11
17	28	H6	M4	34	J10	37	M4	PC2	I/O	FT	(5)	SPI2_MISO, I2S2ext_SD, OTG_HS_ULPI_DIR, ETH_MII_TXD2, FMC_SDNE0, EVENTOUT	ADC123_ IN12
18	29	H7	M5	35	J9	38	L4	PC3	I/O	FT	(5)	SPI2_MOSI/I2S2_SD, OTG_HS_ULPI_NXT, ETH_MII_TX_CLK, FMC_SDCKE0, EVENTOUT	ADC123_ IN13
19	30	I	-	36	G7	39	J5	V _{DD}	S	I	-	-	-
-	-	-	-	-	-	-	J6	V _{SS}	S	-	-	-	-
20	31	J1	M1	37	K10	40	M1	V _{SSA}	S	-	-	-	-
-	-	J2	N1	-	-	-	N1	V _{REF-}	S	-	-	-	-
21	32	J3	P1	38	L11	41	P1	V_{REF^+}	S	-	-	-	-

			Pin nu	ımbeı	r							· · ·	
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
22	33	J4	R1	39	L10	42	R1	V _{DDA}	S	-	-	-	-
23	34	J5	N3	40	K9	43	N3	PA0-WKUP (PA0)	I/O	FT	(6)	TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, USART2_CTS, UART4_TX, ETH_MII_CRS, EVENTOUT	ADC123_ IN0/WKUP (5)
24	35	K1	N2	41	K8	44	N2	PA1	I/O	FT	(5)	TIM2_CH2, TIM5_CH2, USART2_RTS, UART4_RX, ETH_MII_RX_CLK/ETH _RMII_REF_CLK, EVENTOUT	ADC123_ IN1
25	36	K2	P2	42	L9	45	P2	PA2	I/O	FT	(5)	TIM2_CH3, TIM5_CH3, TIM9_CH1, USART2_TX, ETH_MDIO, EVENTOUT	ADC123_ IN2
-	-	L2	F4	43	-	46	K4	PH2	I/O	FT	-	ETH_MII_CRS, FMC_SDCKE0, LCD_R0, EVENTOUT	-
-	-	L1	G4	44	-	47	J4	PH3	I/O	FT	-	ETH_MII_COL, FMC_SDNE0, LCD_R1, EVENTOUT	-
-	-	M2	H4	45	-	48	H4	PH4	I/O	FT	-	I2C2_SCL, OTG_HS_ULPI_NXT, EVENTOUT	-
-	-	L3	J4	46	-	49	J3	PH5	I/O	FT	-	I2C2_SDA, SPI5_NSS, FMC_SDNWE, EVENTOUT	-
26	37	K3	R2	47	M11	50	R2	PA3	I/O	FT	(5)	TIM2_CH4, TIM5_CH4, TIM9_CH2, USART2_RX, OTG_HS_ULPI_D0, ETH_MII_COL, LCD_B5, EVENTOUT	ADC123_ IN3
27	38	-	-		-	51	K6	V_{SS}	S	-	-	-	-

Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)

			Pin nu			1 XX 6		111132F429XX p	anna			definitions (continued)
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
-	-	M1	L4	48	N11	-	L5	BYPASS_ REG	I	FT	-	-	-
28	39	J11	K4	49	J8	52	K5	V _{DD}	S	-	-	-	-
29	40	N2	N4	50	M10	53	N4	PA4	I/O	TTa	(5)	SPI1_NSS, SPI3_NSS/I2S3_WS, USART2_CK, OTG_HS_SOF, DCMI_HSYNC, LCD_VSYNC, EVENTOUT	ADC12_ IN4 /DAC_ OUT1
30	41	М3	P4	51	M9	54	P4	PA5	I/O	TTa	(5)	TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK, OTG_HS_ULPI_CK, EVENTOUT	ADC12_ IN5/DAC_ OUT2
31	42	N3	P3	52	N10	55	P3	PA6	I/O	FT	(5)	TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, TIM13_CH1, DCMI_PIXCLK, LCD_G2, EVENTOUT	ADC12_ IN6
32	43	K4	R3	53	L8	56	R3	PA7	I/O	FT	(5)	TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI, TIM14_CH1, ETH_MII_RX_DV/ETH_ RMII_CRS_DV, EVENTOUT	ADC12_ IN7
33	44	L4	N5	54	M8	57	N5	PC4	I/O	FT	(5)	ETH_MII_RXD0/ETH_ RMII_RXD0, EVENTOUT	ADC12_ IN14
34	45	M4	P5	55	N9	58	P5	PC5	I/O	FT	(5)	ETH_MII_RXD1/ETH_ RMII_RXD1, EVENTOUT	ADC12_ IN15
-	-	-	-	-	J7	59	L7	V _{DD}	S	-	-	-	-
-	-	-	-	-	-	60	L6	VSS	S	-	-	-	-

			Pin nu	ımber	•								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
35	46	N4	R5	56	N8	61	R5	PB0	I/O	FT	(5)	TIM1_CH2N, TIM3_CH3, TIM8_CH2N, LCD_R3, OTG_HS_ULPI_D1, ETH_MII_RXD2, EVENTOUT	ADC12_ IN8
36	47	K5	R4	57	K7	62	R4	PB1	I/O	FT	(5)	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, LCD_R6, OTG_HS_ULPI_D2, ETH_MII_RXD3, EVENTOUT	ADC12_ IN9
37	48	L5	M6	58	L7	63	M5	PB2-BOOT1 (PB2)	I/O	FT	-	EVENTOUT	-
-	-	-	-	-	-	64	G4	PI15	I/O	FT	-	LCD_R0, EVENTOUT	-
-	-	-	-	-	-	65	R6	PJ0	I/O	FT	-	LCD_R1, EVENTOUT	-
-	-	-	-	-	-	66	R7	PJ1	I/O	FT	-	LCD_R2, EVENTOUT	-
-	-	-	-	-	-	67	P7	PJ2	I/O	FT	-	LCD_R3, EVENTOUT	-
-	-	-	-	-	-	68	N8	PJ3	I/O	FT	-	LCD_R4, EVENTOUT	-
-	-	-	-	-	-	69	M9	PJ4	I/O	FT	-	LCD_R5, EVENTOUT	-
-	49	M5	R6	59	M7	70	P8	PF11	I/O	FT	-	SPI5_MOSI, FMC_SDNRAS, DCMI_D12, EVENTOUT	-
-	50	N5	P6	60	N7	71	M6	PF12	I/O	FT	-	FMC_A6, EVENTOUT	-
-	51	G9	M8	61	-	72	K7	V _{SS}	S		-	-	-
-	52	D10	N8	62	-	73	L8	V _{DD}	S		-	-	-
-	53	M6	N6	63	K6	74	N6	PF13	I/O	FT	-	FMC_A7, EVENTOUT	-
-	54	K7	R7	64	L6	75	P6	PF14	I/O	FT	-	FMC_A8, EVENTOUT	-
-	55	L7	P7	65	M6	76	M8	PF15	I/O	FT	-	FMC_A9, EVENTOUT	-
-	56	N6	N7	66	N6	77	N7	PG0	I/O	FT	-	FMC_A10, EVENTOUT	-
-	57	M7	M7	67	K5	78	M7	PG1	I/O	FT	-	FMC_A11, EVENTOUT	-

Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
--

			Pin nu										
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
38	58	N7	R8	68	L5	79	R8	PE7	I/O	FT	-	TIM1_ETR, UART7_Rx, FMC_D4, EVENTOUT	-
39	59	J8	P8	69	M5	80	N9	PE8	I/O	FT	-	TIM1_CH1N, UART7_Tx, FMC_D5, EVENTOUT	-
40	60	K8	P9	70	N5	81	P9	PE9	I/O	FT	-	TIM1_CH1, FMC_D6, EVENTOUT	-
-	61	J6	M9	71	H3	82	K8	V _{SS}	S		-		-
-	62	G10	N9	72	J5	83	L9	V _{DD}	S		-		-
41	63	L8	R9	73	J4	84	R9	PE10	I/O	FT	-	TIM1_CH2N, FMC_D7, EVENTOUT	-
42	64	M8	P10	74	K4	85	P10	PE11	I/O	FT	-	TIM1_CH2, SPI4_NSS, FMC_D8, LCD_G3, EVENTOUT	-
43	65	N8	R10	75	L4	86	R10	PE12	I/O	FT	-	TIM1_CH3N, SPI4_SCK, FMC_D9, LCD_B4, EVENTOUT	-
44	66	H9	N11	76	N4	87	R12	PE13	I/O	FT	-	TIM1_CH3, SPI4_MISO, FMC_D10, LCD_DE, EVENTOUT	-
45	67	J9	P11	77	M4	88	P11	PE14	I/O	FT	-	TIM1_CH4, SPI4_MOSI, FMC_D11, LCD_CLK, EVENTOUT	-
46	68	K9	R11	78	L3	89	R11	PE15	I/O	FT	-	TIM1_BKIN, FMC_D12, LCD_R7, EVENTOUT	-
47	69	L9	R12	79	М3	90	P12	PB10	I/O	FT	-	TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CK, USART3_TX, OTG_HS_ULPI_D3, ETH_MII_RX_ER, LCD_G4, EVENTOUT	-
48	70	М9	R13	80	N3	91	R13	PB11	I/O	FT	-	TIM2_CH4, I2C2_SDA, USART3_RX, OTG_HS_ULPI_D4, ETH_MII_TX_EN/ETH_ RMII_TX_EN, LCD_G5, EVENTOUT	-

			Pin nu	ımbeı	r								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
49	71	N9	M10	81	N2	92	L11	V _{CAP_1}	S	-	-	-	-
-	I	-	-	-	H2	93	K9	V_{SS}	S	-	-	-	-
50	72	F8	N10	82	J6	94	L10	V _{DD}	S	-	-	-	-
-	-	-	-	-	-	95	M14	PJ5	I/O	-	-	LCD_R6, EVENTOUT	-
-	-	N10	M11	83	-	96	P13	PH6	I/O	FT	-	I2C2_SMBA, SPI5_SCK, TIM12_CH1, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8, EVENTOUT	-
-	-	M10	N12	84	-	97	N13	PH7	I/O	FT	-	I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9, EVENTOUT	-
-	-	L10	M12	85	-	98	P14	PH8	I/O	FT	-	I2C3_SDA, FMC_D16, DCMI_HSYNC, LCD_R2, EVENTOUT	-
-	-	K10	M13	86	-	99	N14	PH9	I/O	FT	-	I2C3_SMBA, TIM12_CH2, FMC_D17, DCMI_D0, LCD_R3, EVENTOUT	-
-	-	N11	L13	87	-	100	P15	PH10	I/O	FT	-	TIM5_CH1, FMC_D18, DCMI_D1, LCD_R4, EVENTOUT	-
-	-	M11	L12	88	-	101	N15	PH11	I/O	FT	-	TIM5_CH2, FMC_D19, DCMI_D2, LCD_R5, EVENTOUT	-
-	-	L11	K12	89	-	102	M15	PH12	I/O	FT	-	TIM5_CH3, FMC_D20, DCMI_D3, LCD_R6, EVENTOUT	-
-	I	E7	H12	90	-	-	K10	V _{SS}	S	-	-	-	-
-	-	H8	J12	91	-	103	K11	V _{DD}	S	-	-	-	-

Table 10. STM32F427xx and STM32F429xx	pin and ball definitions (continued)
---------------------------------------	----------------------------	------------

			Pin nu	ımber	•								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
51	73	N12	P12	92	M2	104	L13	PB12	I/O	FT	-	TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, USART3_CK, CAN2_RX, OTG_HS_ULPI_D5, ETH_MII_TXD0/ETH_R MII_TXD0, OTG_HS_ID, EVENTOUT	-
52	74	M12	P13	93	N1	105	K14	PB13	I/O	FT	-	TIM1_CH1N, SPI2_SCK/I2S2_CK, USART3_CTS, CAN2_TX, OTG_HS_ULPI_D6, ETH_MII_TXD1/ETH_R MII_TXD1, EVENTOUT	OTG_HS_ VBUS
53	75	M13	R14	94	K3	106	R14	PB14	I/O	FT	-	TIM1_CH2N, TIM8_CH2N, SPI2_MISO, I2S2ext_SD, USART3_RTS, TIM12_CH1, OTG_HS_DM, EVENTOUT	-
54	76	L13	R15	95	J3	107	R15	PB15	I/O	FT	-	RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI/I2S2_SD, TIM12_CH2, OTG_HS_DP, EVENTOUT	-
55	77	L12	P15	96	L2	108	L15	PD8	I/O	FT	-	USART3_TX, FMC_D13, EVENTOUT	-
56	78	K13	P14	97	M1	109	L14	PD9	I/O	FT	-	USART3_RX, FMC_D14, EVENTOUT	-
57	79	K11	N15	98	H4	110	K15	PD10	I/O	FT	-	USART3_CK, FMC_D15, LCD_B3, EVENTOUT	-

Table 10.	STM32F427xx and	STM32F429xx p	oin and ball	definitions	(continued)

			Pin nu	ımber									
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
58	80	H10	N14	99	K2	111	N10	PD11	I/O	FT	-	USART3_CTS, FMC_A16, EVENTOUT	-
59	81	J13	N13	100	H6	112	M10	PD12	I/O	FT	-	TIM4_CH1, USART3_RTS, FMC_A17, EVENTOUT	-
60	82	K12	M15	101	H5	113	M11	PD13	I/O	FT	-	TIM4_CH2, FMC_A18, EVENTOUT	-
-	83	-	-	102	-	114	J10	V _{SS}	S		-	-	-
-	84	F7	J13	103	L1	115	J11	V _{DD}	S		-	-	-
61	85	H11	M14	104	J2	116	L12	PD14	I/O	FT	-	TIM4_CH3, FMC_D0, EVENTOUT	-
62	86	J12	L14	105	K1	117	K13	PD15	I/O	FT	-	TIM4_CH4, FMC_D1, EVENTOUT	-
-	-	-	-	-	-	118	K12	PJ6	I/O	FT	-	LCD_R7, EVENTOUT	-
-	-	-	-	-	-	119	J12	PJ7	I/O	FT	-	LCD_G0, EVENTOUT	-
-	-	-	-	-	-	120	H12	PJ8	I/O	FT	-	LCD_G1, EVENTOUT	-
-	-	-	-	-	-	121	J13	PJ9	I/O	FT	-	LCD_G2, EVENTOUT	-
-	-	-	-	-	-	122	H13	PJ10	I/O	FT	-	LCD_G3, EVENTOUT	-
-	-	-	-	-	-	123	G12	PJ11	I/O	FT	-	LCD_G4, EVENTOUT	-
-	-	-	-	-	-	124	H11	VDD	I/O	FT	-	-	-
-	-	-	-	-	-	125	H10	VSS	I/O	FT	-	-	-
-	-	-	-	-	-	126	G13	PK0	I/O	FT	-	LCD_G5, EVENTOUT	-
-	-	-	-	-	-	127	F12	PK1	I/O	FT	-	LCD_G6, EVENTOUT	-
-	-	-	-	-	-	128	F13	PK2	I/O	FT	-	LCD_G7, EVENTOUT	-
-	87	H13	L15	106	J1	129	M13	PG2	I/O	FT	-	FMC_A12, EVENTOUT	-
-	88	NC (2)	K15	107	G3	130	M12	PG3	I/O	FT	-	FMC_A13, EVENTOUT	-
-	89	H12	K14	108	G5	131	N12	PG4	I/O	FT	-	FMC_A14/FMC_BA0, EVENTOUT	-
-	90	G13	K13	109	G6	132	N11	PG5	I/O	FT	-	FMC_A15/FMC_BA1, EVENTOUT	-

Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)

			Pin nu	ımber									
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
-	91	G11	J15	110	G4	133	J15	PG6	I/O	FT	-	FMC_INT2, DCMI_D12, LCD_R7, EVENTOUT	-
-	92	G12	J14	111	H1	134	J14	PG7	I/O	FT	-	USART6_CK, FMC_INT3, DCMI_D13, LCD_CLK, EVENTOUT	-
-	93	F13	H14	112	G2	135	H14	PG8	I/O	FT	-	SPI6_NSS, USART6_RTS, ETH_PPS_OUT, FMC_SDCLK, EVENTOUT	-
-	94	J7	G12	113	D2	136	G10	V _{SS}	s		-	-	-
-	95	E6	H13	114	G1	137	G11	V _{DD}	S		-	-	-
63	96	F9	H15	115	F2	138	H15	PC6	I/O	FT	-	TIM3_CH1, TIM8_CH1, I2S2_MCK, USART6_TX, SDIO_D6, DCMI_D0, LCD_HSYNC, EVENTOUT	-
64	97	F10	G15	116	F3	139	G15	PC7	I/O	FT	-	TIM3_CH2, TIM8_CH2, I2S3_MCK, USART6_RX, SDIO_D7, DCMI_D1, LCD_G6, EVENTOUT	-
65	98	F11	G14	117	E4	140	G14	PC8	I/O	FT	-	TIM3_CH3, TIM8_CH3, USART6_CK, SDIO_D0, DCMI_D2, EVENTOUT	-
66	99	F12	F14	118	E3	141	F14	PC9	I/O	FT	-	MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S_CKIN, SDIO_D1, DCMI_D3, EVENTOUT	-
67	100	E13	F15	119	F1	142	F15	PA8	I/O	FT	-	MCO1, TIM1_CH1, I2C3_SCL, USART1_CK, OTG_FS_SOF, LCD_R6, EVENTOUT	-

Table 10. STM32F427xx and STM32F429xx	pin and ball definitions (continued)
---------------------------------------	-------------------------------------	---

			Pin nı	ımber	•								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
68	101	E8	E15	120	E2	143	E15	PA9	I/O	FT	-	TIM1_CH2, I2C3_SMBA, USART1_TX, DCMI_D0, EVENTOUT	OTG_FS_ VBUS
69	102	E9	D15	121	D5	144	D15	PA10	I/O	FT	-	TIM1_CH3, USART1_RX, OTG_FS_ID, DCMI_D1, EVENTOUT	-
70	103	E10	C15	122	D4	145	C15	PA11	I/O	FT	-	TIM1_CH4, USART1_CTS, CAN1_RX, LCD_R4, OTG_FS_DM, EVENTOUT	-
71	104	E11	B15	123	E1	146	B15	PA12	I/O	FT	-	TIM1_ETR, USART1_RTS, CAN1_TX, LCD_R5, OTG_FS_DP, EVENTOUT	-
72	105	E12	A15	124	D3	147	A15	PA13 (JTMS- SWDIO)	I/O	FT	-	JTMS-SWDIO, EVENTOUT	-
73	106	D12	F13	125	D1	148	E11	V _{CAP_2}	S		-	-	-
74	107	J10	F12	126	D2	149	F10	V_{SS}	S		-	-	-
75	108	H4	G13	127	C1	150	F11	V_{DD}	S		-	-	-
-	-	D13	E12	128	-	151	E12	PH13	I/O	FT	-	TIM8_CH1N, CAN1_TX, FMC_D21, LCD_G2, EVENTOUT	-
-	-	C13	E13	129	-	152	E13	PH14	I/O	FT	-	TIM8_CH2N, FMC_D22, DCMI_D4, LCD_G3, EVENTOUT	-
-	-	C12	D13	130	-	153	D13	PH15	I/O	FT	-	TIM8_CH3N, FMC_D23, DCMI_D11, LCD_G4, EVENTOUT	-
-	-	B13	E14	131	-	154	E14	PIO	I/O	FT	-	TIM5_CH4, SPI2_NSS/I2S2_WS ⁽⁷⁾ , FMC_D24, DCMI_D13, LCD_G5, EVENTOUT	-

Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)	Table 10.	STM32F427xx and	STM32F429xx	pin and ball	definitions	(continued)
--	-----------	-----------------	-------------	--------------	-------------	-------------

			Pin nu									definitions (continued	/
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
-	-	C11	D14	132	-	155	D14	PI1	I/O	FT	-	SPI2_SCK/I2S2_CK ⁽⁷⁾ , FMC_D25, DCMI_D8, LCD_G6, EVENTOUT	-
-	-	B12	C14	133	-	156	C14	PI2	I/O	FT	-	TIM8_CH4, SPI2_MISO, I2S2ext_SD, FMC_D26, DCMI_D9, LCD_G7, EVENTOUT	-
-	-	A12	C13	134	-	157	C13	PI3	I/O	FT	-	TIM8_ETR, SPI2_MOSI/I2S2_SD, FMC_D27, DCMI_D10, EVENTOUT	-
-	-	D11	D9	135	F5	-	F9	V_{SS}	S		-	-	-
-	-	D3	C9	136	A1	158	E10	V _{DD}	S		-	-	-
76	109	A11	A14	137	B1	159	A14	PA14 (JTCK- SWCLK)	I/O	FT	-	JTCK-SWCLK/ EVENTOUT	-
77	110	B11	A13	138	C2	160	A13	PA15 (JTDI)	I/O	FT	-	JTDI, TIM2_CH1/TIM2_ETR, SPI1_NSS, SPI3_NSS/I2S3_WS, EVENTOUT	-
78	111	C10	B14	139	A2	161	B14	PC10	I/O	FT	-	SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, SDI0_D2, DCMI_D8, LCD_R2, EVENTOUT	-
79	112	B10	B13	140	B2	162	B13	PC11	I/O	FT	-	I2S3ext_SD, SPI3_MISO, USART3_RX, UART4_RX, SDIO_D3, DCMI_D4, EVENTOUT	-
80	113	A10	A12	141	C3	163	A12	PC12	I/O	FT	-	SPI3_MOSI/I2S3_SD, USART3_CK, UART5_TX, SDIO_CK, DCMI_D9, EVENTOUT	-
81	114	D9	B12	142	B3	164	B12	PD0	I/O	FT	-	CAN1_RX, FMC_D2, EVENTOUT	-

			Pin nı										
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
82	115	C9	C12	143	C4	165	C12	PD1	I/O	FT	-	CAN1_TX, FMC_D3, EVENTOUT	-
83	116	В9	D12	144	A3	166	D12	PD2	I/O	FT	-	TIM3_ETR, UART5_RX, SDIO_CMD, DCMI_D11, EVENTOUT	-
84	117	A9	D11	145	B4	167	C11	PD3	I/O	FT	-	SPI2_SCK/I2S2_CK, USART2_CTS, FMC_CLK, DCMI_D5, LCD_G7, EVENTOUT	-
85	118	D8	D10	146	B5	168	D11	PD4	I/O	FT	-	USART2_RTS, FMC_NOE, EVENTOUT	-
86	119	C8	C11	147	A4	169	C10	PD5	I/O	FT	-	USART2_TX, FMC_NWE, EVENTOUT	-
-	120	-	D8	148	-	170	F8	V _{SS}	S		-	-	-
-	121	D6	C8	149	C5	171	E9	V _{DD}	S		-	-	-
87	122	B8	B11	150	F4	172	B11	PD6	I/O	FT	-	SPI3_MOSI/I2S3_SD, SAI1_SD_A, USART2_RX, FMC_NWAIT, DCMI_D10, LCD_B2, EVENTOUT	-
88	123	A8	A11	151	A5	173	A11	PD7	I/O	FT	-	USART2_CK, FMC_NE1/FMC_NCE2, EVENTOUT	-
-	-	-	-	-	-	174	B10	PJ12	I/O	FT	-	LCD_B0, EVENTOUT	_
-	-	-	-	-	-	175	B9	PJ13	I/O	FT	-	LCD_B1, EVENTOUT	-
-	-	-	-	-	-	176	C9	PJ14	I/O	FT	-	LCD_B2, EVENTOUT	-
-	-	-	-	-	-	177	D10	PJ15	I/O	FT	-	LCD_B3, EVENTOUT	-
-	124	NC (2)	C10	152	E5	178	D9	PG9	I/O	FT	-	USART6_RX, FMC_NE2/FMC_NCE3, DCMI_VSYNC ⁽⁸⁾ , EVENTOUT	-

Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued

			Pin nı	ımber	•								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
-	125	C7	B10	153	C6	179	C8	PG10	I/O	FT	-	LCD_G3, FMC_NCE4_1/FMC_N E3, DCMI_D2, LCD_B2, EVENTOUT	-
-	126	B7	В9	154	B6	180	B8	PG11	I/O	FT	-	ETH_MII_TX_EN/ETH_ RMII_TX_EN, FMC_NCE4_2, DCMI_D3, LCD_B3, EVENTOUT	-
-	127	A7	B8	155	A6	181	C7	PG12	I/O	FT	-	SPI6_MISO, USART6_RTS, LCD_B4, FMC_NE4, LCD_B1, EVENTOUT	-
-	128	NC (2)	A8	156	D6	182	В3	PG13	I/O	FT	-	SPI6_SCK, USART6_CTS, ETH_MII_TXD0/ETH_R MII_TXD0, FMC_A24, EVENTOUT	-
-	129	NC (2)	A7	157	F6	183	A4	PG14	I/O	FT	-	SPI6_MOSI, USART6_TX, ETH_MII_TXD1/ETH_R MII_TXD1, FMC_A25, EVENTOUT	-
-	130	D7	D7	158	-	184	F7	V _{SS}	S		-	-	-
-	131	L6	C7	159	E6	185	E8	V _{DD}	S		-	-	-
-	-	-	-	-	-	186	D8	PK3	I/O	FT	-	LCD_B4, EVENTOUT	-
-	-	-	-	-	-	187	D7	PK4	I/O	FT	-	LCD_B5, EVENTOUT	-
-	-	-	-	-	-	188	C6	PK5	I/O	FT	-	LCD_B6, EVENTOUT	-
-	-	-	-	-	-	189	C5	PK6	I/O	FT	-	LCD_B7, EVENTOUT	-
-	-	-	-	-	-	190	C4	PK7	I/O	FT	-	LCD_DE, EVENTOUT	-
-	132	C6	B7	160	A7	191	Β7	PG15	I/O	FT	-	USART6_CTS, FMC_SDNCAS, DCMI_D13, EVENTOUT	-

 Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)

			Pin nı	ımber	•								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
89	133	B6	A10	161	В7	192	A10	PB3 (JTDO/TRACE SWO)	I/O	FT	-	JTDO/TRACESWO, TIM2_CH2, SPI1_SCK, SPI3_SCK/I2S3_CK, EVENTOUT	-
90	134	A6	A9	162	C7	193	A9	PB4 (NJTRST)	I/O	FT	-	NJTRST, TIM3_CH1, SPI1_MISO, SPI3_MISO, I2S3ext_SD, EVENTOUT	-
91	135	D5	A6	163	C8	194	A8	PB5	I/O	FT	-	TIM3_CH2, I2C1_SMBA, SPI1_MOSI, SPI3_MOSI/I2S3_SD, CAN2_RX, OTG_HS_ULPI_D7, ETH_PPS_OUT, FMC_SDCKE1, DCMI_D10, EVENTOUT	-
92	136	C5	B6	164	A8	195	B6	PB6	I/O	FT	-	TIM4_CH1, I2C1_SCL, USART1_TX, CAN2_TX, FMC_SDNE1, DCMI_D5, EVENTOUT	-
93	137	В5	В5	165	B8	196	В5	PB7	I/O	FT	-	TIM4_CH2, I2C1_SDA, USART1_RX, FMC_NL, DCMI_VSYNC, EVENTOUT	-
94	138	A5	D6	166	C9	197	E6	BOOT0	Ι	В	-		V _{PP}
95	139	D4	A5	167	A9	198	A7	PB8	I/O	FT	-	TIM4_CH3, TIM10_CH1, I2C1_SCL, CAN1_RX, ETH_MII_TXD3, SDIO_D4, DCMI_D6, LCD_B6, EVENTOUT	-

Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)

			Pin nı	ımber	•								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
96	140	C4	B4	168	В9	199	B4	PB9	I/O	FT	-	TIM4_CH4, TIM11_CH1, I2C1_SDA, SPI2_NSS/I2S2_WS, CAN1_TX, SDIO_D5, DCMI_D7, LCD_B7, EVENTOUT	-
97	141	B4	A4	169	B10	200	A6	PE0	I/O	FT	-	TIM4_ETR, UART8_RX, FMC_NBL0, DCMI_D2, EVENTOUT	-
98	142	A4	A3	170	A10	201	A5	PE1	I/O	FT	-	UART8_Tx, FMC_NBL1, DCMI_D3, EVENTOUT	-
99	-	F5	D5	-	-	202	F6	V_{SS}	S		-		-
-	143	C3	C6	171	A11	203	E5	PDR_ON	S		-		-
100	144	K6	C5	172	D7	204	E7	V _{DD}	S		I		-
-	-	B3	D4	173	-	205	C3	Pl4	I/O	FT	-	TIM8_BKIN, FMC_NBL2, DCMI_D5, LCD_B4, EVENTOUT	-
-	-	A3	C4	174	-	206	D3	PI5	I/O	FT	-	TIM8_CH1, FMC_NBL3, DCMI_VSYNC, LCD_B5, EVENTOUT	-
-	-	A2	C3	175	-	207	D6	Pl6	I/O	FT	-	TIM8_CH2, FMC_D28, DCMI_D6, LCD_B6, EVENTOUT	-
-	-	B1	C2	176	-	208	D4	PI7	I/O	FT	-	TIM8_CH3, FMC_D29, DCMI_D7, LCD_B7, EVENTOUT	-

Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)

1. Function availability depends on the chosen device.

2. NC (not-connected) pins are not bonded. They must be configured by software to output push-pull and forced to 0 in the output data register to avoid extra current consumption in low power modes.

PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:

 The speed should not exceed 2 MHz with a maximum load of 30 pF.
 These I/Os must not be used as a current source (e.g. to drive an LED).

STM32F427xx STM32F429xx

- 4. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website: www.st.com.
- 5. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
- 6. If the device is delivered in an WLCSP143, UFBGA169, UFBGA176, LQFP176 or TFBGA216 package, and the BYPASS_REG pin is set to V_{DD} (Regulator OFF/internal reset ON mode), then PA0 is used as an internal Reset (active low).
- 7. PI0 and PI1 cannot be used for I2S2 full-duplex mode.
- 8. The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.

Pin name	CF	Table 11. FMC NOR/PSRAM/ SRAM	NOR/PSRAM Mux	NAND16	SDRAM
PF0	A0	A0			A0
PF1	A1	A1			A1
PF2	A2	A2			A2
PF3	A3	A3			A3
PF4	A4	A4			A4
PF5	A5	A5			A5
PF12	A6	A6			A6
PF13	A7	A7			A7
PF14	A8	A8			A8
PF15	A9	A9			A9
PG0	A10	A10			A10
PG1		A11			A11
PG2		A12			A12
PG3		A13			
PG4		A14			BA0
PG5		A15			BA1
PD11		A16	A16	CLE	
PD12		A17	A17	ALE	
PD13		A18	A18		
PE3		A19	A19		
PE4		A20	A20		
PE5		A21	A21		
PE6		A22	A22		
PE2		A23	A23		
PG13		A24	A24		
PG14		A25	A25		
PD14	D0	D0	DA0	D0	D0
PD15	D1	D1	DA1	D1	D1
PD0	D2	D2	DA2	D2	D2
PD1	D3	D3	DA3	D3	D3
PE7	D4	D4	DA4	D4	D4
PE8	D5	D5	DA5	D5	D5
PE9	D6	D6	DA6	D6	D6
PE10	D7	D7	DA7	D7	D7

Table 11. FMC pin definition

72/239

STM32F427xx STM32F429xx

	Table	11. FMC pin de		nueu)	1
Pin name	CF	NOR/PSRAM/ SRAM	NOR/PSRAM Mux	NAND16	SDRAM
PE11	D8	D8	DA8	D8	D8
PE12	D9	D9	DA9	D9	D9
PE13	D10	D10	DA10	D10	D10
PE14	D11	D11	DA11	D11	D11
PE15	D12	D12	DA12	D12	D12
PD8	D13	D13	DA13	D13	D13
PD9	D14	D14	DA14	D14	D14
PD10	D15	D15	DA15	D15	D15
PH8		D16			D16
PH9		D17			D17
PH10		D18			D18
PH11		D19			D19
PH12		D20			D20
PH13		D21			D21
PH14		D22			D22
PH15		D23			D23
PI0		D24			D24
PI1		D25			D25
Pl2		D26			D26
PI3		D27			D27
Pl6		D28			D28
PI7		D29			D29
PI9		D30			D30
PI10		D31			D31
PD7		NE1	NE1	NCE2	
PG9		NE2	NE2	NCE3	
PG10	NCE4_1	NE3	NE3		
PG11	NCE4_2				
PG12		NE4	NE4		
PD3		CLK	CLK		
PD4	NOE	NOE	NOE	NOE	
PD5	NWE	NWE	NWE	NWE	
PD6	NWAIT	NWAIT	NWAIT	NWAIT	
PB7		NL(NADV)	NL(NADV)		

Table 11. FMC pin definition (continued)

			-	,	
Pin name	CF	NOR/PSRAM/ SRAM	NOR/PSRAM Mux	NAND16	SDRAM
PF6	NIORD				
PF7	NREG				
PF8	NIOWR				
PF9	CD				
PF10	INTR				
PG6				INT2	
PG7				INT3	
PE0		NBL0	NBL0		NBL0
PE1		NBL1	NBL1		NBL1
PI4		NBL2			NBL2
PI5		NBL3			NBL3
PG8					SDCLK
PC0					SDNWE
PF11					SDNRAS
PG15					SDNCAS
PH2					SDCKE0
PH3					SDNE0
PH6					SDNE1
PH7					SDCKE1
PH5					SDNWE
PC2					SDNE0
PC3					SDCKE0
PB5					SDCKE1
PB6					SDNE1

Table 11. FMC pin definition (continued)

	AF15	SYS	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT
	AF14	ГСD	-	ı	-	LCD_B5	LCD_ VSYNC	I	LCD_G2	ı	LCD_R6	-	ı	LCD_R4	LCD_R5
	AF13	DCMI	ı	·	ı	,	DCMI HSYNC	ı	DCMI_ PIXCLK		ı	DCMI_ D0_	DCMI_D1	ı	
	AF12	FMC/SDIO /OTG2_FS	-	ı	-		OTG_HS_ SOF	ı	ı	ı		-		ı	
apping	AF11	ЕТН	ETH_MII_ CRS	ETH_MII_ RX_CLK/E TH_RMII_ REF_CLK		ETH_MII_ COL		I	I	ETH_MII_ RX_DV/ ETH_RMII _CRS_DV	I	I	ı	I	ı
ction ma	AF10	от G2_HS /отG1_ FS		I	-	OTG_HS_ ULPI_D0	-	ULPI_CK OTG_HS_	-	ı	OTG_FS_ SOF	-	OTG_FS_ ID	OTG_FS_ DM	OTG_FS_ DP
STM32F427xx and STM32F429xx alternate function mapping	AF9	CAN1/2/ TIM12/13/14 /LCD			-				TIM13_CH1	TIM14_CH1	-	-	,	CAN1_RX	CAN1_TX
t29xx alt∈	AF8	USART6/ UART4/5/7 /8	UART4_TX	UART4_RX	-	ı		ı	I	ı		-	ı	ı	
STM32F4	AF7	SPI3/ USART1/ 2/3	USART2_ CTS	USART2_ RTS	USART2_ TX	USART2_ RX	USART2_ CK		-		USART1_ CK	USART1_ TX	USART1_ RX	USART1_ CTS	USART1_ RTS
xx and {	AF6	SPI2/3/ SAI1	-	,	-		SPI3_ NSS/ I2S3_WS	-	-		-	-			-
32F427	AF5	SP11/2/ 3/4/5/6	ı	I	-	'	SPI1_ NSS	SPI1_ SCK	SPI1_ MISO_	SPI1_ MOSI	-	-	'	1	
	AF4	12C1/ 2/3	I	I	ı	ı	I	I	I	ı	I2C3_ SCL	I2C3_ SMBA	ı	ı	ı
Table 12.	AF3	TIM8/9/ 10/11	TIM8_ ETR	ı	TIM9_ CH1	TIM9_ CH2	I	TIM8_ CH1N	TIM8_ BKIN	TIM8_ CH1N_	I	ı	,	I	
Τŝ	AF2	TIM3/4/5	TIM5_ CH1	TIM5_ CH2	TIM5_ CH3	TIM5_ CH4	-		TIM3_ CH1	TIM3_ CH2		-			
	AF1	TIM1/2	TIM2_ CH1/TIM2 _ETR	TIM2_ CH2	TIM2_ CH3	TIM2_ CH4		TIM2_ CH1/TIM2 _ETR	TIM1_ BKIN	TIM1_ CH1N	TIM1_ CH1	TIM1_ CH2	TIM1_ CH3	TIM1_ CH4	TIM1_ ETR
	AF0	SYS	ı	I	-	ı	ı	I.	I.	I	MCO1	-	ı	r	
		Port	PAO	PA1	PA2	PA3	PA4	PA5	PA6	PA7	PA8	PA9	PA10	PA11	PA12
		Ъ						v tro	5						

STM32F427xx STM32F429xx

Pinouts and pin description

DocID024030 Rev 10

75/239

	AF15	SYS	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT
	AF14	ГСD	1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	LCD_B6	LCD_B7	LCD_G4
	AF13	DCMI	I	I	I	I	I	I	I	I	DCML_D10	DCMI_ D5		DCMI_ D6	DCMI_ D7	I
led)	AF12	FMC/SDIO /OTG2_FS	-		1	-	·		ı		FMC_ SDCKE1	FMC_ SDNE1	FMC_NL	SDIO_D4	sdio_d5	ı
(continu	AF11	ЕТН		ı	ı	ETH_MII_ RXD2	ETH_MII_ RXD3				ETH_PPS _OUT	ï		ETH_MII_ TXD3		ETH_MII_ RX_ER
mapping	AF10	0TG2_HS /0TG1_ FS	-		1	OTG_HS_ ULPI_D1	OTG_HS_ ULPI_D2	ı	ı	ı	DTG_HS_ OTG_HS_	-	ı	ı		OTG_HS_ ULPI_D3
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)	AF9	CAN1/2/ TIM12/13/14 /LCD		-	T	LCD_R3	LCD_R6	ı	ı	ı	CAN2_RX	CAN2_TX	ı	CAN1_RX	CAN1_TX	-
alternate	AF8	USART6/ UART4/5/7 /8	I	I	I	ı	ı	ı	I	ı	I	ı	ı	ı	I	I
P429xx	AF7	SPI3/ USART1/ 2/3	-	ı	ı	1	ı	ı	ı	l2S3ext_ SD	ı	USART1_ TX	USART1_ RX	ı	ı	USART3_ TX
I STM32	AF6	SPI2/3/ SAI1			SPI3_ NSS/ I2S3_WS		·	·	SPI3_ SCK/ I2S3_CK	SPI3_ MISO_	SPI3_ MOSI/ I2S3_SD	-	ı.	·		-
7xx and	AF5	SP11/2/ 3/4/5/6	1	ı	SPI1_ NSS	1	'	'	SPI1_ SCK_	SPI1_ MISO_	SPI1_ MOSI	1		'	SPI2_ NSS/I2 S2_WS	SPI2_ SCK/I2 S2_CK
32F42	AF4	12C1/ 2/3	I	I	I	ı	1	ı	ı	ı	I2C1_ SMBĀ	I2C1_ SCL	I2C1_ SDA_	I2C1_ SCL	I2C1_ SDA_	I2C2_ SCL
2. STM3	AF3	TIM8/9/ 10/11		1	ı	TIM8_ CH2N	TIM8_ CH3N		ı.		1	-		TIM10_ CH1	TIM11_ CH1	T
Table 1:	AF2	TIM3/4/5	,	ı	ı	TIM3_ CH3	TIM3_ CH4	,	,	TIM3_ CH1	TIM3_ CH2	TIM4_ CH1	TIM4_ CH2	TIM4_ CH3	TIM4_ CH4_	
	AF1	TIM1/2		-	TIM2_ CH1/TIM2 _ETR	TIM1_ CH2N	TIM1_ CH3N		TIM2_ CH2			-	,		-	TIM2_ CH3
	AF0	SYS	JTMS- SWDI O	JTCK- SWCL K	IDTL	ı		ı	JTDO/ TRAC ESWO	NJTR ST	ı	ı		ı	I	I
		ц	PA13	PA14	PA15	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7	PB8	PB9	PB10
		Port		Port A			·	·		·	Port B		·	·		

Pinouts and pin description

STM32F427xx STM32F429xx

	AF15	SYS	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT
	AF14	ГСD	rcd_65	ı	ı	1	I	-	-	ı	I	ı	ı		LCD_G6
	AF13	DCMI		ı	ı	ı	ı	ī	ı	ı	ı	ı	ı		DCML_D1
(pər	AF12	FMC/SDIO /OTG2_FS		OTG_HS_ ID	I	OTG_HS_ DM	OTG_HS_ DP	FMC_SDN WE	-	FMC_ SDNE0	FMC_ SDCKE0	I	I	SDIO_D6	SDIO_D7
g (continu	AF11	ЕТН	ETH_MIL_ TX_EN/ ETH_RMII _TX_EN	ETH_MIL TXD0/ETH _RMIL_ TXD0	ETH_MIL TXD1/ETH _RMIL_TX D1	ı	ı	I	ETH_MDC	ETH_MII_ TXD2	ETH_MII_ TX_CLK	ETH_MIL RXD0/ETH _RMII_ RXD0 RXD0	ETH_MII_ RXD1/ETH _RMII_ _RMII_	ı	1
mapping	AF10	0TG2_HS /0TG1_ FS	OTG_HS_ ULPI_D4	OTG_HS_ ULPI_D5	OTG_HS_ ULPI_D6	ı	ı	OTG_HS_ ULPI_STP	ı	OTG_HS_ ULPI_DIR	OTG_HS_ ULPI_NXT	ı	ı	ı	·
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)	AF9	CAN1/2/ TIM12/13/14 /LCD		CAN2_RX	CAN2_TX	TIM12_CH1	TIM12_CH2		·			·	·	·	
alternate	AF8	USART6/ UART4/5/7 /8		ı	ı	-	ı	-	-	I	ı	ı	ı	USART6_ TX	USART6_ RX
E429xx	AF7	SPI3/ USART1/ 2/3	USART3_ RX	USART3_ CK	USART3_ CTS	USART3_ RTS		-	-		·			-	
I STM32	AF6	SPI2/3/ SAI1			ı	I2S2ext_ SD	ı	ī	ı	I2S2ext_ SD	ı	ı	ı	ı	I2S3_ MCK
7xx and	AF5	SP11/2/ 3/4/5/6		SPI2_ NSS/I2 S2_WS	SPI2_ SCK/I2 S2_CK	SPI2_ MISO	SPI2_ MOSI/I2 S2_SD	1	-	SPI2_ MISO_	SPI2_ MOSI/I2 S2_SD	ı	ı	I2S2_ MCK	
:2F42	AF4	12C1/ 2/3	I2C2_ SDA_	I2C2_ SMBA		-	T	-	-	i.	-	-	-	-	
2. STM3	AF3	TIM8/9/ 10/11				TIM8_ CH2N	TIM8_ CH3N	1	1	ı	ı			TIM8_ CH1	TIM8_ CH2
Table 1	AF2	TIM3/4/5	·		ı	ı	ı	ı	ı	ı	ı	ı	ı	TIM3_ CH1	TIM3_ CH2
	AF1	TIM1/2	TIM2_ CH4	TIM1_ BKIN	TIM1_ CH1N	TIM1_ CH2N	TIM1_ CH3N_	,	·					ï	
	AF0	SYS	I	I	I	ı	RTC_ REFIN	ı	ı	I	I	I	I	ı	
		ц	PB11	PB12	PB13	PB14	PB15	PC0	PC1	PC2	PC3	PC4	PC5	PC6	PC7
		Port			Port B							COL			

DocID024030 Rev 10

77/239

	AF15	SYS	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT
	AF14	ГСD	-	-	LCD_R2	-	-	-	-	T	-	-	-	LCD_G7	-	,	LCD_B2
	AF13	DCMI	DCML_ D2	DCMI_ D3	DCMI_ D8	DCMI_ D4	DCMI_ D9	I	I	I	I	I	DCML_D11_	DCMI_ D5	I	ı	DCMI_ D10_
(pər	AF12	FMC/SDIO /OTG2_FS	spio_bo	sbio_b1	spio_p2	spio_b3	spio_ck	-	1	ı	FMC_D2	FMC_D3	SDIO_ CMD_	FMC_CLK	FMC_NOE	FMC_NWE	FMC_ NWAIT
(continu	AF11	ETH	,		ı	ï	ı	ï		ï	,		ï	ı	ï		
mapping	AF10	0TG2_HS /0TG1_ FS	ı	I	I	ı	I	ı	I	ı	ı	ı	ı	I	ı	ı	ı
32F427xx and STM32F429xx alternate function mapping (continued)	AF9	CAN1/2/ TIM12/13/14 /LCD	ı	I	I	ı	I	ı	I	ı	CAN1_RX	CAN1_TX	ı	I	ı	ı	ı
alternate	AF8	USART6/ UART4/5/7 /8	USART6_ CK	I	UART4_TX	UART4_RX	UART5_TX	I	I	I	I	I	UART5_RX	I	I	ı	ı
F429xx	AF7	SPI3/ USART1/ 2/3	ı	I	USART3_ TX	USART3_ RX	USART3_ CK	I	I	I	I	I	I	USART2_ CTS	USART2_ RTS	USART2_ TX	USART2_ RX
I STM32	AF6	SPI2/3/ SAI1	ı	I	SPI3_ SCK/I2S 3_CK	SPI3_ MISO_	SPI3_ MOSI/I2 S3_SD	ı	I	ı	ı	I	ı	ı	ı	ı	SAI1_ SD_A
7xx anc	AF5	SP11/2/ 3/4/5/6		I2S_ CKIN	I	I2S3ext _SD	I		ı	I	T	I		SPI2_S CK/I 2S2_CK		ı	SPI3_ MOSI/I2 S3_SD
32F42	AF4	12C1/ 2/3	ı	I2C3_ SDA_	ı	T	ı	T	I	-		I	T	ı	T	ı	'
2. STM:	AF3	TIM8/9/ 10/11	TIM8_ CH3	TIM8_ CH4	ı	ı	ı	ı	ı	ı		ı	ı	ı	ı	ı	
Table 12. STM	AF2	TIM3/4/5	TIM3_ CH3	TIM3_ CH4	-	-	-	-	-	-	-	-	TIM3_ ETR	-	-		ı
	AF1	TIM1/2			ı	·	ı	·			,	·	·	ı	·		
	AF0	SYS		MCO2	-	-	-	-	-		-	-	-	-	-		
		Port	PC8	PC9	PC10	PC11	PC12	PC13	PC14	PC15	PD0	PD1	PD2	PD3	PD4	PD5	PD6
		۵.				Port	U							Port D			
78	/239						D	ocID0	24030	Rev	10						5

Pinouts and pin description

	AF15	SYS	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT
	AF14	ГСD	ı	ı	ı	LCD_B3	'	-	ı	ı			ı	ı		LCD_B0	LCD_G0	LCD_G1
	AF13	DCMI		·	ı	ı	,	·	ı	ı		DCMI_ D2	DCMI_ D3_	ı	ı	DCMI_ D4	DCMI_ D6	DCMI_ D7
(pər	AF12	FMC/SDIO /OTG2_FS	FMC_NE1/ FMC_ NCE2	FMC_D13	FMC_D14	FMC_D15	FMC_A16	FMC_A17	FMC_A18	FMC_D0	FMC_D1	FMC_ NBL0_	FMC_ NBL1	FMC_A23	FMC_A19	FMC_A20	FMC_A21	FMC_A22
l (contin	AF11	ЕТН		I	-		ı	-	I	I	-	-	-	ETH_MII_ TXD3	-	I	-	ı
mapping	AF10	от <u>62</u> нs /отб1_ FS	-	·	-			-	·	I	-	-	-	·	-		-	ı
function	AF9	CAN1/2/ TIM12/13/14 /LCD	ı	I	I	I	ı	ı	I	ı	I	ı	I	I	ı	I	I	
2F427xx and STM32F429xx alternate function mapping (continued)	AF8	USART6/ UART4/5/7 /8		I	-	-	ı	-	I	ı	I	UART8_Rx	UART8_Tx	I	-	I	-	ı
E429xx	AF7	SPI3/ USART1/ 2/3	USART2_ CK	USART3_ TX	USART3_ RX	USART3_ CK	USART3_ CTS	USART3_ RTS	ı	ı	-	-	-	ı	-	·	-	ı
I STM32	AF6	SPI2/3/ SAI1		ı	ı	ı	ı.	ı	ı	ı	ı	ı	ı	SAI1_ MCLK_A	SAI1_ SD_B	SAI1_ FS_A	SAI1_ SCK_A	SAI1_ SD_A
7xx anc	AF5	SP11/2/ 3/4/5/6	ı	ı	ı	I	ı	-	ı	I	1	-	I	SPI4_ SCK	-	SPI4_ NSS	SPI4_M ISO	SPI4_ MOSI
2F42	AF4	12C1/ 2/3		I	ı	I.	1	ı	I	,	I.	ı.	I.	I	ı.	I	i.	
Table 12. STM3	AF3	TIM8/9/ 10/11		ı	ı	ı	'	-	ı	ı			ı	ı		,	TIM9_ CH1	TIM9_ CH2
Table 1	AF2	TIM3/4/5			ı	ı	ı	TIM4_ CH1	TIM4_ CH2	TIM4_ CH3	TIM4_ CH4	TIM4_ ETR	ı	ı	ı	ı	ı	,
	AF1	TIM1/2				-		-			-	-	-		,		-	
	AF0	SYS		I	-	-	ı	-	I	ı	-	-	I	TRAC ECLK	TRAC ED0	TRAC ED1	TRAC ED2	TRAC ED3
		ť	PD7	PD8	PD9	PD10	PD11	PD12	PD13	PD14	PD15	PE0	PE1	PE2	PE3	PE4	PE5	PE6
		Port					Port								Port E			

DocID024030 Rev 10

79/239

	AF15	SYS	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT
	AF14	ГСD	ı	-	ı	1	LCD_G3	LCD_B4	LCD_DE	CLK LCD_	LCD_R7	I	-	I	I	-	ı	ı	
	AF13	DCMI	ı	-	ı	-	-	ı	-	-		I	-	-	I	-	ı	ı	
(pər	AF12	FMC/SDIO /OTG2_FS	FMC_D4	FMC_D5	FMC_D6	FMC_D7	FMC_D8	FMC_D9	FMC_D10	FMC_D11	FMC_D12	FMC_A0	FMC_A1	FMC_A2	FMC_A3	FMC_A4	FMC_A5		FMC_ NREG
(continu	AF11	ETH		,		,	,		,	,							,		,
mapping	AF10	0TG2_HS /0TG1_ FS	,	-	ı	-	-	ı	-	-		I	-		I	-	ı	ı	ı
32F427xx and STM32F429xx alternate function mapping (continued)	AF9	CAN1/2/ TIM12/13/14 /LCD	ı	-	ı	-	-	ı	-	-	-	-	-	·		-	ı	ı	
alternate	AF8	USART6/ UART4/5/7 /8	UART7_Rx	UART7_Tx	ı	-	-	,	-	-	-	I	-		ı	-	ı	UART7_Rx	UART7_Tx
F429xx	AF7	SPI3/ USART1/ 2/3	ı	ī	ı	ı	ī	ı	ı	ī	I	I	ı	ı	I	ı	ı	ı	,
I STM32	AF6	SPI2/3/ SAI1	ı	-	1	ı	-	ı	ı	-	I	I	ı	I	I	ı	ı	SAI1_ SD_B	SAI1_ MCLK_B
7xx and	AF5	SP11/2/ 3/4/5/6		-		-	SPI4_ NSS	SPI4_ SCK_	SPI4 MISO	SPI4 MOSI_			-			-		SPI5_	SPI5_ SCK
32F42	AF4	12C1/ 2/3						,			ı	I2C2_ SDA_	I2C2_ SCL	I2C2_ SMBA				,	ı
2. STM:	AF3	TIM8/9/ 10/11		-		-	-	ı	-	-	-	L		-	T	-	ı	TIM10_ CH1	TIM11_ CH1
Table 12. STM	AF2	TIM3/4/5	ı	ı	1	ı	ı	,	ı	ı	1			ı	ı	1	ı	,	ı
	AF1	TIM1/2	TIM1_ ETR	TIM1_ CH1N	TIM1 CH1	TIM1_ CH2N	TIM1_ CH2	TIM1_ CH3N	TIM1_ CH3	TIM1_ CH4	TIM1_ BKIN	ı		ı	ı	ı	ı	,	ı
	AF0	SYS	1		,	ı		1	ı		ı	ı	ı	ı	I	ı	ı	ı	ı
		Port	PE7	PE8	PE9	PE10	PE11	PE12	PE13	PE14	PE15	PF0	PF1	PF2	PF3	PF4	PF5	PF6	PF7
		<u>م</u>					Port E								Li to O				
80	/239							Doc	D024	4030 F	Rev 10)							57

Pinouts and pin description

	AF15	SYS	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT
	AF14	ГСD	-		LCD_DE	'	'	'	'			'	'	ı	ı	'	LCD_R7	CLK LCD_	'
	AF13	DCMI	-	-	DCMI_D11	DCMI_ D12	ī		ı	-	-	ī		·	-		DCMI_ D12	DCMI_ D13	
led)	AF12	FMC/SDIO /OTG2_FS		FMC_CD	FMC_INTR	FMC_ SDNRAS	FMC_A6	FMC_A7	FMC_A8	FMC_A9	FMC_A10	FMC_A11	FMC_A12	FMC_A13	FMC_A14/ FMC_BA0	FMC_A15/ FMC_BA1	FMC_INT2	FMC_INT3	FMC_SDC LK
l (continu	AF11	ЕТН	-	-	ı	ı	ı	ı	ı	-	-	ı		r	-	ı	r	-	ETH_PPS _OUT
mapping	AF10	0TG2_HS /0TG1_ FS	-	-	'	'	'	'		-	-	'		ı		'	ı	-	'
function	AF9	CAN1/2/ TIM12/13/14 /LCD	TIM13_CH1	TIM14_CH1	ı	ı	ı	ı	,	ı	ı	ı		ı	ı	ı	ı	ı	ı
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)	AF8	USART6/ UART4/5/7 /8		I	ı	ı	ı	ı	ı	I	I	ı	ı	I	-	ı	I	USART6_ CK	USART6_ RTS
2F429xx	AF7	SPI3/ USART1/ 2/3	-	-	'	'	'	'	'	-		'	'	ı	ı	'	ı	-	'
I STM32	AF6	SPI2/3/ SAI1	SAI1_ SCK_B	SAI1_ FS_B		,	,		,	ī	ı	,		ı	ı.		ı	ı.	
7xx anc	AF5	SP11/2/ 3/4/5/6	SPI5_ MISO_	SPI5_ MOSI	'	SPI5_ MOSI	,	'	'	ı	1	,	'	ı	ı	'	ı	1	SPI6 NSS
32F42	AF4	12C1/ 2/3	I	I	ı	ı		ı	,	I	I		I	I	I	ı	I	ı	,
2. STM3	AF3	TIM8/9/ 10/11		-					ı	-	-			-	-		-	-	ī
Table 1:	AF2	TIM3/4/5		ı	'	,	ı	'	,	ı		ı				'		-	'
	AF1	TIM1/2	-	-	'	'	'	'		-	-	'		ı	·	'	ı	-	'
	AF0	SYS	ı	ı	ı	ı		ı		ı	ı		ı	ı	ı	ı	ı		
		л	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PG0	PG1	PG2	PG3	PG4	PG5	PG6	PG7	PG8
		Port				L t C									Port G				

DocID024030 Rev 10

STM32F427xx STM32F429xx

Pinouts and pin description

Pinouts and pin description

	AF15	SYS	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	ı
	AF14	ГСD	T	LCD_B2	LCD_B3	LCD_B1	ı	ı	-		-	LCD_R0	LCD_R1	ı	ı	ı
	AF13	DCMI		DCMI_ D2	DCMI_ D3	-	ı	ı	DCMI_ D13		-	-	ı	1	1	DCMI_ D8_
led)	AF12	FMC/SDIO /OTG2_FS	FMC_NE2/ FMC_ NCE3	FMC_ NCE4_1/ FMC_NE3	FMC_ NCE4_2	FMC_NE4	FMC_A24	FMC_A25	5DNCAS	ı	-	SDCKE0	FMC_SDN E0	ı	FMC_SDN WE	FMCSDNE1
(continu	AF11	ЕТН		ı	ETH_MII_ TX_EN/ ETH_RMII _TX_EN	-	ETH_MII_ TXD0/ ETH_RMII _TXD0	ETH_MII_ TXD1/ ETH_RMII _TXD1	-		-	ETH_MII_ CRS	ETH_MII_ COL	'		ı
mapping	AF10	0TG2_HS /0TG1_ FS	-	ı	I	-	ı	ı	-	ı	-	-	ı	OTG_HS_ ULPI_NXT	ı	ı
32F427xx and STM32F429xx alternate function mapping (continued)	AF9	CAN1/2/ TIM12/13/14 /LCD	,	LCD_G3	ı	LCD_B4	ı	ı	ı	ı	ı	ı	ı	ı	ı	TIM12_CH1
alternate	AF8	USART6/ UART4/5/7 /8	USART6_ RX	ı	I	USART6_ RTS	USART6_ CTS	USART6_ TX	USART6_ CTS	ı	1	-	ı	ı	1	ı
F429xx	AF7	SPI3/ USART1/ 2/3	ı	ı	ı		ı	1		1			'	'	,	
STM32	AF6	SPI2/3/ SAI1	-	ı	ı	ı	ı	ı		,	1		ı		,	
7xx and	AF5	SP11/2/ 3/4/5/6	I	I	-	OSIM SIAS	SPI6 SCK	SPI6	-		-	-	ı	ı	SPI5_N SS	SPI5_ SCK
32F427	AF4	12C1/ 2/3		,	-		ı	ı.	-		-	-		I2C2_ SCL	12C2_ SDA	I2C2_ SMBA
STM	AF3	TIM8/9/ 10/11	-	ı.	-	-	ı	ı	-		-	-		ī		
Table 12.	AF2	TIM3/4/5	ı	ı	ı	-	ı	ı	-	1	-	-	'	'	,	
	AF1	TIM1/2	ï	,	ï	ı.	ï	1		ı	,		,	,	,	
	AF0	SYS	ı		I		I	i.			ı				,	I
		Port	PG9	PG10	PG11	PG12	PG13	PG14	PG15	рно	PH1	PH2	PH3	PH4	PH5	PH6
	/0000					Port G	D 1000	000 5					Port H			
82	/239						DocID024	U3U Rev 2	10							5/

	AF15	SYS	ı	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT
·	AF14	ГСD	,	LCD_R2	LCD_R3	LCD_R4	LCD_R5	LCD_R6	LCD_G2	LCD_G3	LCD_G4	LCD_G5	PCD_G6	LCD_G7		LCD_B4	LCD_B5	LCD_B6
	AF13	DCMI	DCMI_ D9	DCMI_HSYNC					ı	DCMI_D4	DCMI_D11	DCMI_D13	DCMI_ D8		DCMI_D 10	DCMI_D 5	DCMI VSYNC	
led)	AF12	FMC/SDIO /OTG2_FS	FMC SDCKE1	FMC_D16	FMC_D17	FMC_D18	FMC_D19	FMC_D20	FMC_D21	FMC_D22	FMC_D23	FMC_D24	FMC_D25	FMC_D26	FMC_D27	FMC_ NBL2	FMC_ NBL3	FMC_D28
(continu	AF11	ЕТН	ETH_MII_ RXD3	·			·	·					ı			·	·	·
mapping	AF10	0TG2_HS /0TG1_ FS	-	,	-	ı	,		ı	·	-	1	1	ı			,	·
function	AF9	CAN1/2/ TIM12/13/14 /LCD	,	,	TIM12_CH2		,	,	CAN1_TX			,	ï	ï		,	,	,
32F427xx and STM32F429xx alternate function mapping (continued)	AF8	USART6/ UART4/5/7 /8	-	ı	-	ı	ı	ı	ı	·	-	ı	-	ı		ı	ı	ı
F429xX	AF7	SPI3/ USART1/ 2/3	ı	ı	-	ı	ı	ı	ı	·	-	ı	1	ı		ı	ı	ı
I STM32	AF6	SPI2/3/ SAI1	ı	,	-		,	·			-	ı	1	l2S2ext_ SD		·	·	,
7xx anc	AF5	SP11/2/ 3/4/5/6	SPI5_ MISO_	'	-	'	'	'	'	'	-	SPI2_ NSS/I2 S2_WS	SPI2_ SCK/I2 S2_CK	SPI2_ MISO_	SPI2_M OSI/I2S 2_SD	'	'	'
32F42	AF4	12C1/ 2/3	I2C3_ SCL	I2C3_ SDA_	I2C3_ SMBA	,	,		,	,	ı	1	ı	,	ı		,	,
2. STM3	AF3	TIM8/9/ 10/11		ī	-	ı.	ī	ī	TIM8_ CH1N	TIM8_ CH2N	TIM8_ CH3N	ı	-	TIM8_ CH4	TIM8_ ETR	TIM8_ BKIN	TIM8_ CH1	TIM8_ CH2
Table 12. STM	AF2	TIM3/4/5	ı	ı	ı	TIM5_ CH1	TIM5_ CH2	TIM5_ CH3	ı	,	ı	TIM5_ CH4	ı	,	ı	ı	1	ı
	AF1	2/1MIT	ı.	ı	-	ī	ı	ī	ī		-	ı	-	ı.	-	ī	·	ı
	AF0	SYS	ı	ı			ı					ı	1	ı	1		ı	
		Port	7H4	PH8	6Hd	PH10	PH11	PH12	PH13	PH14	PH15	P10	۶IJ	PI2	PI3	Pl4	PI5	PI6
		ŭ					Port H								Port I			

-.

DocID024030 Rev 10

83/239

Pinouts	and	pin	desc	ription
· ·····	ana	P	4000	

STM32F427xx STM32F429xx

	AF15	SYS	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT	EVEN TOUT
	AF14	LCD	LCD_B7	I	LCD_ VSYNC	LCDHSYNC	ı	LCD	LCD_ VSYNC	CLK_	LCD_R0	LCD_R1	LCD_R2	LCD_R3	LCD_R4	LCD_R5	LCD_R6	LCD_R7	LCD_G0
	AF13	DCMI		ı	ı	ı	ı	ı	ı	I	I	I	I	ı	,	ı	ı	I	ı
led)	AF12	FMC/SDIO /OTG2_FS	FMC_D29	-	FMC_D30	FMC_D31	I	I	-	I	-	-	-	I		ı	I	-	·
l (continu	AF11	ЕТН	-	-	-	ETH_MII_ RX_ER	-	-	-	-	-	-	-		-			-	
mapping	AF10	0TG2_HS /0TG1_ FS	-	-			OTG_HS_ ULPI_DIR		-		-	-	-					-	
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)	AF9	CAN1/2/ TIM12/13/14 /LCD	ı	ı	CAN1_RX	ı	ı	ı	ı	I	I	I	I	ı		ı	ı	I	·
alternate	AF8	USART6/ UART4/5/7 /8	ı	T	ı	ı	ı	ı	ı	T	I	I	I	ı		ı	ı	I	ı
F429xx	AF7	SPI3/ USART1/ 2/3	-	-	ı	ı	ı	ı	-	T	-	-	-	ı		ı	ı	-	'
I STM32	AF6	SPI2/3/ SAI1	ı	I	ı	I	I	ı	ı	I	I	I	I	I		ı	I	I	ı
7xx anc	AF5	SP11/2/ 3/4/5/6	'	1	'	ı	'	'	ı	ı	1	1	1	ı	'	1	ı	1	'
32F42	AF4	12C1/ 2/3		ı	,	ı	1	,	ı	T	I	I	I	ı			ı	I	I
2. STM:	AF3	TIM8/9/ 10/11	TIM8_ CH3	I	ı	,		ı	I	I	I	ı	I	,	,		,	ı	ı
Table 1	AF2	TIM3/4/5	ı	ı	ı	ı	ı	ı	ı	I	ı	I	ı	ı	,	ı	ı	I	ı
	AF1	TIM1/2	ı	ı	ı	ı	ı	ı	ı	ı	ı	I	ı	ı		ı	ı	I	·
	AF0	SYS				ı			ı	ı	ı	ı	ı	ı			ı	ı	ı
		Ę	PI7	PI8	6Id	P110	P111	P112	P113	P114	P115	ord	PJ1	P.J2	PJ3	PJ4	PJ5	PJ6	PJ7
		Port			I	I	Port I	I						I	1		I		
84	/239							Dor	ID02	1030 6		<u> </u>							

| SYS | EVEN
TOUT | EVEN
TOUT | EVEN
TOUT
 | EVEN
TOUT | EVEN
TOUT | EVEN
TOUT
 | EVEN
TOUT | EVEN
TOUT
 | EVEN
TOUT
 | EVEN
TOUT | EVEN
TOUT | EVEN
TOUT
 | EVEN
TOUT | EVEN
TOUT | EVEN
TOUT | EVEN
TOUT |
|----------------------------|---|--
--
--|--|---|--

--

--
--	--	---	--
LCD	LCD_G1	LCD_G2	LCD_G3
 | LCD_G4 | LCD_B0 | LCD_B1
 | LCD_B2 | LCD_B3
 | LCD_G5
 | LCD_G6 | LCD_G7 | LCD_B4
 | LCD_B5 | LCD_B6 | LCD_B7 | LCD_DE |
| DCMI | I | ı | 1
 | ı | - | 1
 | , | -
 | -
 | - | - | ,
 | , | | , | - |
| FMC/SDIO
/OTG2_FS | - | - | ı
 | ı | - | ı
 | ı | -
 | -
 | - | - | ı
 | , | | ı | - |
| ЕТН | ı | ī | 1
 | , | ī | 1
 | , | ı
 | ı
 | ı | | ,
 | | | | - |
| OTG2_HS
/OTG1_
FS | | |
 | , | |
 | , | ,
 | ,
 | , | ı |
 | | | | |
| | - | - | ,
 | , | - | ,
 | , | -
 | -
 | - | - | ,
 | | | | - |
| USART6/
UART4/5/7
/8 | , | 1 | ,
 | , | 1 | ,
 | , | 1
 | ı
 | 1 | | ,
 | | | | |
| | - | - | 1
 | , | - | 1
 | , | -
 | -
 | - | - | ,
 | | | | - |
| SPI2/3/
SAI1 | ı | ı | ı
 | ı | ı | ı
 | ı | ı
 | ı
 | ı | ı | ı
 | | | , | |
| SP11/2/
3/4/5/6 | I | T | ı
 | ı | T | ı
 | ı | I
 | I
 | I | T | ı
 | ı | , | 1 | - |
| 12C1/
2/3 | - | - |
 | ' | - |
 | ' | -
 | -
 | - | - | '
 | | | | - |
| TIM8/9/
10/11 | 1 | |
 | , | |
 | , |
 |
 | | |
 | | | | |
| TIM3/4/5 | - | - | ı
 | ı | - | ı
 | ı | -
 | -
 | - | - | ı
 | | | | - |
| TIM1/2 | | I | ı
 | ı | I | ı
 | ı | ı
 | -
 | ı | T | ı
 | | | | - |
| SYS | I | - |
 | ı | - |
 | ı | I
 | I
 | I | - | ,
 | | | , | - |
| b. | PJ8 | 6ſd | PJ10
 | PJ11 | PJ12 | PJ13
 | PJ14 | PJ15
 | PK0
 | PK1 | PK2 | PK3
 | PK4 | PK5 | PK6 | PK7 |
| ď | | |
 | t
C | |
 | |
 |
 | | | | | | | | | | | | | | | | | |
 | | | | |
| | TIM1/2 TIM3/4/5 TIM3/4/5 TIM3/4/5 TIM3/4/5 TIM3/4/5 TIM3/4/5 TIM3/4/5 TIM3/4/5 TIM3/4/5/5 TIM1/2/13/14 0TG2_HS 0TG2_HS 0TG2_HS 0TG2_FS DCMI LCD FS 0TG2_FS DCMI LCD | SYS TIM1/2 TIM8/9/ I2C1/ SPI2/3/ SPI2/3/ USART6/ CAN1/2/ OTG2_HS FMC/SDIO DCMI LCD 3/45/6 3/45/6 SA11 2/3 USART1/ UART4/5/7 TIM1/2/13/14 /OTG2_HS FMC/SDIO DCMI LCD 3/8 - - - - - - - - - LCD GC HS MC/SDIO DCMI LCD GC HS LCD GC GC GC GC | SYS TIM1/2 TIM3/4/5 TIM8/9/1 ISC/1 SPI2/3 USART6/ CAN1/2/1 OTG2_HS FMC/SDIO DCMI LCD JB - <td>SYS TIM1/2 TIM3/4/5 TIM8/9/10(11) SP12/3 SP13/1 USART6/ CAN1/2/1 OTG2_HS FMC/SD10 DCM LCD D3 </td> <td>ort Sys TIM3/4/s TIM3/4/s TIM3/4/s SP11/s SP13/s USART6/s SP13/s USART6/s SP13/s SP1</td> <td>SYS TIM3/45 TIM8/91 I2C/1 SP12/3 SP13/3 USART6/ CAN1/2/1 CTA PP1/2 PP1/2</td> <td>ort TMU12 TMM345 TMM345 SP13/1 SP13/1 USARTIV USARTIV CAUIZ/1 FMCSDID FMCSDID PUID <</td> <td>ort NM345 FMM345 FMM345<td>ort State TMM345 TMM326 TMM345 TMM345<td>off Syst TMMS4 SP12/3 SP12/3 SP13/4 USAFTAS CANT/2/3 CANT/2/3 CANT/2/3 CANT/2 CANT/</td><td>ort Syst TMMS4 TMMS44 TMMS44 SPU34 SPU34 USART4 CANIZA COT2_FS DFM PMC DFM DFM<</td><td>off system Times <th< td=""><td>¹¹ TMMS TMMS SPUN SPUN SPUN UNRAFTAG UNRAFTAG</td><td>off System TMAS <</td><td>11 Keys Final Serial Serial Control of the state Serial Seria Serial Serial</td><td>¹¹ Waste Times Firsting Berry Locating Control of Firsting Firsting</td></th<></td></td></td> | SYS TIM1/2 TIM3/4/5 TIM8/9/10(11) SP12/3 SP13/1 USART6/ CAN1/2/1 OTG2_HS FMC/SD10 DCM LCD D3 | ort Sys TIM3/4/s TIM3/4/s TIM3/4/s SP11/s SP13/s USART6/s SP13/s USART6/s SP13/s SP1 | SYS TIM3/45 TIM8/91 I2C/1 SP12/3 SP13/3 USART6/ CAN1/2/1 CTA PP1/2 PP1/2 | ort TMU12 TMM345 TMM345 SP13/1 SP13/1 USARTIV USARTIV CAUIZ/1 FMCSDID FMCSDID PUID < | ort NM345 FMM345 FMM345 <td>ort State TMM345 TMM326 TMM345 TMM345<td>off Syst TMMS4 SP12/3 SP12/3 SP13/4 USAFTAS CANT/2/3 CANT/2/3 CANT/2/3 CANT/2 CANT/</td><td>ort Syst TMMS4 TMMS44 TMMS44 SPU34 SPU34 USART4 CANIZA COT2_FS DFM PMC DFM DFM<</td><td>off system Times <th< td=""><td>¹¹ TMMS TMMS SPUN SPUN SPUN UNRAFTAG UNRAFTAG</td><td>off System TMAS <</td><td>11 Keys Final Serial Serial Control of the state Serial Seria Serial Serial</td><td>¹¹ Waste Times Firsting Berry Locating Control of Firsting Firsting</td></th<></td></td> | ort State TMM345 TMM326 TMM345 TMM345 <td>off Syst TMMS4 SP12/3 SP12/3 SP13/4 USAFTAS CANT/2/3 CANT/2/3 CANT/2/3 CANT/2 CANT/</td> <td>ort Syst TMMS4 TMMS44 TMMS44 SPU34 SPU34 USART4 CANIZA COT2_FS DFM PMC DFM DFM<</td> <td>off system Times <th< td=""><td>¹¹ TMMS TMMS SPUN SPUN SPUN UNRAFTAG UNRAFTAG</td><td>off System TMAS <</td><td>11 Keys Final Serial Serial Control of the state Serial Seria Serial Serial</td><td>¹¹ Waste Times Firsting Berry Locating Control of Firsting Firsting</td></th<></td> | off Syst TMMS4 SP12/3 SP12/3 SP13/4 USAFTAS CANT/2/3 CANT/2/3 CANT/2/3 CANT/2 CANT/ | ort Syst TMMS4 TMMS44 TMMS44 SPU34 SPU34 USART4 CANIZA COT2_FS DFM PMC DFM DFM< | off system Times Times <th< td=""><td>¹¹ TMMS TMMS SPUN SPUN SPUN UNRAFTAG UNRAFTAG</td><td>off System TMAS <</td><td>11 Keys Final Serial Serial Control of the state Serial Seria Serial Serial</td><td>¹¹ Waste Times Firsting Berry Locating Control of Firsting Firsting</td></th<> | ¹¹ TMMS TMMS SPUN SPUN SPUN UNRAFTAG UNRAFTAG | off System TMAS < | 11 Keys Final Serial Serial Control of the state Serial Seria Serial Serial | ¹¹ Waste Times Firsting Berry Locating Control of Firsting Firsting |

STM32F427xx STM32F429xx

Pinouts and pin description

85/239

5 Memory mapping

The memory map is shown in *Figure 19*.

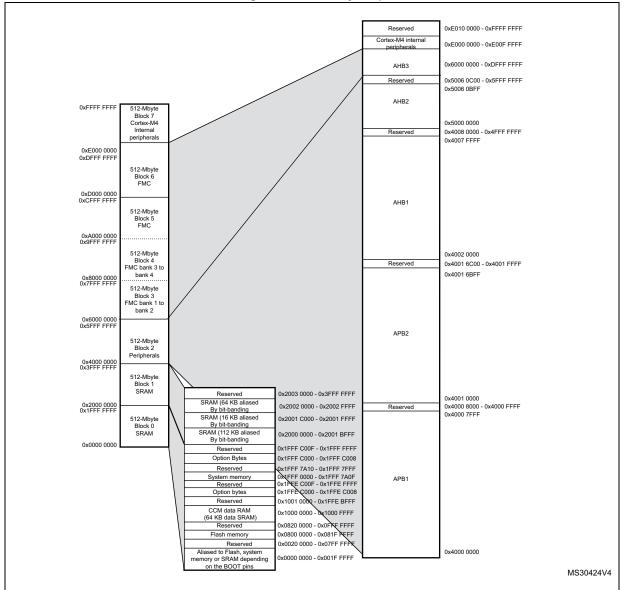


Figure 19. Memory map

Bus	Boundary address	Peripheral		
	0xE00F FFFF - 0xFFFF FFFF	Reserved		
Cortex-M4	0xE000 0000 - 0xE00F FFFF	Cortex-M4 internal peripherals		
	0xD000 0000 - 0xDFFF FFFF	FMC bank 6		
	0xC000 0000 - 0xCFFF FFFF	FMC bank 5		
	0xA000 1000 - 0xBFFF FFFF	Reserved		
AHB3	0xA000 0000- 0xA000 0FFF	FMC control register		
ALIDS	0x9000 0000 - 0x9FFF FFFF	FMC bank 4		
	0x8000 0000 - 0x8FFF FFFF	FMC bank 3		
	0x7000 0000 - 0x7FFF FFFF	FMC bank 2		
	0x6000 0000 - 0x6FFF FFFF	FMC bank 1		
	0x5006 0C00- 0x5FFF FFFF	Reserved		
	0x5006 0800 - 0X5006 0BFF	RNG		
	0x5005 0400 - X5006 07FF	Reserved		
AHB2	0x5005 0000 - 0X5005 03FF	DCMI		
	0x5004 0000- 0x5004 FFFF	Reserved		
	0x5000 0000 - 0X5003 FFFF	USB OTG FS		

Table 13. STM32F427xx and STM32F429xx register boundary addres	2022
I ADIE IS. STIVISZE4ZZXX ATU STIVISZE4ZSXX TEGISLET DUUTUALY AUUTE	3363

Bus	Boundary address	Peripheral
	0x4008 0000- 0x4FFF FFFF	Reserved
	0x4004 0000 - 0x4007 FFFF	USB OTG HS
	0x4002 BC00- 0x4003 FFFF	Reserved
	0x4002 B000 - 0x4002 BBFF	DMA2D
	0x4002 9400 - 0x4002 AFFF	Reserved
	0x4002 9000 - 0x4002 93FF	
	0x4002 8C00 - 0x4002 8FFF	-
	0x4002 8800 - 0x4002 8BFF	ETHERNET MAC
	0x4002 8400 - 0x4002 87FF	
	0x4002 8000 - 0x4002 83FF	
	0x4002 6800 - 0x4002 7FFF	Reserved
	0x4002 6400 - 0x4002 67FF	DMA2
	0x4002 6000 - 0x4002 63FF	DMA1
	0X4002 5000 - 0X4002 5FFF	Reserved
	0x4002 4000 - 0x4002 4FFF	BKPSRAM
AHB1	0x4002 3C00 - 0x4002 3FFF	Flash interface register
AIDI	0x4002 3800 - 0x4002 3BFF	RCC
	0X4002 3400 - 0X4002 37FF	Reserved
	0x4002 3000 - 0x4002 33FF	CRC
	0x4002 2C00 - 0x4002 2FFF	Reserved
	0x4002 2800 - 0x4002 2BFF	GPIOK
	0x4002 2400 - 0x4002 27FF	GPIOJ
	0x4002 2000 - 0x4002 23FF	GPIOI
	0x4002 1C00 - 0x4002 1FFF	GPIOH
	0x4002 1800 - 0x4002 1BFF	GPIOG
	0x4002 1400 - 0x4002 17FF	GPIOF
	0x4002 1000 - 0x4002 13FF	GPIOE
	0X4002 0C00 - 0x4002 0FFF	GPIOD
	0x4002 0800 - 0x4002 0BFF	GPIOC
	0x4002 0400 - 0x4002 07FF	GPIOB
	0x4002 0000 - 0x4002 03FF	GPIOA

Table 13. STM32F427xx and STM32F429xx register boundary addresses (continued)

Bus	Boundary address	Peripheral
	0x4001 6C00- 0x4001 FFFF	Reserved
	0x4001 6800 - 0x4001 6BFF	LCD-TFT
	0x4001 5C00 - 0x4001 67FF	Reserved
	0x4001 5800 - 0x4001 5BFF	SAI1
	0x4001 5400 - 0x4001 57FF	SPI6
	0x4001 5000 - 0x4001 53FF	SPI5
	0x4001 5400 - 0x4001 57FF	SPI6
	0x4001 5000 - 0x4001 53FF	SPI5
	0x4001 4C00 - 0x4001 4FFF	Reserved
	0x4001 4800 - 0x4001 4BFF	TIM11
	0x4001 4400 - 0x4001 47FF	TIM10
	0x4001 4000 - 0x4001 43FF	TIM9
APB2	0x4001 3C00 - 0x4001 3FFF	EXTI
	0x4001 3800 - 0x4001 3BFF	SYSCFG
	0x4001 3400 - 0x4001 37FF	SPI4
	0x4001 3000 - 0x4001 33FF	SPI1
	0x4001 2C00 - 0x4001 2FFF	SDIO
	0x4001 2400 - 0x4001 2BFF	Reserved
	0x4001 2000 - 0x4001 23FF	ADC1 - ADC2 - ADC3
	0x4001 1800 - 0x4001 1FFF	Reserved
	0x4001 1400 - 0x4001 17FF	USART6
	0x4001 1000 - 0x4001 13FF	USART1
	0x4001 0800 - 0x4001 0FFF	Reserved
	0x4001 0400 - 0x4001 07FF	TIM8
	0x4001 0000 - 0x4001 03FF	TIM1

Table 13. STM32F427xx and STM32F429xx register boundary addresses (continued)

Bus	Boundary address	Peripheral
	0x4000 8000- 0x4000 FFFF	Reserved
	0x4000 7C00 - 0x4000 7FFF	UART8
	0x4000 7800 - 0x4000 7BFF	UART7
	0x4000 7400 - 0x4000 77FF	DAC
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6C00 - 0x4000 6FFF	Reserved
	0x4000 6800 - 0x4000 6BFF	CAN2
	0x4000 6400 - 0x4000 67FF	CAN1
	0x4000 6000 - 0x4000 63FF	Reserved
	0x4000 5C00 - 0x4000 5FFF	I2C3
	0x4000 5800 - 0x4000 5BFF	I2C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 5000 - 0x4000 53FF	UART5
	0x4000 4C00 - 0x4000 4FFF	UART4
	0x4000 4800 - 0x4000 4BFF	USART3
	0x4000 4400 - 0x4000 47FF	USART2
APB1	0x4000 4000 - 0x4000 43FF	I2S3ext
AFDI	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	I2S2ext
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 2400 - 0x4000 27FF	Reserved
	0x4000 2000 - 0x4000 23FF	TIM14
	0x4000 1C00 - 0x4000 1FFF	TIM13
	0x4000 1800 - 0x4000 1BFF	TIM12
	0x4000 1400 - 0x4000 17FF	TIM7
	0x4000 1000 - 0x4000 13FF	TIM6
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0800 - 0x4000 0BFF	TIM4
	0x4000 0400 - 0x4000 07FF	TIM3
	0x4000 0000 - 0x4000 03FF	TIM2

Table 13. STM32F427xx and STM32F429xx register boundary addresses (continued)

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

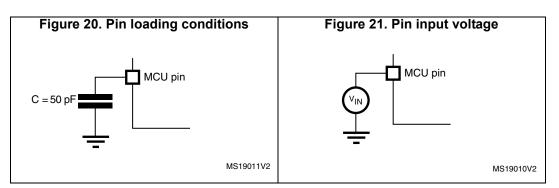
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V (for the 1.7 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

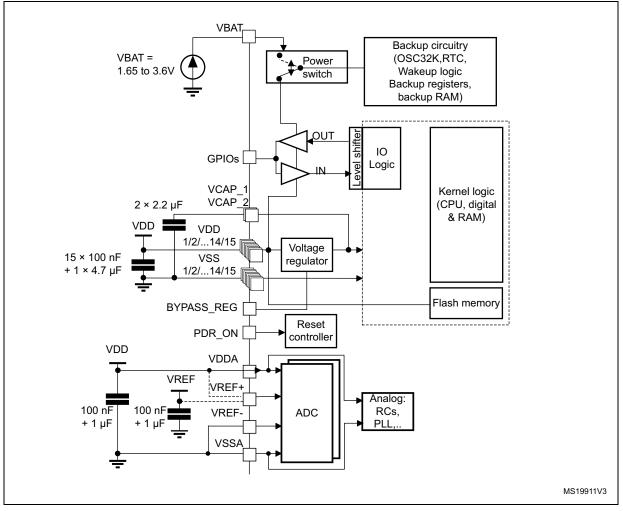
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

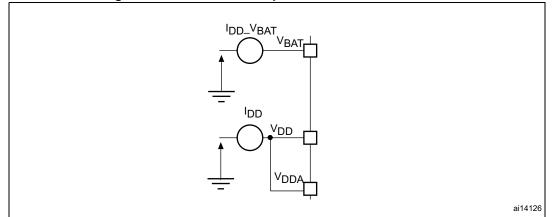
6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 20*.


6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 21.

6.1.6 Power supply scheme


Figure 22. Power supply scheme

1. To connect BYPASS_REG and PDR_ON pins, refer to Section 3.17: Power supply supervisor and Section 3.18: Voltage regulator

- The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF.
- 3. The 4.7 μF ceramic capacitor must be connected to one of the V_{DD} pin.
- 4. $V_{DDA}=V_{DD}$ and $V_{SSA}=V_{SS}$.
- **Caution:** Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} ...) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device.

6.1.7 Current consumption measurement

Figure 23. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 14: Voltage characteristics*, *Table 15: Current characteristics*, and *Table 16: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are available on demand.

Symbol	Ratings	Min	Max	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V_{DDA}, V_{DD} and VBAT) $^{(1)}$	- 0.3	4.0	
	Input voltage on FT pins ⁽²⁾	V _{SS} – 0.3	V _{DD} +4.0	
V _{IN}	Input voltage on TTa pins	V _{SS} – 0.3	4.0	V
	Input voltage on any other pin	V _{SS} – 0.3	4.0	
	Input voltage on BOOT0 pin	V _{SS}	9.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	
V _{SSX} -V _{SS}	Variations between all the different ground pins including $V_{REF\text{-}}$	-	50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sectio Absolute n ratings (ele sensitivity)	naximum ectrical	

Table 14. Voltage characteristics

1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum value must always be respected. Refer to *Table 15* for the values of the maximum allowed injected current.

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all V_{DD_x} power lines (source) ⁽¹⁾	270	
ΣI_{VSS}	Total current out of sum of all V_{SS_x} ground lines $(sink)^{(1)}$	- 270	
I _{VDD}	Maximum current into each V _{DD_x} power line (source) ⁽¹⁾	100	
I _{VSS}	Maximum current out of each V _{SS_x} ground line (sink) ⁽¹⁾	- 100	
	Output current sunk by any I/O and control pin	25	
Ι _{ΙΟ}	Output current sourced by any I/Os and control pin	- 25	1
21	Total output current sunk by sum of all I/O and control pins ⁽²⁾	120	mA
ΣI_{IO}	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	- 120	1
	Injected current on FT pins ⁽⁴⁾	54.0	
I _{INJ(PIN)} ⁽³⁾	Injected current on NRST and BOOT0 pins ⁽⁴⁾	- 5/+0	
	Injected current on TTa pins ⁽⁵⁾	±5	1
ΣΙ _{INJ(PIN)} ⁽⁵⁾	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	±25	1

Table 15. Current characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.21: 12-bit ADC characteristics.

4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

A positive injection is induced by V_{IN}>V_{DDA} while a negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 14* for the values of the maximum allowed input voltage.

 When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 16. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	- 65 to +150	°C
TJ	Maximum junction temperature	125	°C

6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Parameter	Conditions ⁽¹⁾			Тур	Max	Unit
		Power Scale 3 (VOS[1:0] bits i PWR_CR register = 0x01), Re ON, over-drive OFF	0	-	120		
		Power Scale 2 (VOS[1:0] bits in PWR_CR register = 0x10),	Over- drive OFF	0	-	144	
f _{HCLK} II f _{PCLK1} II f _{PCLK2} II V _{DD} S V _{DDA} (((3)(4) V _{A12} F	Internal AHB clock frequency	Regulator ON	Over- drive ON	0	-	168	
		Power Scale 1 (VOS[1:0] bits in PWR_CR register= 0x11),	Over- drive OFF	0	-	168	MHz
f_{HCLK} Int f_{PCLK1} Int f_{PCLK2} Int V_{DD} Sta V_{DDA} (Al (Al)		Regulator ON	Over- drive ON	0	-	180	
f	Internal APB1 clock frequency	Over-drive OFF		0	-	42	
'PCLK1	Internal AF BT Clock frequency	Over-drive ON	0	-	45		
f	Internal APB2 clock frequency	Over-drive OFF		0	-	84	
'PCLK2	Internal Al DZ Clock frequency	Over-drive ON		0	-	90	
V _{DD}	Standard operating voltage			1.7 ⁽²⁾	-	3.6	
V _{DDA}	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as $V_{DD}^{(5)}$		1.7 ⁽²⁾	-	2.4	v
(3)(4)	Analog operating voltage (ADC limited to 2.4 M samples)		VDD`	2.4 -	-	3.6	V
V _{BAT}	Backup operating voltage			1.65	-	3.6	
		Power Scale 3 ((VOS[1:0] bits PWR_CR register = 0x01), 12 HCLK max frequency	1.08	1.14	1.20		
	Regulator ON: 1.2 V internal voltage on V_{CAP_1}/V_{CAP_2} pins	Power Scale 2 ((VOS[1:0] bits in PWR_CR register = 0x10), 144 MHz HCLK max frequency with over-drive OFF or 168 MHz with over-drive ON			1.26	1.32	V
V ₁₂		Power Scale 1 ((VOS[1:0] bits in PWR_CR register = 0x11), 168 MHz HCLK max frequency with over-drive OFF or 180 MHz with over-drive ON			1.32	1.40	
	Regulator OFF: 1.2 V external	Max frequency 120 MHz		1.10	1.14	1.20	
V ₁₂	voltage must be supplied from external regulator on	Max frequency 144 MHz		1.20	1.26	1.32	
	$V_{CAP_1}/V_{CAP_2} pins^{(6)}$	Max frequency 168 MHz		1.26	1.32	1.38	

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Мах	Unit
	Input voltage on RST and FT	$2 V \leq V_{DD} \leq 3.6 V$	- 0.3	-	5.5	
	pins ⁽⁷⁾	$V_{DD} \leq 2 V$	- 0.3	-	5.2	
V _{IN}	VINInput voltage on RST and FT pins(7) $2 V \leq V_{DD} \leq 3.6 V$ $V_{DD} \leq 2 V$ Input voltage on TTa pinsInput voltage on TTa pinsInput voltage on BOOT0 pinLQFP100PDWLCSP143Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(8)UFBGA169LQFP176UFBGA176LQFP208TFBGA216TAAmbient temperature for 6 suffix versionMaximum power dissipation Low power dissipation Low power dissipation Low power dissipationTJJunction temperature range6 suffix version	- 0.3	-	V _{DDA} + 0.3	V	
	Input voltage on BOOT0 pin		0	-	5.5 5.2 V _{DDA} + 0.3 9 465 641 500 385 526 513 1053	
		LQFP100	-	-	465	
		WLCSP143	-	-	641	- mW
		LQFP144	-	-	500	
P		UFBGA169	-	-	385	
PD	suffix $7^{(8)}$	LQFP176	-	-	526	
$P_{D} \begin{array}{c} \text{for suffix 6 or } T_{A} = 105 \text{ °C for} \\ \text{suffix 7}^{(8)} \\ \end{array} \begin{array}{c} \text{UFBGA176} \\ \text{UFBGA176} \end{array}$	-	-	513			
		LQFP208	-	-	1053	
		TFBGA216	-	-	690	
	Ambient temperature for 6 suffix	Maximum power dissipation	- 40		85	°C
т.	version	Low power dissipation ⁽⁹⁾	- 40		105	
IA	Ambient temperature for 7 suffix	Maximum power dissipation	- 40		105	°C
	version	Low power dissipation ⁽⁹⁾	- 40		125	
т.	lunction tomperature range	6 suffix version	- 40		105	°C
IJ	Junction temperature range	7 suffix version	- 40		125	

Table 17. General operating conditions (continued)

1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.

 V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).

3. When the ADC is used, refer to *Table 74: ADC characteristics*.

4. If V_{REF+} pin is present, it must respect the following condition: V_{DDA}-V_{REF+} < 1.2 V.

5. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and power-down operation.

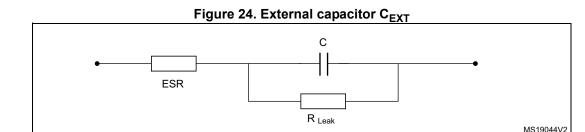
- 6. The over-drive mode is not supported when the internal regulator is OFF.
- 7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled

8. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .

9. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax}.

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum HCLK frequency vs Flash memory wait states (1)(2)	I/O operation	Possible Flash memory operations
V _{DD} =1.7 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz ⁽⁴⁾	168 MHz with 8 wait states and over-drive OFF	No I/O compensation	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1.2 Msps	22 MHz	180 MHz with 8 wait states and over-drive ON	No I/O compensation	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2.4 Msps	24 MHz	180 MHz with 7 wait states and over-drive ON	I/O compensation works	16-bit erase and program operations
$V_{DD} = 2.7 \text{ to}$ 3.6 V ⁽⁵⁾	Conversion time up to 2.4 Msps	30 MHz	180 MHz with 5 wait states and over-drive ON	I/O compensation works	32-bit erase and program operations

Table 18. Limitations depending on the operating power supply range


1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.

 Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

- V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).
- 4. Prefetch is not available.
- 5. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V.

6.3.2 VCAP1/VCAP2 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor C_{EXT} to the VCAP1/VCAP2 pins. C_{EXT} is specified in *Table 19*.

1. Legend: ESR is the equivalent series resistance.

Table 19. VCAP1/VCAP2 operating conditions⁽¹⁾

Symbol	Parameter	Conditions
CEXT	Capacitance of external capacitor	2.2 µF
ESR	ESR of external capacitor	< 2 Ω

1. When bypassing the voltage regulator, the two 2.2 μ F V_{CAP} capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

6.3.3 Operating conditions at power-up / power-down (regulator ON)

Table 20. Operating conditions at power-up / power-down (regulator ON)							
Symbol	Parameter	Min	Мах	Unit			
t	V _{DD} rise time rate	20	~	us/V			
t _{VDD}	V _{DD} fall time rate	20	~	μ3/ ν			

Subject to general operating conditions for T_A.

4:... J:4: - **~ · ·** · .

6.3.4 Operating conditions at power-up / power-down (regulator OFF)

Subject to general operating conditions for T_A.

Table 21. Operating conditions at power-up / power-down (regulator OFF)⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
+	V _{DD} rise time rate	Power-up	20	8	
t _{VDD}	V _{DD} fall time rate	Power-down	20	8	μs/V
t	V_{CAP_1} and V_{CAP_2} rise time rate	Power-up	20	8	μ5/ ν
t _{VCAP}	V_{CAP_1} and V_{CAP_2} fall time rate	Power-down	20	8	

1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when V_{DD} reach below 1.08 V.

98/239

6.3.5 Reset and power control block characteristics

The parameters given in *Table 22* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19	V
	PLS[2:0]=000 (falling edge)		1.98	2.04	2.08	V
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37	V
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25	V
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51	V
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39	V
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65	V
V	Programmable voltage	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V
V _{PVD}	detector level selection	PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	V
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71	V
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99	V
		PLS[2:0]=101 (falling edge)	2.65	2.84	2.92	V
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10	V
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99	V
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21	V
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis		-	100	-	mV
	Power-on/power-down	Falling edge	1.60	1.68	1.76	V
V _{POR/PDR}	reset threshold	Rising edge	1.64	1.72	1.80	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis		-	40	-	mV
V	Brownout level 1	Falling edge	2.13	2.19	2.24	V
V _{BOR1}	threshold	Rising edge	2.23	2.29	2.33	V
V	Brownout level 2	Falling edge	2.44	2.50	2.56	V
V _{BOR2}	threshold	Rising edge	2.53	2.59	2.63	V
	Brownout level 3	Falling edge	2.75	2.83	2.88	V
V _{BOR3}	threshold	Rising edge	2.85	2.92	2.97	V
V _{BORhyst} ⁽¹⁾	BOR hysteresis		-	100	-	mV
T _{RSTTEMPO}	POR reset temporization		0.5	1.5	3.0	ms

Table 22.	reset and	power control I	olock characteristics
	reset and		

					,	
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power- on (POR or wakeup from Standby)		-	160	200	mA
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power- on (POR or wakeup from Standby)	V _{DD} = 1.7 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC

 Table 22. reset and power control block characteristics (continued)

1. Guaranteed by design.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

6.3.6 Over-drive switching characteristics

When the over-drive mode switches from enabled to disabled or disabled to enabled, the system clock is stalled during the internal voltage set-up.

The over-drive switching characteristics are given in *Table 23*. They are sbject to general operating conditions for T_A .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Tod_swen		HSI	-	45	-	
	Over_drive switch enable time	HSE max for 4 MHz and min for 26 MHz	45	-	100	
		External HSE 50 MHz	-	40	-	116
		HSI	-	20	-	μs
Tod_swdis	Over_drive switch disable time	HSE max for 4 MHz and min for 26 MHz.	20	-	80	
		External HSE 50 MHz	-	15	-	

Table 23. Over-drive switching characteristics⁽¹⁾

1. Guaranteed by design.

6.3.7 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 23: Current consumption measurement scheme*.

All the run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted both to f_{HCLK} frequency and V_{DD} range (see *Table 18: Limitations depending on the operating power supply range*).
- Regulator ON
- The voltage scaling and over-drive mode are adjusted to f_{HCLK} frequency as follows:
 - Scale 3 for $f_{HCLK} \leq 120 \text{ MHz}$
 - Scale 2 for 120 MHz < $f_{HCLK} \le$ 144 MHz
 - Scale 1 for 144 MHz < f_{HCLK} ≤ 180 MHz. The over-drive is only ON at 180 MHz.
- The system clock is HCLK, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2.
- External clock frequency is 4 MHz and PLL is ON when f_{HCLK} is higher than 25 MHz.
- The maximum values are obtained for V_{DD} = 3.6 V and a maximum ambient temperature (T_A), and the typical values for T_A= 25 °C and V_{DD} = 3.3 V unless otherwise specified.

						Max ⁽²⁾		
Symbol Parame	Parameter	Parameter Conditions	Parameter Conditions f _{HCLK} (MHz) Typ	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			180	98	104 ⁽⁵⁾	123	141 ⁽⁵⁾	
		168	89	98 ⁽⁵⁾	116	133 ⁽⁵⁾		
			150	75	84	100	115	
			144	72	81	96	112	
			120	54	58	72	85	
		All	90	43	45	56	66	
		Peripherals	60	29	30	52	62	
		enabled ⁽³⁾⁽⁴⁾	30	16	20	34	46	
			25	13	16	30	43	
			16	11	13	27	39	
			8	5	9	23	36 34	
			4	4	8	21		
	Supply current in		2	2	7	20	33	~^^
I _{DD}	RUN mode		180	44	47 ⁽⁵⁾	69	87 ⁽⁵⁾	mA
			168	41	45 ⁽⁵⁾	66	83 ⁽⁵⁾	
			150	36	39	57	73	
			144	33	37	56	72	
			120	25	29	43	56	
		All	90	20	23	41	53	
		Peripherals	60	14	16	34	45	
		disabled ⁽³⁾	30	8	12	26	39	
			25	7	10	24	37	1
			16	7	9	22	35	
			8	3	7	21	34	

Table 24. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch) or RAM⁽¹⁾

1. Code and data processing running from SRAM1 using boot pins.

2. Guaranteed by characterization.

3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3

2

6

6

20

20

33

33

4

2

4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

5. Guaranteed by test in production.

						Max ⁽¹⁾			
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	TA= 25 °C	TA=85 °C	TA=105 °C	Unit	
				180	103	112	140	151	
			168	98	107	126	144		
			150	87	95	112	128		
			144	85	92	108	124		
			120	66	71	85	99		
			90	54	58	69	80		
		All Peripherals enabled ⁽²⁾⁽³⁾	60	37	39	47	55		
			30	20	24	39	51		
			25	17	21	35	48		
			16	12	16	30	42	- - -	
			8	7	11	24	37		
			4	5	8	22	35		
	Supply		2	3	7	21	34		
I _{DD}	current in RUN mode		180	57	62	87	106	mA	
			168	50	54	76	93		
			150	46	50	70	86		
			144	45	49	68	84		
			120	36	41	56	69		
			90	29	34	46	57		
		All Peripherals disabled ⁽³⁾	60	21	24	33	41		
			30	13	17	31	44		
			25	11	15	28	41		
			16	8	12	25	38		
			8	5	9	23	35		
			4	4	7	21	34		
			2	3	6.5	20	33		

Table 25. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled)

1. Guaranteed by characterization unless otherwise specified.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

						Max ⁽¹⁾		
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			180	78	89 ⁽³⁾	110	130 ⁽³⁾	
			168	66	75 ⁽³⁾	93	110 ⁽³⁾	
			150	56	61	80	96	
			144	54	58	78	94	
			120	40	44	59	72	
		All	90	32	34	46	56	
		Peripherals	60	22	23	31	45	
		enabled ⁽²⁾	30	10	16	30	43	
			25	9	14	28	40	
			16	5	12	25	40	- mA
			8	3	8	22	35	
			4	3	7	21	34	
	Supply current in		2	2	6.5	20	33	
I _{DD}	Sleep mode		180	21	26 ⁽³⁾	54	76 ⁽³⁾	
			168	16	20 ⁽³⁾	41	58 ⁽³⁾	
			150	14	17	36	52	
			144	13	16.5	35	51	
			120	10	14	28	41	
		All	90	8	13	26	37	
		Peripherals	60	6	9	24	37	
		disabled	30	5	8	22	35	
			25	3	7	21	34	
			16	3	7	21	34	
			8	2	6	20	33	-
			4	2	6	20	33	
			2	2	6	20	33	

Table 26. Typical an	d maximum curren	t consumption i	n Sleep mode
Tuble Let Typical an		. oonoamption i	n oloop moao

1. Guaranteed by characterization unless otherwise specified.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. Based on characterization, tested in production.

			Тур		Max ⁽¹⁾		
Symbol	Parameter	Conditions	iyp	V _{DD} = 3.6 V			Unit
			T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	
I _{DD_STOP_NM} (normal mode)	Supply current in Stop mode with voltage	Flash memory in Stop mode, all oscillators OFF, no independent watchdog	0.40	1.50	14.00	25.00	
	regulator in main regulator mode	Flash memory in Deep power down mode, all oscillators OFF, no independent watchdog	0.35	1.50	14.00	25.00	
	Supply current in Stop mode with voltage regulator in Low Power regulator mode	Flash memory in Stop mode, all oscillators OFF, no independent watchdog	0.29	1.10	10.00	18.00	
		Flash memory in Deep power down mode, all oscillators OFF, no independent watchdog	0.23	1.10	10.00	18.00	mA
IDD_STOP_UDM	Supply current in Stop mode with voltage regulator in main regulator and under- drive mode	Flash memory in Deep power down mode, main regulator in under-drive mode, all oscillators OFF, no independent watchdog	0.19	0.50	6.00	9.00	
(under-drive mode)	Supply current in Stop mode with voltage regulator in Low Power regulator and under- drive mode	Flash memory in Deep power down mode, Low Power regulator in under-drive mode, all oscillators OFF, no independent watchdog	0.10	0.40	4.00	7.00	

Table 27. Typical a	nd maximum current	t consumptions i	n Stop mode

1. Data based on characterization, tested in production.

				Typ ⁽¹⁾			Max ⁽²⁾		
Symbol	Parameter	Conditions					T _A = 105 °C	Unit	
			V _{DD} = 1.7 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	v	, _{DD} = 3.6	v	
Supply cu I _{DD_STBY} in Standb mode		Backup SRAM ON, low-speed oscillator (LSE) and RTC ON	2.80	3.00	3.60	7.00	19.00	36.00	36.00
	Supply current	Backup SRAM OFF, low- speed oscillator (LSE) and RTC ON	2.30	2.60	3.10	6.00	16.00	31.00	μA
	mode	Backup SRAM ON, RTC and LSE OFF	2.30	2.50	2.90	6.00 ⁽³⁾	18.00 ⁽³⁾	35.00 ⁽³⁾	
		Backup SRAM OFF, RTC and LSE OFF	1.70	1.90	2.20	5.00 ⁽³⁾	15.00 ⁽³⁾	30.00 ⁽³⁾	

Table 28. Typical and maximum current	consumptions in Standby mode
---------------------------------------	------------------------------

The typical current consumption values are given with PDR OFF (internal reset OFF). When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by additional 1.2 μA.

2. Based on characterization, not tested in production unless otherwise specified.

3. Based on characterization, tested in production.

Table 29.	Typical and	maximum	current	consumptions in	V _{BAT} mode
-----------	-------------	---------	---------	-----------------	-----------------------

			Тур			Ма		
Symbol	Parameter	Conditions ⁽¹⁾	т	A = 25 °	С	T _A = 85 °C	T _A = 105 °C	Unit
			V _{BAT} = 1.7 V	V _{BAT} = 2.4 V	V _{BAT} = 3.3 V	V _{BAT} =	= 3.6 V	
Backup I _{DD_VBAT} domain suppl current		Backup SRAM ON, low-speed oscillator (LSE) and RTC ON	1.28	1.40	1.62	6	11	
	Backup	Backup SRAM OFF, low-speed oscillator (LSE) and RTC ON	0.66	0.76	0.97	3	5	μA
		Backup SRAM ON, RTC and LSE OFF	0.70	0.72	0.74	5	10	μΛ
		Backup SRAM OFF, RTC and LSE OFF	0.10	0.10	0.10	2	4	

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a C $_{\rm L}$ of 6 pF for typical values.

2. Guaranteed by characterization results.

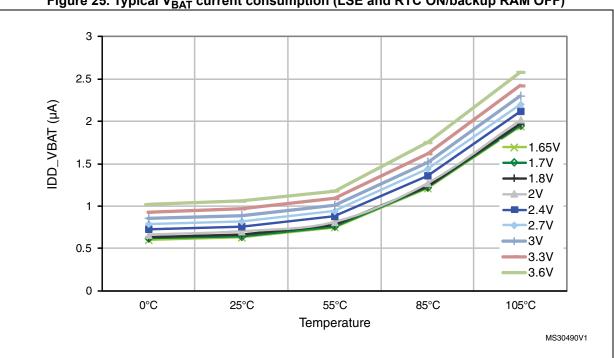
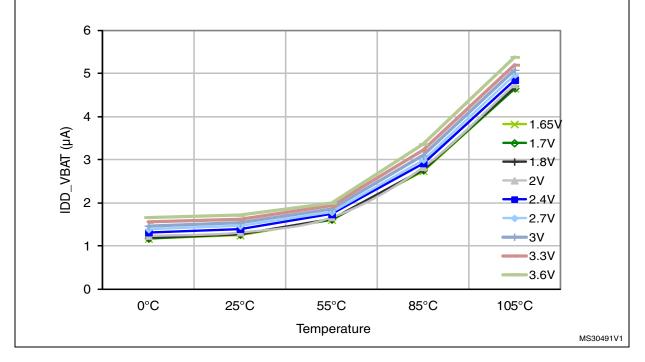



Figure 25. Typical V_{BAT} current consumption (LSE and RTC ON/backup RAM OFF)

Figure 26. Typical V_{BAT} current consumption (LSE and RTC ON/backup RAM ON)

Additional current consumption

The MCU is placed under the following conditions:

- All I/O pins are configured in analog mode.
- The Flash memory access time is adjusted to fHCLK frequency.
- The voltage scaling is adjusted to fHCLK frequency as follows:
 - Scale 3 for $f_{HCLK} \le 120$ MHz,
 - Scale 2 for 120 MHz < $f_{HCLK} \le 144$ MHz
 - Scale 1 for 144 MHz < $f_{HCLK} \le$ 180 MHz. The over-drive is only ON at 180 MHz.
- The system clock is HCLK, $f_{PCLK1} = f_{HCLK}/4$, and $f_{PCLK2} = f_{HCLK}/2$.
- HSE crystal clock frequency is 25 MHz.
- When the regulator is OFF, V12 is provided externally as described in *Table 17: General operating conditions*
- T_A= 25 °C .

Table 30. Typical current consumption in Run mode, code with data processing running from Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch), $V_{DD}=1.7 V^{(1)}$

Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	Unit	
			168	88.2		
			150	74.3		
			144	71.3		
		All Peripheral	120	52.9		
		enabled	90	42.6		
			60	28.6		
				30	15.7	
	Supply current in RUN mode from			25	12.3	mA
I _{DD}	V _{DD} supply		168	40.6		
			150	30.6		
			144	32.6		
		All Peripheral	120	24.7		
		disabled	90	19.7		
			60	13.6		
			30	7.7	-	
			25	6.7		

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherls (such as ADC, or DAC) is not included.

0	D		f _{HCLK}	VDD=	=3.3 V	VDD=	=1.7 V	11
Symbol	Parameter	Conditions	(MHz)	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	Unit
			168	77.8	1.3	76.8	1.0	
			150	70.8	1.3	69.8	1.0	
			144	64.5	1.3	63.6	1.0	
		All Peripherals	120	49.9	1.2	49.3	0.9	
		enabled	90	39.2	1.3	38.7	1.0	
			60	27.2	1.2	26.8	0.9	
	Cupply current in		30	15.6	1.2	15.4	0.9	
1 / 1	Supply current in RUN mode from		25	13.6	1.2	13.5	0.9	
I _{DD12} / I _{DD}	V ₁₂ and V _{DD}		168	38.2	1.3	37.0	1.0	
	supply		150	34.6	1.3	33.4	1.0	
			144	31.3	1.3	30.3	1.0	
		All Peripherals	120	24.0	1.2	23.2	0.9	mA
		disabled	90	18.1	1.4	18.0	1.0	1
			60	12.9	1.2	12.5	0.9	1
			30	7.2	1.2	6.9	0.9	1
			25	6.3	1.2	6.1	0.9	1

Table 31.Typical current consumption in Run mode, code with data processing running
from Flash memory, regulator OFF (ART accelerator enabled except prefetch)

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.

Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	Unit
			168	65.5	
			150	55.5	
	All Peripherals enabled 150 55.5 144 53.5 120 39.0 90 31.6 60 21.7 30 9.8 25 8.8 168 15.7 150 13.7	53.5			
		All Derinherele enchled			
		All Peripherals enabled 90 31.6 60 21.7 30 9.8	31.6	1	
IDD Supply current in Sleep mode from VDD supply 30 168	60	21.7			
	Supply current in Sleep		30	9.8	
			25	8.8	m 4
	ly 168	168	15.7	mA	
	IDD mode from V _{DD} supply 168 150	13.7			
All Peripherals disabled	144	12.7			
		All Peripherals disabled	120	9.7	1
			90	7.7	
			60	5.7	
			30	4.7	
			25	2.8	

Table 32. Typical current consumption in Sleep mode, regulator ON, V _{DD} =1.7 V ⁽¹⁾	Table 32. Typical current consum	nption in Sleep mode.	. regulator ON. $V_{DD}=1.7 V^{(1)}$
--	----------------------------------	-----------------------	--------------------------------------

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.

Symbol	Parameter	Conditions	6 (MILL-)	VDD:	=3.3 V	VDD:	=1.7 V	Unit
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	
			180	61.5	1.4	-	-	
			168	59.4	1.3	59.4	1.0	
			150	53.9	1.3	53.9	1.0	
				1.0	1			
i n i		All Peripherals enabled	120	38.0	1.2	38.0	0.9	
	Supply current in Sleep mode	chabled	90	29.3	1.4	29.3	1.1	-
			60	20.2	1.2	20.2	0.9	
			30	11.9	1.2	11.9	0.9	
			25	10.4	1.2	10.4	0.9	
I _{DD12} /I _{DD}	from V ₁₂ and		180	14.9	1.4	-	-	mA
	V_{DD} supply		168	14.0	1.3	14.0	1.0	
		All Peripherals disabled	150	12.6	1.3	12.6	1.0	
			144	11.5	1.3	11.5	1.0	
			120	8.7	1.2	8.7	0.9	
			90	7.1	1.4	7.1	1.1	
			60	5.0	1.2	5.0	0.9	
			30	3.1	1.2	3.1	0.9	
			25	2.8	1.2	2.8	0.9	

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 56: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 35: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 ${\rm I}_{\rm SW}$ is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DD} is the MCU supply voltage

f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

$I_{DDIO} = I_{DDIO} $	
$I_{DDIO} = I_{IO} =$	
$I_{DDIO} = I_{ODIO} $	
$I_{DDIO} = I_{INT}^{(2)} = I$	
$I_{DDIO} = I_{DDIO} $	
$I_{DDIO} \qquad I/O \text{ switching} \\ Current \\ V_{DD} = 3.3 V \\ V_{DD} = 3.3 V \\ C_{EXT} = 0 \text{ pF} \\ C = C_{INT} + C_{EXT} \\ + C_S \\ \hline \\ B \\ P \\ P$	
I_{DDIO} Current $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c } V_{DD} = 3.3 \ V \\ C_{EXT} = 0 \ pF \\ C = C_{INT} + C_{EXT} \\ + C_S \end{array} & \begin{array}{ c c c c c } 25 \ \text{MHz} & 1.23 \\ \hline 50 \ \text{MHz} & 2.43 \\ \hline 60 \ \text{MHz} & 2.93 \\ \hline 84 \ \text{MHz} & 3.86 \\ \hline 90 \ \text{MHz} & 4.07 \\ \hline 90 \ \text{MHz} & 4.07 \\ \hline & 2 \ \text{MHz} & 0.18 \\ \hline & 8 \ \text{MHz} & 0.67 \\ \hline & 25 \ \text{MHz} & 0.67 \\ \hline & 25 \ \text{MHz} & 2.09 \\ \hline & 50 \ \text{MHz} & 3.6 \\ \hline & 25 \ \text{MHz} & 3.6 \\ \hline & 25 \ \text{MHz} & 3.6 \\ \hline & 60 \ \text{MHz} & 4.5 \\ \hline & 84 \ \text{MHz} & 7.8 \\ \hline \end{array}$	mA
$\begin{array}{c c} C_{EXT} = 0 \ pF\\ C = C_{INT} + C_{EXT} \\ + C_{S} \end{array} \begin{array}{c c} 50 \ \text{MHz} & 2.43 \\\hline 60 \ \text{MHz} & 2.93 \\\hline 60 \ \text{MHz} & 2.93 \\\hline 84 \ \text{MHz} & 3.86 \\\hline 90 \ \text{MHz} & 4.07 \\\hline 90 \ \text{MHz} & 4.07 \\\hline 2 \ \text{MHz} & 0.18 \\\hline 8 \ \text{MHz} & 0.67 \\\hline 25 \ \text{MHz} & 0.67 \\\hline 25 \ \text{MHz} & 2.09 \\\hline 50 \ \text{MHz} & 3.6 \\\hline C = C_{INT} + C_{EXT} \\ + C_{S} \end{array} \begin{array}{c c} 2 \ \text{MHz} & 2.09 \\\hline 50 \ \text{MHz} & 3.6 \\\hline 60 \ \text{MHz} & 4.5 \\\hline 84 \ \text{MHz} & 7.8 \\\hline \end{array}$	
$C = C_{INT} + C_{EXT} + C_{EXT} + C_{S}$ $= \frac{300 \text{ MHz}}{60 \text{ MHz}} = \frac{2.43}{60 \text{ MHz}}$ $= \frac{2.93}{84 \text{ MHz}} = \frac{3.86}{90 \text{ MHz}}$ $= \frac{3.86}{90 \text{ MHz}} = \frac{4.07}{4.07}$ $= \frac{2 \text{ MHz}}{0.18} = \frac{0.18}{8 \text{ MHz}}$ $= \frac{2 \text{ MHz}}{0.67}$ $= \frac{2 \text{ MHz}}{0.67} = \frac{0.18}{2.09}$ $= \frac{2 \text{ MHz}}{50 \text{ MHz}} = \frac{2.09}{50 \text{ MHz}}$ $= \frac{3.6}{60 \text{ MHz}} = \frac{3.6}{60 \text{ MHz}}$ $= \frac{4.5}{84 \text{ MHz}} = \frac{7.8}{7.8}$	
$+ C_{S} = \frac{60 \text{ MHz}}{2.93}$ $= \frac{2.93}{84 \text{ MHz}}$ $= \frac{3.86}{90 \text{ MHz}}$ $= \frac{4.07}{4.07}$ $= \frac{2 \text{ MHz}}{0.18}$ $= \frac{2.93}{3.86}$ $= \frac{90 \text{ MHz}}{4.07}$ $= \frac{2 \text{ MHz}}{0.18}$ $= \frac{2.09}{50 \text{ MHz}}$ $= \frac{2.93}{3.86}$	
$\begin{array}{ c c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	-
$V_{DD} = 3.3 V$ $C_{EXT} = 10 \text{ pF}$ $C = C_{INT} + C_{EXT}$ $+ C_{S}$ $\frac{2 \text{ MHz}}{60 \text{ MHz}} = \frac{0.18}{0.67}$ $\frac{25 \text{ MHz}}{2.09}$ $\frac{2.09}{50 \text{ MHz}}$ $\frac{3.6}{60 \text{ MHz}}$ $\frac{4.5}{84 \text{ MHz}}$	
$V_{DD} = 3.3 V$ $C_{EXT} = 10 \text{ pF}$ $C = C_{INT} + C_{EXT}$ $+ C_{S}$ $\frac{8 \text{ MHz}}{25 \text{ MHz}} = 2.09$ $50 \text{ MHz} = 3.6$ $60 \text{ MHz} = 4.5$ $84 \text{ MHz} = 7.8$	
$\begin{array}{c c} V_{DD} = 3.3 \text{ V} \\ C_{EXT} = 10 \text{ pF} \\ C = C_{INT} + C_{EXT} \\ + C_{S} \end{array} \begin{array}{c c} 25 \text{ MHz} & 2.09 \\ \hline 50 \text{ MHz} & 3.6 \\ \hline 60 \text{ MHz} & 4.5 \\ \hline 84 \text{ MHz} & 7.8 \\ \hline \end{array}$	
$\begin{array}{c c} C_{EXT} = 10 \text{ pF} \\ C = C_{INT} + C_{EXT} \\ + C_{S} \end{array} \begin{array}{c c} 50 \text{ MHz} & 3.6 \\ \hline 60 \text{ MHz} & 4.5 \\ \hline 84 \text{ MHz} & 7.8 \end{array}$	
$C = C_{INT} + C_{EXT} + C_{S} = \frac{300 \text{ MHz}}{60 \text{ MHz}} = \frac{3.00 \text{ MHz}}{4.5}$	
+ C _S 60 MHz 4.5 84 MHz 7.8	
90 MHz 9.8	
I/O switching 2 MHz 0.26	
Current V _{DD} = 3.3 V 8 MHz 1.01	mA
C _{EXT} = 22 pF 25 MHz 3.14	
$C = C_{INT} + C_{EXT}$ $+ C_{S}$ 50 MHz 6.39	
60 MHz 10.68	
V _{DD} = 3.3 V 2 MHz 0.33	
C _{EXT} = 33 pF 8 MHz 1.29	
C = C _{INT} + Cext 25 MHz 4.23	
+ C _S 50 MHz 11.02	

1. C_S is the PCB board capacitance including the pad pin. C_S = 7 pF (estimated value).

2. This test is performed by cutting the LQFP176 package pin (pad removal).

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- I/O compensation cell enabled.
- The ART accelerator is ON.
- Scale 1 mode selected, internal digital voltage V12 = 1.32 V.
- HCLK is the system clock. f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2.
 The given value is calculated by measuring the difference of current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
 - f_{HCLK} = 180 MHz (Scale1 + over-drive ON), f_{HCLK} = 144 MHz (Scale 2), f_{HCLK} = 120 MHz (Scale 3)"
- Ambient operating temperature is 25 °C and V_{DD} =3.3 V.

_			I _{DD} (Typ) ⁽¹⁾		
F	Peripheral	Scale 1	Scale 2	Scale 3	Unit
	GPIOA	2.50	2.36	2.08	
	GPIOB	2.56	2.36	2.08	
	GPIOC	2.44	2.29	2.00	
	GPIOD	2.50	2.36	2.08	
	GPIOE	2.44	2.29	2.00	
AHB1 (up to 180 MHz)	GPIOF	2.44	2.29	2.00	
	GPIOG	2.39	2.22	2.00	
	GPIOH	2.33	2.15	1.92	
	GPIOI	2.39	2.22	2.00	
	GPIOJ	2.33	2.15	1.92	
	GPIOK	2.33	2.15	1.92	µA/MHz
	OTG_HS+ULPI	27.00	24.86	21.92	
	CRC	0.44	0.42	0.33	
	BKPSRAM	0.78	0.69	0.58	
	DMA1	25.33	23.26	20.50	
	DMA2	24.72	22.71	20.00	
	DMA2D	28.50	26.32	23.33	
	ETH_MAC ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP	21.56	20.07	17.75	

Table 35. Peripheral current consumption

DocID024030 Rev 10

			nt consumption I _{DD} (Typ) ⁽¹⁾	(,	
Pe	ripheral	Scale 1	Scale 2	Scale 3	– Unit
AHB2	OTG_FS	25.67	26.67	23.58	
(up to	DCMI	3.72	3.40	3.00	µA/MHz
180 MHz)	RNG	2.28	2.36	2.17	
AHB3 (up to 180 MHz)	FMC	21.39	19.79	17.50	µA/MHz
Bus	s matrix ⁽²⁾	14.06	13.19	11.75	µA/MHz
	TIM2	17.56	16.42	14.47	
	TIM3	14.22	13.36	11.80	-
	TIM4	14.89	13.64	12.13	
	TIM5	17.33	16.42	14.47	
APB1	TIM6	2.89	2.53	2.47	
	TIM7	3.11	2.81	2.47	
	TIM12	7.33	6.97	6.13	
	TIM13	4.89	4.47	4.13	
	TIM14	5.56	5.31	4.80	
	PWR	11.11	10.31	9.13	
	USART2	4.22	3.92	3.47	
	USART3	4.44	4.19	3.80	_
	UART4	4.00	3.92	3.47	
	UART5	4.00	3.92	3.47	µA/MHz
	UART7	4.00	3.92	3.47	
	UART8	3.78	3.92	3.47	
	I2C1	4.00	3.92	3.47	
	I2C2	4.00	3.92	3.47	
	I2C3	4.00	3.92	3.47	
	SPI2 ⁽³⁾	3.11	3.08	2.80	
	SPI3 ⁽³⁾	3.56	3.36	3.13	
	1282	2.89	2.81	2.47	1
	1283	3.33	3.08	2.80	1
F	CAN1	6.89	6.42	5.80	1
	CAN2	6.67	6.14	5.47	1
F	DAC ⁽⁴⁾	2.89	2.25	2.13	1
	WWDG	0.89	0.86	0.80	

Table 35. Peripheral current consumption (continued)

DocID024030 Rev 10

		I _{DD} (Typ) ⁽¹⁾		(continued)	11
Р	eripheral	Scale 1	Scale 2	Scale 3	– Unit
	SDIO	8.11	8.75	7.83	
-	TIM1	17.11	15.97	14.17	
-	TIM8	17.33	16.11	14.33	
APB2 (up to - 90 MHz)	TIM9	7.22	6.67	6.00	
	TIM10	4.56	4.31	3.83	
	TIM11	4.78	4.44	4.00	
	ADC1 ⁽⁵⁾	4.67	4.31	3.83	
	ADC2 ⁽⁵⁾	4.78	4.44	4.00	
	ADC3 ⁽⁵⁾	4.56	4.17	3.67	
	SPI1	1.44	1.39	1.17	– μA/MHz
	USART1	4.00	3.75	3.33	
	USART6	4.00	3.75	3.33	
	SPI4	1.44	1.39	1.17	
	SPI5	1.44	1.39	1.17	
	SPI6	1.44	1.39	1.17	1
	SYSCFG	0.78	0.69	0.67	
	LCD_TFT	39.89	37.22	33.17	1
	SAI1	3.78	3.47	3.17	1

Table 35. Peripheral current consumption (continued)

1. When the I/O compensation cell is ON, I_{DD} typical value increases by 0.22 mA.

2. The BusMatrix is automatically active when at least one master is ON.

3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.

 When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of 0.8 mA per DAC channel for the analog part.

5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

6.3.8 Wakeup time from low-power modes

The wakeup times given in *Table 36* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} =3.3 V.

Symbol	Parameter	Conditions	Typ ⁽¹⁾	Max ⁽¹⁾	Unit
t _{WUSLEEP} ⁽²⁾	Wakeup from Sleep	-	6	-	CPU clock cycle
		Main regulator is ON	13.6	-	
. (2)	Wakeup from Stop mode	Main regulator is ON and Flash memory in Deep power down mode	93	111	
	with MR/LP regulator in normal mode	Low power regulator is ON	22	32	
		Low power regulator is ON and Flash memory in Deep power down mode	103	126	μs
	Wakeup from Stop mode	Main regulator in under-drive mode (Flash memory in Deep power-down mode)	105	128	
Under-drive mode mode	(Flash memory in Deep power-down	125	155		
tWUSTDBY (2)(3)	Wakeup from Standby mode		318	412	

Table 36. Low-power mode wakeup timings

1. Guaranteed by characterization results.

2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first

3. $t_{WUSTDBY}$ maximum value is given at -40 °C.

6.3.9 External clock source characteristics

High-speed external user clock generated from an external source

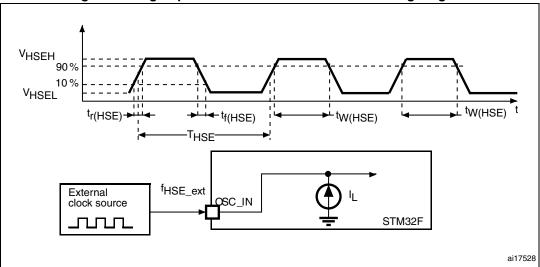
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 56: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 27*.

The characteristics given in *Table 37* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

	U 1				-	
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	External user clock source frequency ⁽¹⁾		1	-	50	MHz
V _{HSEH}	OSC_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V_{SS}	-	$0.3V_{DD}$	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	10	113
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾		-	5	-	pF
DuCy _(HSE)	Duty cycle		45	-	55	%
١ _L	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 37. High-speed external user clock characteristics

1. Guaranteed by design.


Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 56: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 28*.

The characteristics given in *Table 38* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V _{SS}	-	0.3V _{DD}	
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾		-	5	-	pF
DuCy _(LSE)	Duty cycle		30	-	70	%
١ _L	OSC32_IN Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD}	-	-	±1	μA

1. Guaranteed by design.

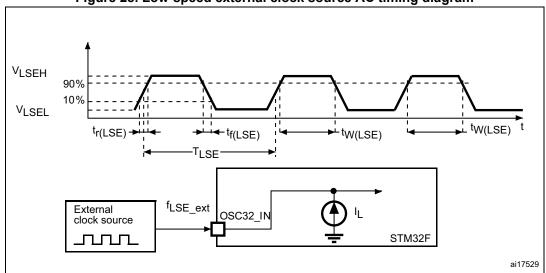


Figure 28. Low-speed external clock source AC timing diagram

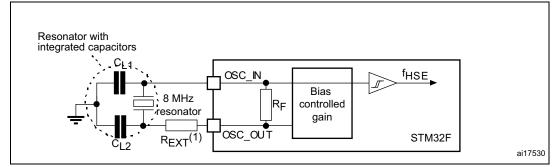
High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 39*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency		4	-	26	MHz
R _F	Feedback resistor		-	200	-	kΩ
	HSE current consumption	V _{DD} =3.3 V, ESR= 30 Ω, C _L =5 pF@25 MHz	-	450	-	
IDD	HSE current consumption	V _{DD} =3.3 V, ESR= 30 Ω, C _L =10 pF@25 MHz	-	530	-	μA
ACC _{HSE} ⁽²⁾	HSE accuracy		- 500	-	500	ppm
G _m _crit_max	Maximum critical crystal g _m	Startup	-	-	1	mA/V
t _{SU(HSE} ⁽³⁾ Startup time V _{DI}		V_{DD} is stabilized	-	2	-	ms

Table 39. H	ISE 4-26 MHz	oscillator	characteristics ⁽¹⁾
10010 00.1		oscinator	characteristics

1. Guaranteed by design.


2. This parameter depends on the crystal used in the application. The minimum and maximum values must be respected to comply with USB standard specifications.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is based on characterization and not tested in production. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 29*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 40*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _F	Feedback resistor		-	18.4	-	MΩ
I _{DD}	LSE current consumption		-	-	1	μA
ACC _{LSE} ⁽²⁾	LSE accuracy		- 500	-	500	ppm
G _m _crit_max	Maximum critical crystal g _m	Startup	-	-	0.56	μA/V
t _{SU(LSE)} ⁽³⁾	startup time	V _{DD} is stabilized	-	2	-	s

Table 40. LSE oscillator characteristics (f_{LSE} = 32.768 kHz) ⁽¹⁾

1. Guaranteed by design.

2. This parameter depends on the crystal used in the application. Refer to application note AN2867.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is based on characterization and not tested in production. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

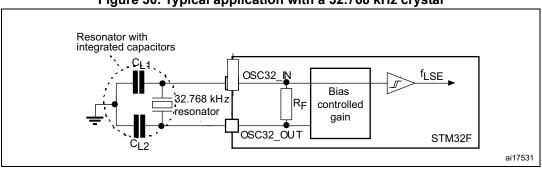


Figure 30. Typical application with a 32.768 kHz crystal

6.3.10 Internal clock source characteristics

The parameters given in *Table 41* and *Table 42* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter Conditions		Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
	HSI user-trimming step (2)	-	-	-	1	%
		$T_A = -40$ to 105 °C ⁽³⁾	- 8	-	4.5	%
ACC _{HSI}	Accuracy of the HSI oscillator	$T_A = -10$ to 85 °C ⁽³⁾	- 4	-	4	%
		$T_A = 25 \ ^{\circ}C^{(4)}$	- 1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA

Table 41. HSI oscillator characteristics (1)

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

4. Factory calibrated, parts not soldered.

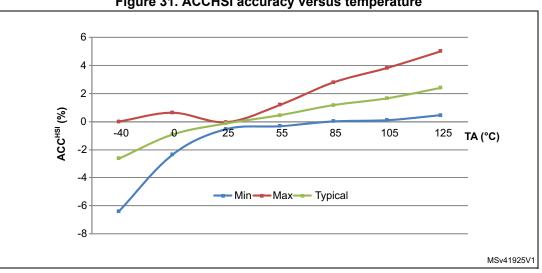


Figure 31. ACCHSI accuracy versus temperature

1. Guaranteed by characterization results.

Low-speed internal (LSI) RC oscillator

Table 42. LS	oscillator	characteristics	(1)
--------------	------------	-----------------	-----

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI} ⁽²⁾	f _{LSI} ⁽²⁾ Frequency		32	47	kHz
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	15	40	μs
I _{DD(LSI)} ⁽³⁾ LSI oscillator power consumption		-	0.4	0.6	μA

1. V_{DD} = 3 V, T_A = –40 to 105 °C unless otherwise specified.

2. Guaranteed by characterization results.

3. Guaranteed by design.

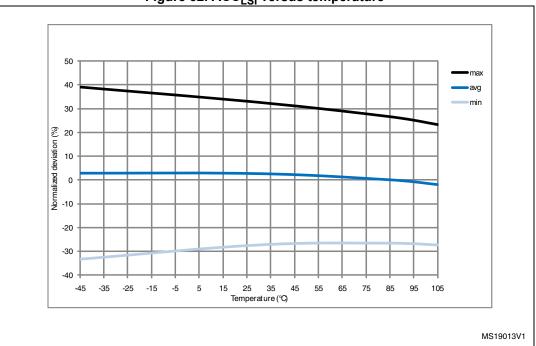


Figure 32. ACC_{LSI} versus temperature

6.3.11 PLL characteristics

The parameters given in *Table 43* and *Table 44* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLL_IN}	PLL input clock ⁽¹⁾		0.95 ⁽²⁾	1	2.10	MHz
f _{PLL_OUT}	PLL multiplier output clock		24	-	180	MHz
f _{PLL48_OUT}	48 MHz PLL multiplier output clock		-	48	75	MHz
f _{VCO_OUT}	PLL VCO output		100	-	432	MHz
t	PLL lock time	VCO freq = 100 MHz	75	-	200	
^t LOCK		VCO freq = 432 MHz	100	-	300	μs

Table 43. Main PLL characteristics

Symbol	Parameter	Condition	Conditions		Тур	Мах	Unit
			RMS	-	25	-	
	Cycle-to-cycle jitter	System clock	peak to peak	-	±150	-	
		120 MHz	RMS	-	15	-	
Jitter ⁽³⁾	Period Jitter		peak to peak	-	<u>+200</u>	-	ps
	Main clock output (MCO) for RMII Ethernet	Cycle to cycle at 5 on 1000 samples	-	32	-		
	Main clock output (MCO) for MII Ethernet	Cycle to cycle at 2 on 1000 samples	-	40	-		
	Bit Time CAN jitter	Cycle to cycle at 1 MHz on 1000 samples		-	330	-	
I _{DD(PLL)} ⁽⁴⁾	PLL power consumption on VDD	VCO freq = 100 MHz		0.15	_	0.40	mA
יטט(PLL)	VCO freq = 432 MHz		/Hz	0.45		0.75	110.1
I _{DDA(PLL)} ⁽⁴⁾	PLL power consumption on VDDA		VCO freq = 100 MHz VCO freq = 432 MHz		-	0.40 0.85	mA

Table 43. Main PLL characteristics (continued)

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design.

3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.

4. Guaranteed by characterization results.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{PLLI2S_IN}	PLLI2S input clock ⁽¹⁾				1	2.10	MHz
f _{PLLI2S_OUT}	PLLI2S multiplier output clock			-	-	216	MHz
f _{VCO_OUT}	PLLI2S VCO output			100	-	432	MHz
+	PLLI2S lock time	VCO freq = 100 MHz	Z	75	-	200	
t _{LOCK}		VCO freq = 432 MHz		100	-	300	μs
		Cycle to cycle at	RMS	-	90	-	
		12.288 MHz on 48KHz period,peal to pealN=432, R=5peal		-	±280	-	ps
Jitter ⁽³⁾	Master I2S clock jitter	Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples	of	-	90	-	ps
	WS I2S clock jitter	Cycle to cycle at 48 on 1000 samples	KHz	-	400	-	ps

Table 44. PLLI2S (audio PLL) characteristics

DocID024030 Rev 10

_							
	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I	DD(PLLI2S) ⁽⁴⁾	PLLI2S power consumption on V_{DD}	VCO freq = 100 MHz VCO freq = 432 MHz	0.15 0.45	-	0.40 0.75	mA
I	DDA(PLLI2S) ⁽⁴⁾	PLLI2S power consumption on V _{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz	0.30 0.55	-	0.40 0.85	mA

Table 44. PLLI2S (audio PLL) characteristics (continued)

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization results.

Table 45. PLLISAI (audio and LCD-TFT PLL) characteristics

Symbol	Parameter	Conditions	Conditions		Тур	Мах	Unit
f _{PLLSAI_IN}	PLLSAI input clock ⁽¹⁾			0.95 ⁽²⁾	1	2.10	MHz
f _{PLLSAI_OUT}	PLLSAI multiplier output clock			-	-	216	MHz
f _{VCO_OUT}	PLLSAI VCO output			100	-	432	MHz
•	PLLSAI lock time	VCO freq = 100 MHz	2	75	-	200	110
t _{LOCK}		VCO freq = 432 MHz	2	100	-	300	μs
		Cycle to cycle at	RMS	-	90	-	
	Main SAI clock jitter	12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
Jitter ⁽³⁾		Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples	f	-	90	-	ps
	FS clock jitter	Cycle to cycle at 48 on 1000 samples	KHz	-	400	-	ps
I _{DD(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V_{DD}	VCO freq = 100 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V_{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz		0.30 0.55	-	0.40 0.85	mA

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization results.

6.3.12 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see *Table 52: EMI characteristics*). It is available only on the main PLL.

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f _{Mod}	Modulation frequency	-	-	10	KHz
md	Peak modulation depth	0.25	-	2	%
MODEPER * INCSTEP		-	-	2 ¹⁵ – 1	-

Table 46.	SSCG	parameters	constraint
-----------	------	------------	------------

1. Guaranteed by design.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

MODEPER = round[$f_{PLL IN} / (4 \times f_{Mod})$]

 f_{PLL} IN and f_{Mod} must be expressed in Hz.

As an example:

If $f_{PLL_IN} = 1$ MHz, and $f_{MOD} = 1$ kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round
$$[10^{6}/(4 \times 10^{3})] = 250$$

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

INCSTEP = round[
$$((2^{15}-1) \times md \times PLLN) / (100 \times 5 \times MODEPER)$$
]

f_{VCO OUT} must be expressed in MHz.

With a modulation depth (md) = ± 2 % (4 % peak to peak), and PLLN = 240 (in MHz):

INCSTEP = round[$((2^{15}-1) \times 2 \times 240)/(100 \times 5 \times 250)$] = 126md(quantitazed)%

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$md_{quantized}$$
% = (MODEPER × INCSTEP × 100 × 5)/ ((2¹⁵ - 1) × PLLN)

As a result:

 $md_{guantized} \% = (250 \times 126 \times 100 \times 5)/((2^{15} - 1) \times 240) = 2.002\%$ (peak)

DocID024030 Rev 10

Figure 33 and *Figure 34* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal.

 T_{mode} is the modulation period.

md is the modulation depth.

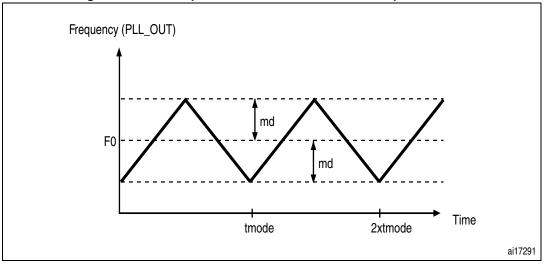
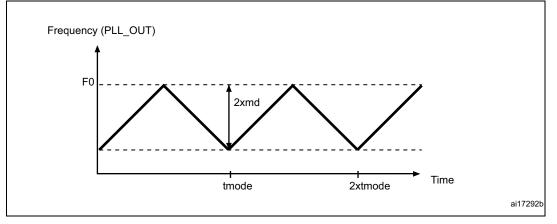



Figure 34. PLL output clock waveforms in down spread mode

6.3.13 Memory characteristics

Flash memory

The characteristics are given at TA = -40 to 105 °C unless otherwise specified.

The devices are shipped to customers with the Flash memory erased.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Write / Erase 8-bit mode, V_{DD} = 1.7 V	-	5	-	
I _{DD}	I _{DD} Supply current	Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode, V_{DD} = 3.3 V	-	12	-	

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs
		Program/erase parallelism (PSIZE) = x 8	-	400	800	
t _{ERASE16KB}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms
		Program/erase parallelism (PSIZE) = x 32	-	250	500	
	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 8	-	1200	2400	
t _{ERASE64KB}		Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms
		Program/erase parallelism (PSIZE) = x 32	-	550	1100	
	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 8	-	2	4	
t _{ERASE128KB}		Program/erase parallelism (PSIZE) = x 16	-	1.3	2.6	s
		Program/erase parallelism (PSIZE) = x 32	-	1	2	
		Program/erase parallelism (PSIZE) = x 8	-	16	32	
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 16	-	11	22	s
		Program/erase parallelism (PSIZE) = x 32	-	8	16	

Table 48. Flash memory programming

Table 40. Thas memory programming (continued)							
Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
t _{BE}		Program/erase parallelism (PSIZE) = x 8	-	16	32		
	Bank erase time	Program/erase parallelism (PSIZE) = x 16	-	11	22	S	
		Program/erase parallelism (PSIZE) = x 32	-	8	16		
V _{prog}	Programming voltage	32-bit program operation	2.7	-	3.6	V	
		16-bit program operation	2.1	-	3.6	V	
		8-bit program operation	1.7	-	3.6	V	

Table 48. Flash memory programming (continued)

1. Guaranteed by characterization results.

2. The maximum programming time is measured after 100K erase operations.

Table 49. Flash memory programming with V _{PP}								
Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit		
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs		
t _{ERASE16KB}	Sector (16 KB) erase time	T _A = 0 to +40 °C	-	230	-			
t _{ERASE64KB}	Sector (64 KB) erase time	V _{DD} = 3.3 V	-	490	-	ms		
t _{ERASE128KB}	Sector (128 KB) erase time	V _{PP} = 8.5 V	-	875	-			
t _{ME}	Mass erase time		-	6.9	-	s		
t _{BE}	Bank erase time		-	6.9	-	s		
V _{prog}	Programming voltage		2.7	-	3.6	V		
V _{PP}	V _{PP} voltage range		7	-	9	V		
I _{PP}	Minimum current sunk on the $V_{\rm PP}$ pin		10	-	-	mA		
t _{VPP} ⁽³⁾	Cumulative time during which V_{PP} is applied		-	-	1	hour		

able 49. Flash memory	programming with	V _{PP}
-----------------------	------------------	-----------------

1. Guaranteed by design.

2. The maximum programming time is measured after 100K erase operations.

3. V_{PP} should only be connected during programming/erasing.

Symbol	Parameter	Conditions	Value Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
t _{RET} Data rete		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

 Table 50. Flash memory endurance and data retention

1. Guaranteed by characterization results.

2. Cycling performed over the whole temperature range.

6.3.14 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 51*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 168 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, \text{LQFP176}, \text{T}_{\text{A}} = +25 \text{ °C}, \text{f}_{\text{HCLK}} = 168 \text{ MHz}, \text{ conforms to} \text{IEC 61000-4-2}$	4A

Table 51. EMS characteristics

When the application is exposed to a noisy environment, it is recommended to avoid pin exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1, PA2, PH2, PH3, PH4, PH5, PA3, PA4, PA5, PA6, PA7, PC4, and PC5.

As a consequence, it is recommended to add a serial resistor $(1 \text{ k}\Omega)$ located as close as possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC[?] code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	r Conditions	Monitored frequency band	Max vs. Max vs. [f _{HSE} /f _{CPU}] [f _{HSE} /f _{CPU}		Unit
			nequency band	25/168 MHz	25/180 MHz	
		V = 2.2 V T = 25 °C + 0 ED 176	0.1 to 30 MHz	16	19	
		$V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, LQFP176$ package, conforming to SAE J1752/3 EEMBC, ART ON, all peripheral clocks enabled, clock dithering disabled. Peak level $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, LQFP176$ package, conforming to SAE J1752/3 EEMBC, ART ON, all peripheral clocks enabled, clock dithering enabled	30 to 130 MHz	23	23	dBµV
	Peak level		130 MHz to 1GHz	25	22	
6			SAE EMI Level	4	4	-
S _{EMI}			0.1 to 30 MHz	17	16	
			30 to 130 MHz	8	10	dBµV
			130 MHz to 1GHz	11	16	
			SAE EMI level	3.5	3.5	-

Table 52. EMI characteristics

6.3.15 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESD S5.3.1 standards.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C conforming to ANSI/ESDA/JEDEC JS-001	2	2000	
	Electrostatic discharge voltage (charge device	T_A = +25 °C conforming to ANSI/ESD S5.3.1, LQFP100/144/176, UFBGA169/176, TFBGA176 and WLCSP143 packages	C3	250	V
	model)	$T_A = +25$ °C conforming to ANSI/ESD S5.3.1, LQFP208 package	C3	250	

Table 53. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.

S	Symbol Parameter		Conditions	Class
	LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

Table 54. Electrical sensitivities

6.3.16 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of – 5 μ A/+0 μ A range), or other functional failure (for example reset, oscillator frequency deviation).

Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

The test results are given in Table 55.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0 pin	- 0	NA	
	Injected current on NRST pin	- 0	NA	
I _{INJ}	Injected current on PA0, PA1, PA2, PA3, PA6, PA7, PB0, PC0, PC1, PC2, PC3, PC4, PC5, PH1, PH2, PH3, PH4, PH5	- 0	NA	mA
	Injected current on TTa pins: PA4 and PA5	- 0	+5	
	Injected current on any other FT pin	- 5	NA	

Table 55. I/O current injection susceptibility⁽¹⁾

1. NA = not applicable.

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

6.3.17 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 56: I/O static characteristics* are derived from tests performed under the conditions summarized in *Table 17*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit				
V _{IL}	FT, TTa and NRST I/O input low level voltage	1.7 V≤V _{DD} ≤3.6 V	-	-	$0.35V_{DD} - 0.04$					
	BOOT0 I/O input low level	1.75 V≤V _{DD} ≤3.6 V, – 40 °C≤T _A ≤105 °C	-	-	$0.3V_{DD}^{(2)}$	v				
	voltage	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	-	-	0.1V _{DD} +0.1 ⁽¹⁾					
	FT, TTa and NRST I/O input high level voltage ⁽⁵⁾	1.7 V≤V _{DD} ≤3.6 V	0.45V _{DD} +0.3 ⁽¹⁾							
			0.7V _{DD} ⁽²⁾	-	-					
V _{IH}	BOOT0 I/O input high level voltage	1.75 V≤V _{DD} ≤3.6 V, – 40 °C≤T _A ≤105 °C	- 0.17V _{DD} +0.7 ⁽¹⁾			V				
		1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C		-	-					
	FT, TTa and NRST I/O input hysteresis	1.7 V≤V _{DD} ≤3.6 V	10%V _{DD} ⁽³⁾	-	-					
V _{HYS}	BOOT0 I/O input hysteresis	1.75 V≤V _{DD} ≤3.6 V, – 40 °C≤T _A ≤105 °C	0.1			V				
		1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C		1.7 V≤V _{DD} ≤3.6 V,		1.7 V≤V _{DD} ≤3.6 V,		-	_	
I	I/O input leakage current ⁽⁴⁾	V _{SS} ≤V _{IN} ≤V _{DD}	-	-	±1					
l _{lkg}	I/O FT input leakage current (5)	V _{IN} = 5 V	-	-	3	μA				

Table 56.	1/0	static	characteristics

Symbol	Paran	neter	Conditions	Min	Тур	Мах	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽⁶⁾	All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	V _{IN} = V _{SS}	30	40	50	
		PA10/PB12 (OTG_FS_ID, OTG_HS_ID)		7	10	14	kΩ
R _{PD}	Weak pull- down equivalent resistor ⁽⁷⁾	All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	V _{IN} = V _{DD}	30	40	50	
		PA10/PB12 (OTG_FS_ID, OTG_HS_ID)		7	10	14	
C _{IO} ⁽⁸⁾	I/O pin capacita	nce	-	-	5	-	pF

Table 56. I/O static characteristics (continued)

1. Guaranteed by design.

2. Tested in production.

3. With a minimum of 200 mV.

4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 55: I/O current injection susceptibility

 To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 55: I/O current injection susceptibility

 Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order).

- 7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
- 8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 35*.

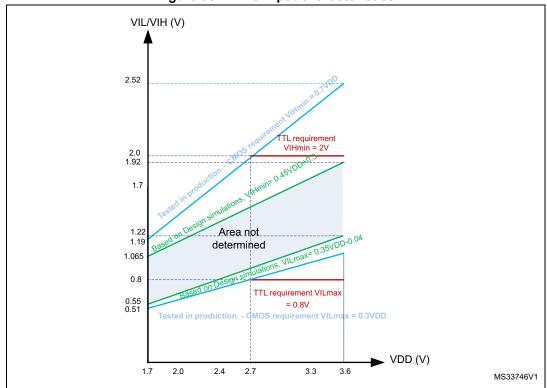


Figure 35. FT I/O input characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}) except PC13, PC14, PC15 and PI8 which can sink or source up to ± 3 mA. When using the PC13 to PC15 and PI8 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*. In particular:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 15*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 15*).

Output voltage levels

-

Unless otherwise specified, the parameters given in *Table 57* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V ≤V _{DD} ≤3.6 V	V _{DD} - 0.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} =+ 8mA 2.7 V ≤V _{DD} ≤3.6 V	2.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA	-	1.3 ⁽⁴⁾	v
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	2.7 V ≤V _{DD} ≤3.6 V	V _{DD} -1.3 ⁽⁴⁾	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +6 mA	-	0.4 ⁽⁴⁾	v
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.8 V ≤V _{DD} ≤3.6 V	V _{DD} -0.4 ⁽⁴⁾	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +4 mA	-	0.4 ⁽⁵⁾	v
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.7 V ≤V _{DD} ≤3.6V	V_{DD} -0.4 ⁽⁵⁾	-	V

Table 57.	Output	voltage	characteristics
-----------	--------	---------	-----------------

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 15*. and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 15 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Based on characterization data.

5. Guaranteed by design.

Input/output AC characteristics

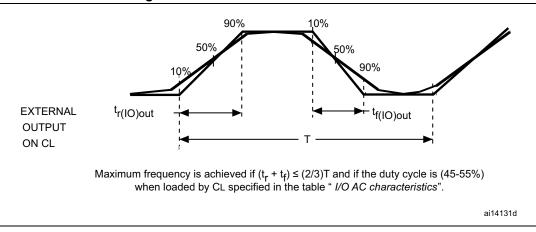
The definition and values of input/output AC characteristics are given in *Figure 36* and *Table 58*, respectively.

Unless otherwise specified, the parameters given in *Table 58* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
			$C_L = 50 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	4		
			$C_L = 50 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	-	-	2		
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C_L = 10 pF, $V_{DD} \ge 2.7 V$	-	-	8	MHz	
00			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	4		
			C_L = 10 pF, $V_{DD} \ge 1.7 V$	-	-	3		
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 50 pF, V _{DD} = 1.7 V to 3.6 V	-	-	100	ns	
			C _L = 50 pF, V _{DD} ≥ 2.7 V	-	-	25		
	f _{max(IO)} out	Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DD} ≥ 1.8 V	-	-	12.5	- MHz	
			C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	10		
			C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	50		
01			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	20		
01			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	12.5		
		Output high to low level fall time and output low to high level rise time	$C_L = 50 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	10	ns	
	t _{f(IO)out} /		C_L = 10 pF, $V_{DD} \ge 2.7 V$	-	-	6		
	t _{r(IO)out}		$C_L = 50 \text{ pF}, \text{ V}_{DD} \ge 1.7 \text{ V}$	-	-	20		
			C_L = 10 pF, $V_{DD} \ge 1.7 V$	-	-	10		
			C_L = 40 pF, $V_{DD} \ge 2.7 V$	-	-	50 ⁽⁴⁾		
			C_L = 10 pF, $V_{DD} \ge 2.7 V$	-	-	100 ⁽⁴⁾		
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C_L = 40 pF, $V_{DD} \ge 1.7 V$	-	-	25	MHz	
			C_L = 10 pF, $V_{DD} \ge 1.8 V$	-	-	50		
10			C_L = 10 pF, $V_{DD} \ge 1.7 V$	-	-	42.5		
			C _L = 40 pF, V _{DD} ≥2.7 V	-	-	6		
	t _{f(IO)out} /	Output high to low level fall time and output low to high	C_L = 10 pF, $V_{DD} \ge 2.7 V$	-	-	4	- ns	
	t _{r(IO)out}	level rise time	$C_L = 40 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	-	-	10		
			$C_L = 10 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	-	-	6	1	

Table 58. I/O AC characteristics⁽¹⁾⁽²⁾

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
			$C_L = 30 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	100 ⁽⁴⁾	
			C _L = 30 pF, V _{DD} ≥ 1.8 V	-	-	50	
	f	Maximum frequency ⁽³⁾	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	42.5	MHz
	[†] max(IO)out	Maximum nequency."	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	180 ⁽⁴⁾	
			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	100	
11			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	72.5	
11			C _L = 30 pF, V _{DD} ≥ 2.7 V	-	-	4	- ns
			C _L = 30 pF, V _{DD} ≥1.8 V	-	-	6	
	t _{f(IO)out} /	Output high to low level fall	C _L = 30 pF, V _{DD} ≥1.7 V	-	-	7	
	t _{r(IO)out}	time and output low to high level rise time	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	2.5	
			C _L = 10 pF, V _{DD} ≥1.8 V	-	-	3.5	
			C _L = 10 pF, V _{DD} ≥1.7 V	-	-	4	
-	tEXTIpw	Pulse width of external signals detected by the EXTI controller	-	10	-	-	ns


Table 58. I/O AC characteristics ⁽¹⁾⁽²⁾	(continued)
--	-------------

1. Guaranteed by design.

2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

3. The maximum frequency is defined in *Figure 36*.

4. For maximum frequencies above 50 MHz and V_{DD} > 2.4 V, the compensation cell should be used.

Figure 36. I/O AC characteristics definition

DocID024030 Rev 10

6.3.18 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 56: I/O static characteristics*).

Unless otherwise specified, the parameters given in *Table 59* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

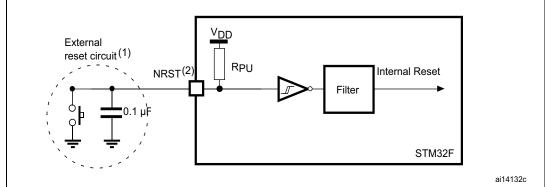

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse		-	-	100	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs

Table 59. NRST pin characteristics

1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

2. Guaranteed by design.

1. The reset network protects the device against parasitic resets.

- 2. The external capacitor must be placed as close as possible to the device.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 59. Otherwise the reset is not taken into account by the device.

6.3.19 TIM timer characteristics

The parameters given in Table 60 are guaranteed by design.

Refer to Section 6.3.17: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽³⁾	Min	Max	Unit			
t _{res(TIM)}	Timer resolution time	AHB/APBx prescaler=1 or 2 or 4, f _{TIMxCLK} = 180 MHz	1	-	t _{TIMxCLK}			
		AHB/APBx prescaler>4, f _{TIMxCLK} = 90 MHz	1	-	t _{TIMxCLK}			
f _{EXT}	Timer external clock frequency on CH1 to CH4	f _{TIMxCLK} = 180 MHz	0	f _{TIMxCLK} /2	MHz			
Res _{TIM}	Timer resolution		-	16/32	bit			
t _{MAX_COUNT}	Maximum possible count with 32-bit counter		-	65536 × 65536	t _{TIMxCLK}			

Table 60	. TIMx	characteristics ⁽¹⁾⁽²⁾
----------	--------	-----------------------------------

1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.

2. Guaranteed by design.

 The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK = 4x PCLKx.

6.3.20 Communications interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s.

The I²C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0090 reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present. Refer to Section 6.3.17: I/O port characteristics for more details on the I²C I/O characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

_					
	Symbol	Parameter	Min	Max	Unit
	t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

Table 61. I2C analog filter characteristics ⁽	er characteristics ⁽¹⁾
--	-----------------------------------

- 1. Guaranteed by design.
- 2. Spikes with widths below $t_{AF(min)}$ are filtered.
- 3. Spikes with widths above $t_{AF(max)}$ are not filtered

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 62* for the SPI interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Master mode, SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V				45	
		SPI1/4/5/6,	Receiver	-	-	45	MHz
			Transmitter/ full-duplex			38 ⁽²⁾	
		Master mode, SPI1/2/3/4/5/6, 1.7 V≤V _{DD} ≤3.6 V		-	-	22.5	
		Slave mode, SPI1/2/3/4/5/6, 1.7 V≤V _{DD} ≤3.6 V				22.5	
Duty(SCK)	Duty cycle of SPI clock frequency	Slave mode		30	50	70	%

Table 62. SPI dynamic characteristics⁽¹⁾

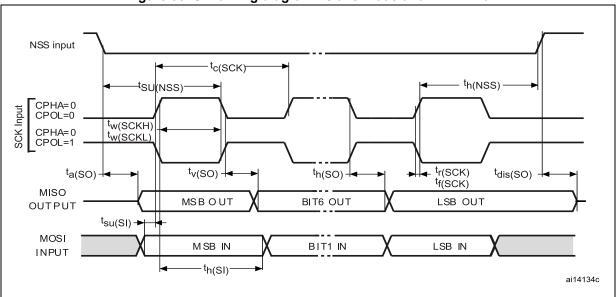
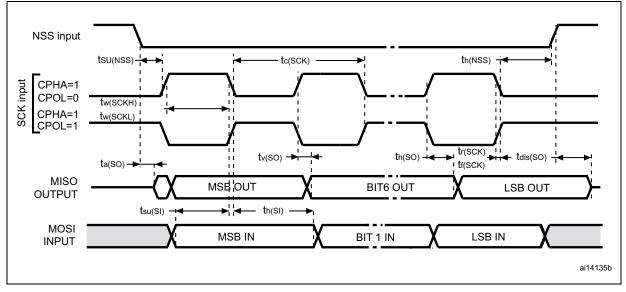
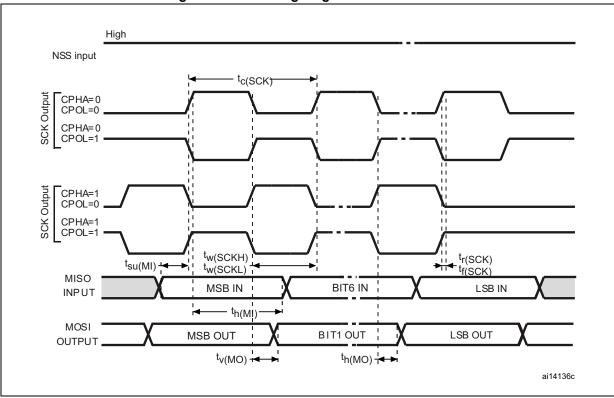

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{w(SCKH)}	SCK high and low time	Master mode, SPI presc = 2, 2.7 V≤V _{DD} ≤3.6 V	T _{PCLK} -0.5	T _{PCLK}	T _{PCLK} +0.5	
t _{w(SCKL)}		Master mode, SPI presc = 2, 1.7 V≤V _{DD} ≤3.6 V	T _{PCLK} – 2	T _{PCLK}	T _{PCLK} +2	
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4T _{PCLK}			
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2T _{PCLK}	-	-	
t _{su(MI)}	- Data input setup time	Master mode	3	-	-	
t _{su(SI)}		Slave mode	0	-	-	ns
t _{h(MI)}	Data input hold time	Master mode	0.5	-	-	-
t _{h(SI)}		Slave mode	2	-	-	
t _{a(SO})	Data output access time	Slave mode, SPI presc = 2	0	-	4T _{PCLK}	
t _{dis(SO)}	Data output disable time	Slave mode, SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V	0	-	8.5	
		Slave mode, SPI1/2/3/4/5/6 and 1.7 V≤V _{DD} ≤3.6 V	0	-	16.5	
	Data output valid/hold time	Slave mode (after enable edge), SPI1/4/5/6 and 2.7V \leq V _{DD} \leq 3.6V	-	11	13	
t _{v(SO)} t _{h(SO)}		Slave mode (after enable edge), SPI2/3, 2.7 V≤V _{DD} ≤3.6 V	-	14	15	ns
		Slave mode (after enable edge), SPI1/4/5/6, 1.7 V≤V _{DD} ≤3.6 V	-	15.5	19	
		Slave mode (after enable edge), SPI2/3, 1.7 V≤V _{DD} ≤3.6 V	-	15.5	17.5	
t _{v(MO)}	Data output valid time	Master mode (after enable edge), SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V	-	-	2.5	
		Master mode (after enable edge), SPI1/2/3/4/5/6, 1.7 V≤V _{DD} ≤3.6 V	-	-	4.5	
t _{h(MO)}	Data output hold time	Master mode (after enable edge)	0	-	-	

Table 62. SPI c	ynamic characteristics ⁽¹⁾	(continued)
-----------------	---------------------------------------	-------------

1. Guaranteed by characterization results.


2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50%



146/239

I²S interface characteristics

Unless otherwise specified, the parameters given in *Table 63* for the I²S interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{MCK}	I2S Main clock output	-	256x8K	256xFs ⁽²⁾	MHz
£	129 electr frequency	Master data: 32 bits	-	64xFs	MHz
f _{CK}	I2S clock frequency	Slave data: 32 bits	-	64xFs	IVINZ
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	0	6	
t _{h(WS)}	WS hold time	Master mode	0	-	
t _{su(WS)}	WS setup time	Slave mode	1	-	
t _{h(WS)}	WS hold time	Slave mode	0	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	7.5	-	
t _{su(SD_SR)}		Slave receiver	2	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	0	-	ns
t _{h(SD_SR)}	Data input hold time	Slave receiver	0	-	
t _{v(SD_ST)}		Slave transmitter (after enable edge)	-	27	
t _{h(SD_ST)}	Data output valid time				
$t_{v(SD_MT)}$		Master transmitter (after enable edge)	-	20	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	2.5	-	

Table 63. I²S dynamic characteristics⁽¹⁾

1. Guaranteed by characterization results.

2. The maximum value of 256xFs is 45 MHz (APB1 maximum frequency).

Note:

Refer to the I2S section of RM0090 reference manual for more details on the sampling frequency (F_S).

 f_{MCK} , f_{CK} , and D_{CK} values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. D_{CK} depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F_S maximum value is supported for each mode/condition.

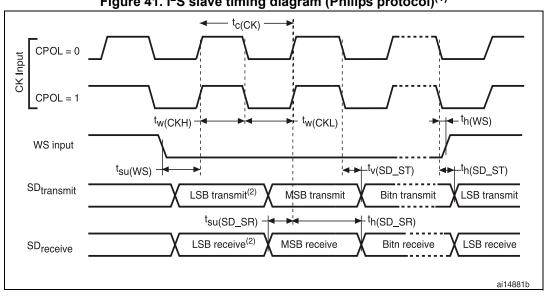



Figure 41. I²S slave timing diagram (Philips protocol)⁽¹⁾

.LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. 1.

Figure 42. I²S master timing diagram (Philips protocol)⁽¹⁾

LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first 1. byte.

SAI characteristics

Unless otherwise specified, the parameters given in *Table 64* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and VDD supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C=30 pF
- Measurement points are performed at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (SCK,SD,WS).

Symbol	Parameter	Conditions		Мах	Unit
f _{MCKL}	SAI Main clock output	-	256 x 8K	256xFs ⁽²⁾	MHz
E	SAL clock frequency	Master data: 32 bits		64xFs	MHz
F _{SCK}	SAI clock frequency	Slave data: 32 bits	-	64xFs	IVITIZ
D _{SCK}	SAI clock frequency duty cycle	Slave receiver	30	70	%
t _{v(FS)}	FS valid time	Master mode	8	22	
t _{su(FS)}	FS setup time	Slave mode	2	-	
+	FS hold time	Master mode	8	-	
t _{h(FS)}	rs noid time	Slave mode	0	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	5	-	
t _{su(SD_SR)}	Data input setup time	Slave receiver	3	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	0	-	ns
t _{h(SD_SR)}		Slave receiver	0	-	
t _{v(SD_ST)} t _{h(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	22	
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	20	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	8	-	

Table	64.	SAI	characteristics ⁽¹⁾
-------	-----	-----	--------------------------------

1. Guaranteed by characterization results.

2. 256xFs maximum corresponds to 45 MHz (APB2 xaximum frequency)

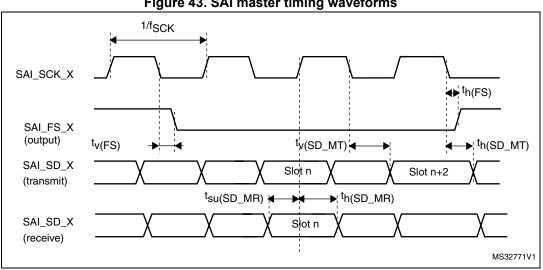
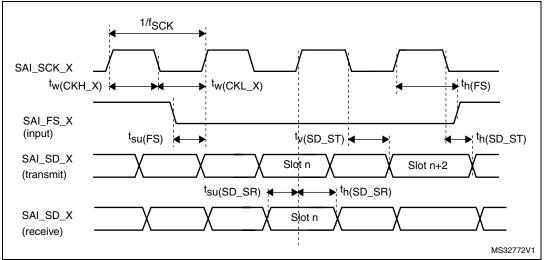



Figure 43. SAI master timing waveforms

USB OTG full speed (FS) characteristics

This interface is present in both the USB OTG HS and USB OTG FS controllers.

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾	USB OTG full speed transceiver startup time	1	μs

Table 65. USB OTG full speed startup time

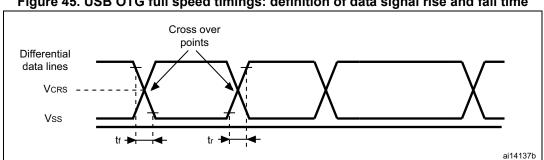
1. Guaranteed by design.

Sym	bol	Parameter	Conditions	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit
	V _{DD}	USB OTG full speed transceiver operating voltage		3.0 ⁽²⁾	-	3.6	V
Input levels	put VDIVY Unterential input sensitivity USB HS	I(USB_FS_DP/DM, USB_HS_DP/DM)	0.2	-	-		
levels	V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	-	2.5	V
Ň	$V_{SE}^{(3)}$	Single ended receiver threshold		1.3	-	2.0	
Output	V _{OL}	Static output level low	${\sf R}_{\sf L}$ of 1.5 k\Omega to 3.6 V $^{\!(4)}$	-	-	0.3	V
levels	V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}{}^{(4)}$	2.8	-	3.6	v
		PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM)	V _{IN} = V _{DD}	17	21	24	
R _F	סי	PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	VIN - VDD	0.65	1.1	2.0	kΩ
		PA12, PB15 (USB_FS_DP, USB_HS_DP)	V _{IN} = V _{SS}	1.5	1.8	2.1	
R _F	νU	PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	V _{IN} = V _{SS}	0.25	0.37	0.55	

Table 66. USB OTG full speed DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.


3. Guaranteed by design.

4. R_L is the load connected on the USB OTG full speed drivers.

Note:

When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state (floating input), not as alternate function. A typical 200 µA current consumption of the sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 and PB13 when the feature is enabled.

Figure 45. USB OTG full speed timings: definition of data signal rise and fall time

Table 67. USB OTG full speed electrical characteristics⁽¹⁾

	Driver characteristics							
Symbol	Parameter	Conditions	Min	Max	Unit			
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns			
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	ns			
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%			
V _{CRS}	Output signal crossover voltage		1.3	2.0	V			
Z _{DRV}	Output driver impedance ⁽³⁾	Driving high or low	28	44	Ω			

1. Guaranteed by design.

Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB 2. Specification - Chapter 7 (version 2.0).

No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching 3. impedance is included in the embedded driver.

USB high speed (HS) characteristics

Unless otherwise specified, the parameters given in Table 70 for ULPI are derived from tests performed under the ambient temperature, fHCLK frequency summarized in Table 69 and V_{DD} supply voltage conditions summarized in *Table 68*, with the following configuration:

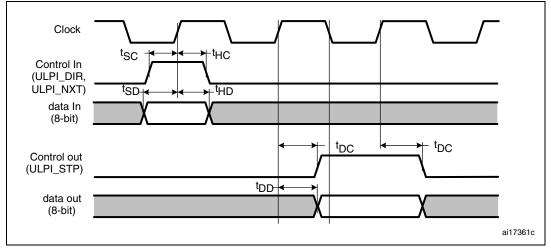
- Output speed is set to OSPEEDRy[1:0] = 10, unless otherwise specified
- Capacitive load C = 30 pF, unless otherwise specified
- Measurement points are done at CMOS levels: 0.5V_{DD}.

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

Symbol		Parameter	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input level	V _{DD}	USB OTG HS operating voltage	1.7	3.6	V

Table 68. USB HS DC electrical characteristics

1. All the voltages are measured from the local ground potential.



Symbol	Parameter	Min	Тур	Max	Unit	
	f _{HCLK} value to guarantee prope USB HS interface	er operation of	30	-	-	MHz
F _{START_8BIT}	Frequency (first transition)	8-bit ±10%	54	60	66	MHz
F _{STEADY}	Frequency (steady state) ±500 ppm		59.97	60	60.03	MHz
D _{START_8BIT}	Duty cycle (first transition) 8-bit ±10%		40	50	60	%
D _{STEADY}	Duty cycle (steady state) ±500 ppm		49.975	50	50.025	%
t _{STEADY}	Time to reach the steady state frequency and duty cycle after the first transition		-	-	1.4	ms
t _{START_DEV}	Clock startup time after the	Peripheral	-	-	5.6	mo
t _{START_HOST}	de-assertion of SuspendM	Host	-	-	-	ms
t _{PREP}	PHY preparation time after the of the input clock	first transition	-	-	-	μs

Table 69. USB HS clo	ock timing parameters ⁽¹⁾
----------------------	--------------------------------------

1. Guaranteed by design.

Figure 46. ULPI timing diagram

Electrical characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
t _{SC}	Control in (ULPI_DIR, ULPI_NXT) setup time		2	-	-			
t _{HC}	Control in (ULPI_DIR, ULPI_NXT) hold time		0.5	-	-			
t _{SD}	Data in setup time		1.5	-	-			
t _{HD}	Data in hold time		2	-	-			
t _{DC} /t _{DD} Data/control output delay		2.7 V < V _{DD} < 3.6 V, C _L = 15 pF and OSPEEDRy[1:0] = 11	-	9	9.5	ns		
	Data/control output delay	2.7 V < V _{DD} < 3.6 V, C _L = 20 pF and OSPEEDRy[1:0] = 10	-	10	15			
		1.7 V < V _{DD} < 3.6 V, C _L = 15 pF and OSPEEDRy[1:0] = 11	-	- 12	15			

Table 70. Dynamic characteristics: USB ULPI⁽¹⁾

1. Guaranteed by characterization results.

154/239

Ethernet characteristics

Unless otherwise specified, the parameters given in *Table 71*, *Table 72* and *Table 73* for SMI, RMII and MII are derived from tests performed under the ambient temperature, f_{HCLK} frequency summarized in *Table 17* with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF for 2.7 V < V_{DD} < 3.6 V
- Capacitive load C = 20 pF for $1.71 \text{ V} < \text{V}_{\text{DD}} < 3.6 \text{ V}$
- Measurement points are done at CMOS levels: 0.5V_{DD}.

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

Table 71 gives the list of Ethernet MAC signals for the SMI (station management interface) and *Figure 47* shows the corresponding timing diagram.

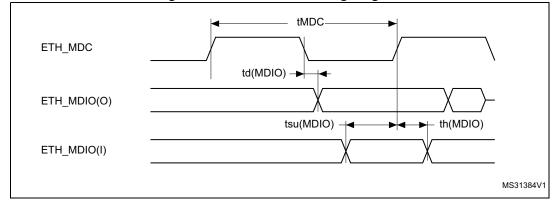


Figure 47. Ethernet SMI timing diagram

Table 71. Dynamics characteristics: Ethernet MAC signals for SMI ⁽¹⁾

Symbol	Parameter	Min	Тур	Мах	Unit
t _{MDC}	MDC cycle time(2.38 MHz)	411	420	425	
T _{d(MDIO)}	Write data valid time	6	10	13	ns
t _{su(MDIO)}	Read data setup time	12	-	-	115
t _{h(MDIO)}	Read data hold time	0	-	_	

Table 72 gives the list of Ethernet MAC signals for the RMII and *Figure 48* shows the corresponding timing diagram.

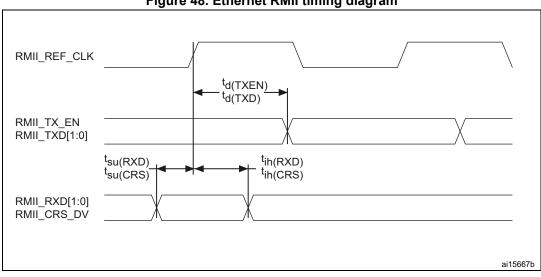


Figure 48. Ethernet RMII timing diagram

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
t _{su(RXD)}	Receive data setup time		1.5	-	-	
t _{ih(RXD)}	Receive data hold time	1.71 V < V _{DD} < 3.6 V	0	-	-	
t _{su(CRS)}	Carrier sense setup time	1.71 V < V _{DD} < 3.0 V	1	-	-	
t _{ih(CRS)}	Carrier sense hold time		1	-	-	ns
+	Transmit enable valid delay	2.7 V < V _{DD} < 3.6 V	8	10.5	12	115
^t d(TXEN)	time	1.71 V < V _{DD} < 3.6 V	8	10.5	14	
+	t _{d(TXD)} Transmit data valid delay time	2.7 V < V _{DD} < 3.6 V	8	11	12.5	
'd(TXD)		1.71 V < V _{DD} < 3.6 V	8	11	14.5	

1. Guaranteed by characterization results.

Table 73 gives the list of Ethernet MAC signals for MII and *Figure 48* shows the corresponding timing diagram.

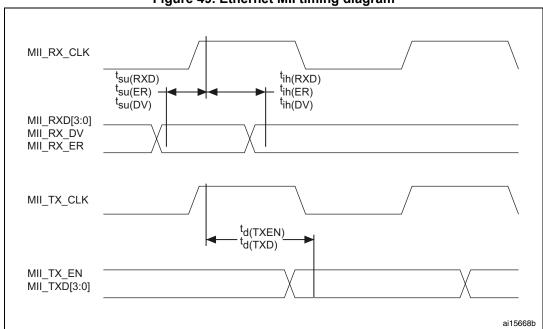


Figure 49. Ethernet MII timing diagram

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time		9	-	-	
t _{ih(RXD)}	Receive data hold time		10	-	-	
t _{su(DV)}	Data valid setup time	1.71 V < V _{DD} < 3.6 V	9	-	-	
t _{ih(DV)}	Data valid hold time		8	-	-	
t _{su(ER)}	Error setup time		6	-	-	
t _{ih(ER)}	Error hold time		8	-	-	ns
+	Transmit anable valid dolov time	2.7 V < V _{DD} < 3.6 V	8	10	14	
t _{d(TXEN)}	Transmit enable valid delay time	1.71 V < V _{DD} < 3.6 V	8	10	16	
+	Transmit data valid dolav timo	2.7 V < V _{DD} < 3.6 V	7.5	10	15	
t _{d(TXD)}	Transmit data valid delay time	$1.71 \text{ V} < \text{V}_{\text{DD}} < 3.6 \text{ V}$	7.5	10	17	

1. Guaranteed by characterization results.

CAN (controller area network) interface

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX).

6.3.21 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 74* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Power supply	N N 1001	1.7 ⁽¹⁾	-	3.6	
V _{REF+}	Positive reference voltage	V _{DDA} – V _{REF+} < 1.2 V	1.7 ⁽¹⁾	-	V _{DDA}	V
V _{REF-}	Negative reference voltage	-	-	0	-	-
£		V_{DDA} = 1.7 ⁽¹⁾ to 2.4 V	0.6	15	18	MHz
f _{ADC}	ADC clock frequency	V _{DDA} = 2.4 to 3.6 V	0.6	30	$\begin{array}{c c} 3.6 \\ \hline V_{DDA} \\ \hline - \\ 18 \\ 36 \\ 1764 \\ 17 \\ \hline V_{REF+} \\ 50 \\ 6 \\ 7 \\ 0.100 \\ 3^{(5)} \\ 0.067 \\ 2^{(5)} \\ 16 \\ 480 \\ 3 \\ 16.40 \\ 16.34 \\ 16.27 \\ 16.20 \\ \end{array}$	MHz
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 30 MHz, 12-bit resolution	-	-	1764	kHz
			-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾		0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> for details	-	-	50	kΩ
$R_{ADC}^{(2)(4)}$	Sampling switch resistance		1.5	-	6	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor		-	4	7	pF
t _{lat} (2)	Injection trigger conversion	f _{ADC} = 30 MHz	-	-	0.100	μs
'lat` ´	latency		-	-	3 ⁽⁵⁾	1/f _{ADC}
t _{latr} (2)	Regular trigger conversion	f _{ADC} = 30 MHz	-	-	0.067	μs
⁴ atr` ´	latency		-	-	- 3 ⁽⁵⁾ - 0.067 - 2 ⁽⁵⁾	1/f _{ADC}
t _S ⁽²⁾	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
-	Sampling time		3	-	480	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time		-	2	3	μs
		f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	μs
		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	μs
t _{CONV} ⁽²⁾	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.30	-	16.20	μs
		9 to 492 (t _S for sampling approximation)	+n-bit resolution f	or succe	ssive	1/f _{ADC}

158/239

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		12-bit resolution Single ADC	-	-	2	Msps
f _S ⁽²⁾	Sampling rate (f _{ADC} = 30 MHz, and t _S = 3 ADC cycles)	12-bit resolution Interleave Dual ADC mode	-	-	3.75	Msps
	is - 3 ADC cycles)	12-bit resolution Interleave Triple ADC mode	-	-	6	Msps
I _{VREF+} ⁽²⁾	ADC V _{REF} DC current consumption in conversion mode		-	300	500	μA
I _{VDDA} ⁽²⁾	ADC V _{DDA} DC current consumption in conversion mode		-	1.6	1.8	mA

Table 74. ADC characteristics (continued)

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).

2. Guaranteed by characterization results.

3. V_{REF^+} is internally connected to V_{DDA} and V_{REF^-} is internally connected to $V_{\mathsf{SSA}}.$

4. R_{ADC} maximum value is given for V_{DD} =1.7 V, and minimum value for V_{DD} =3.3 V.

5. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in Table 74.

Equation 1: RAIN max formula

$$R_{AIN} = \frac{(k-0.5)}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit
ET	Total unadjusted error	(±3	±4	
EO	Offset error	f _{ADC} =18 MHz V _{DDA} = 1.7 to 3.6 V	±2	±3	
EG	Gain error	$V_{REF} = 1.7 \text{ to } 3.6 \text{ V}$	±1	±3	LSB
ED	Differential linearity error	V _{DDA} – V _{REF} < 1.2 V	±1	±2	
EL	Integral linearity error		±2	±3	

Table 75. ADC static accuracy at f_{ADC} = 18 MHz

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit
ET	Total unadjusted error		±2	±5	
EO	Offset error	f _{ADC} = 30 MHz, R _{AIN} < 10 kΩ	±1.5	±2.5	
EG	Gain error	$V_{DDA} = 2.4$ to 3.6 V,	±1.5	±3	LSB
ED	Differential linearity error	V _{REF} = 1.7 to 3.6 V, V _{DDA} – V _{REF} < 1.2 V	±1	±2	
EL	Integral linearity error		±1.5	±3	

Table 76. ADC static accuracy at f_{ADC} = 30 MHz

1. Guaranteed by characterization results.

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit			
ET	Total unadjusted error		±4	±7				
EO	Offset error	f _{ADC} =36 MHz, V _{DDA} = 2.4 to 3.6 V,	±2	±3				
EG	Gain error	V _{DDA} = 2.4 to 3.6 V, V _{REF} = 1.7 to 3.6 V	±3	±6	LSB			
ED	Differential linearity error	$V_{DDA} - V_{REF} < 1.2 V$	±2	±3				
EL	Integral linearity error		±3	±6				

Table 77. ADC static accuracy at f_{ADC} = 36 MHz

1. Guaranteed by characterization results.

Table 78. ADC dynamic accuracy at f_{ADC} = 18 MHz - limited test conditions⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =18 MHz	10.3	10.4	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 1.7 V$	64	64.2	-	
SNR	Signal-to-noise ratio	Input Frequency = 20 KHz	64	65	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 67	- 72	-	

1. Guaranteed by characterization results.

Table 79. ADC dynamic accuracy at f_{ADC} = 36 MHz - limited test conditions⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =36 MHz	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio	$V_{DDA} = V_{REF+} = 3.3 V$	66	67	-	
SNR	Signal-to noise ratio	Input Frequency = 20 KHz	64	68	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 70	- 72	-	

Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in *Section 6.3.17* does not affect the ADC accuracy.

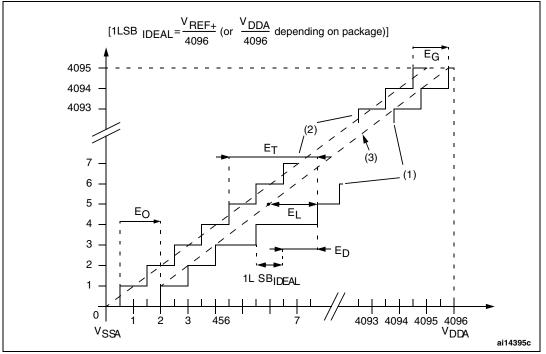


Figure 50. ADC accuracy characteristics

- 1. See also Table 76.
- 2. Example of an actual transfer curve.
- 3. Ideal transfer curve.
- 4. End point correlation line.
- 5. E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

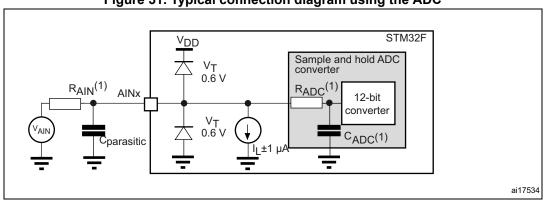
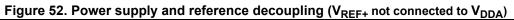
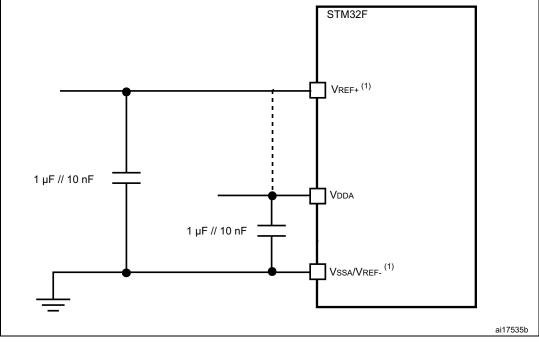


Figure 51. Typical connection diagram using the ADC

1. Refer to Table 74 for the values of $\mathsf{R}_{\mathsf{AIN}},\,\mathsf{R}_{\mathsf{ADC}}\,\mathsf{and}\,\mathsf{C}_{\mathsf{ADC}}.$


 $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high $C_{parasitic}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.


162/239

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 52* or *Figure 53*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

1. V_{REF+} and V_{REF-} inputs are both available on UFBGA176. V_{REF+} is also available on LQFP100, LQFP144, and LQFP176. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA} .

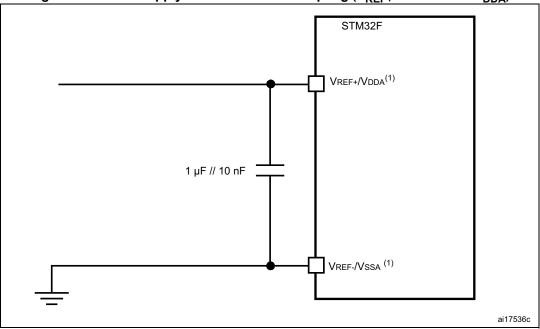


Figure 53. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

 V_{REF+} and V_{REF-} inputs are both available on UFBGA176. V_{REF+} is also available on LQFP100, LQFP144, and LQFP176. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA} . 1.

6.3.22 **Temperature sensor characteristics**

able 80. Temperature sensor characteristics	i

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	-	2.5		mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	-	0.76		V
t _{START} ⁽²⁾	Startup time	-	6	10	μs
T _{S_temp} ⁽²⁾	ADC sampling time when reading the temperature (1 °C accuracy)	10	-	-	μs

1. Guaranteed by characterization results.

2. Guaranteed by design.

/mbol	Parameter	Memory addres
CAL 1	TS ADC raw data acquired at temperature of 30 °C $V_{} = 3.3 V$	0x1EEE 742C - 0x1EE

Symbol	Parameter	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V_{DDA} = 3.3 V	0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C, V_{DDA} = 3.3 V	0x1FFF 7A2E - 0x1FFF 7A2F

6.3.23 V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
R	Resistor bridge for V _{BAT}	-	50	-	KΩ
Q	Ratio on V _{BAT} measurement	-	4	-	
Er ⁽¹⁾	Error on Q	-1	-	+1	%
T _{S_vbat} ⁽²⁾⁽²⁾	ADC sampling time when reading the V _{BAT} 1 mV accuracy	5	-	-	μs

Table 82. V_{BAT} monitoring characteristics

1. Guaranteed by design.

2. Shortest sampling time can be determined in the application by multiple iterations.

6.3.24 Reference voltage

The parameters given in *Table 83* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.18	1.21	1.24	V
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage		10	-	-	μs
V _{RERINT_s} ⁽²⁾	Internal reference voltage spread over the temperature range	V_{DD} = 3V \pm 10mV	-	3	5	mV
T _{Coeff} ⁽²⁾	Temperature coefficient		-	30	50	ppm/°C
t _{START} ⁽²⁾	Startup time		-	6	10	μs

Table 83. internal reference voltage

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design, not tested in production

Table 84. Internal reference voltage calibration values

Symbol	Parameter	Memory address
V _{REFIN_CAL}	Raw data acquired at temperature of 30 $^\circ$ C _{VDDA} = 3.3 V	0x1FFF 7A2A - 0x1FFF 7A2B

6.3.25 DAC electrical characteristics

Symbol	Parameter		itions	Min	Тур	Max	Unit	Comments	
V _{DDA}	Analog supply voltage		_	1.7 ⁽¹⁾	-	3.6	V	-	
V _{REF+}	Reference supply voltage		-	1.7 ⁽¹⁾	-	3.6	V	V _{REF+} ≤V _{DDA}	
V _{SSA}	Ground		-	0	-	0	V	-	
BLOAD ⁽²⁾	Resistive load	DAC output	R _{LOAD} connected to V _{SSA}	5	-	-	kO	kΩ	-
"LOAD		buffer ON	R _{LOAD} connected to V _{DDA}	25			1132	-	
R _O ⁽²⁾	Impedance output with buffer OFF		-	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω	
C _{LOAD} ⁽²⁾	Capacitive load		-	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).	
DAC_O UT min ⁽²⁾	Lower DAC_OUT voltage with buffer ON		-	0.2	-	-	v	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input	
DAC_O UT max ⁽²⁾	Higher DAC_OUT voltage with buffer ON		-	-	-	V _{DDA} - 0.2	V	code (0x0E0) to (0xF1C) at V _{REF+} = 3.6 V and (0x1C7) to (0xE38) at V _{REF+} = 1.7 V	
DAC_O UT min ⁽²⁾	Lower DAC_OUT voltage with buffer OFF		-	-	0.5	-	mV	It gives the maximum output	
DAC_O UT max ⁽²⁾	Higher DAC_OUT voltage with buffer OFF		-	-	-	V _{REF+} – 1LSB	V	excursion of the DAC.	
I _{VREF+} ⁽⁴⁾	DAC DC V _{REF} current consumption in		-	-	170	240	μA	With no load, worst code (0x800) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs	
'VREF+`´	quiescent mode (Standby mode)		-	-	50	75	μΑ	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs	

Table 85. DAC characteristics

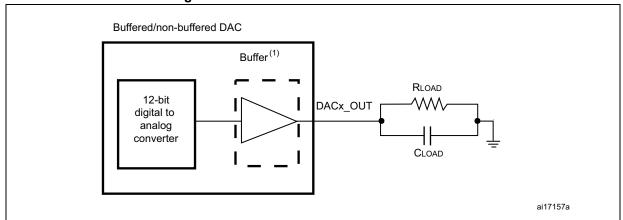
STM32F427xx STM32F429xx

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	Comments
		-	-	280	380	μA	With no load, middle code (0x800) on the inputs
I _{DDA} ⁽⁴⁾	DAC DC VDDA current consumption in quiescent mode ⁽³⁾	-	-	475	625	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
DNL ⁽⁴⁾	Differential non linearity Difference between two	-	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code- 1LSB)	-	-	-	±2	LSB	Given for the DAC in 12-bit configuration.
	Integral non linearity (difference between	-	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽⁴⁾	INL ⁽⁴⁾ measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	-	±4	LSB	Given for the DAC in 12-bit configuration.
	Offset error	-	-	-	±10	mV	Given for the DAC in 12-bit configuration
Offset ⁽⁴⁾	(difference between measured value at Code (0x800) and the	-	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V
	ideal value = $V_{REF+}/2$)	-	-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V
Gain error ⁽⁴⁾	Gain error	-	-	-	±0.5	%	Given for the DAC in 12-bit configuration
tsettlin G	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±4LSB	-	-	3	6	μs	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ
THD ⁽⁴⁾	Total Harmonic Distortion Buffer ON	-	-	-	-	dB	C_{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	-	1	MS/ s	C _{LOAD} ≤50 pF, R _{LOAD} ≥ 5 kΩ

Table 85. DAC characteristics (continued)

Electrical characteristics

		Table 65. DAC charact			Jiitiiiu	euj	
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	Comments
	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	-	6.5	10	μs	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$ input code between lowest and highest possible ones.
PSRR+ (2)	Power supply rejection ratio (to V _{DDA}) (static DC measurement)	-	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF


Table 85. DAC characteristics (continued)

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).

2. Guaranteed by design.

3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

4. Guaranteed by characterization.

Figure 54. 12-bit buffered /non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.26 FMC characteristics

Unless otherwise specified, the parameters given in *Table 86* to *Table 101* for the FMC interface are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10 except at V_{DD} range 1.7 to 2.1V where OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

Asynchronous waveforms and timings

Figure 55 through *Figure 58* represent asynchronous waveforms and *Table 86* through *Table 93* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0
- For SDRAM memories, V_{DD} ranges from 2.7 to 3.6 V and maximum frequency FMC_SDCLK = 90 MHz
- For Mobile LPSDR SDRAM memories, V_{DD} ranges from 1.7 to 1.95 V and maximum frequency FMC_SDCLK = 84 MHz

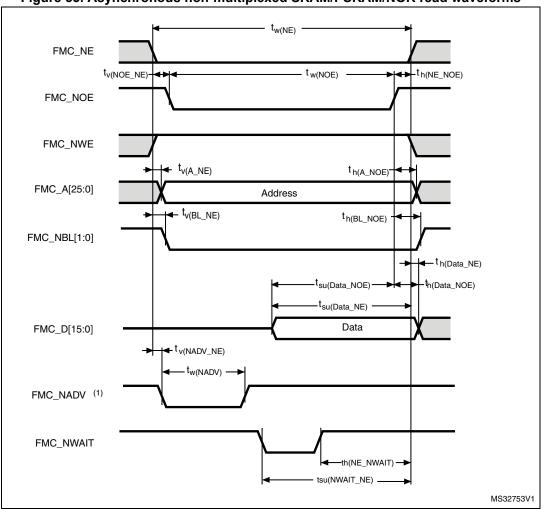


Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR -
read timings ⁽¹⁾⁽²⁾
read timings

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	2T _{HCLK} – 0.5	2 T _{HCLK} +0.5	ns
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	0	1	ns
t _{w(NOE)}	FMC_NOE low time	2T _{HCLK}	2T _{HCLK} + 0.5	ns
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	ns
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	2	ns
t _{h(A_NOE)}	Address hold time after FMC_NOE high	0	-	ns
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	ns
t _{h(BL_NOE)}	FMC_BL hold time after FMC_NOE high	0	-	ns
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} + 2.5	-	ns
t _{su(Data_NOE)}	Data to FMC_NOEx high setup time	T _{HCLK} +2	-	ns

Symbol	Parameter	Min	Мах	Unit
t _{h(Data NOE)}	Data hold time after FMC_NOE high	0	-	ns
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	ns
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0	ns
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} +1	ns

Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR - read timings⁽¹⁾⁽²⁾ (continued)

1. C_L = 30 pF.

2. Guaranteed by characterization results.

Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -
NWAIT timings ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	7T _{HCLK} +0.5	7T _{HCLK} +1	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} – 1.5	5T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} +1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

1. C_L = 30 pF.

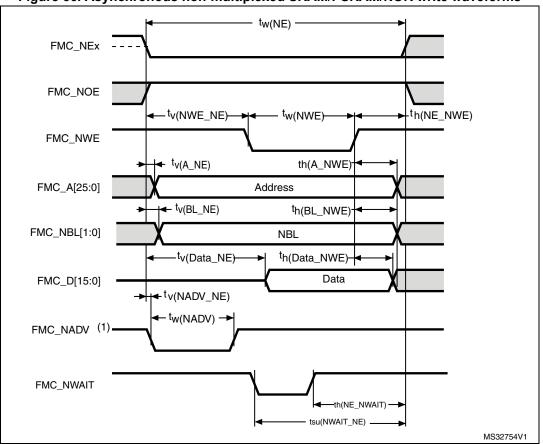
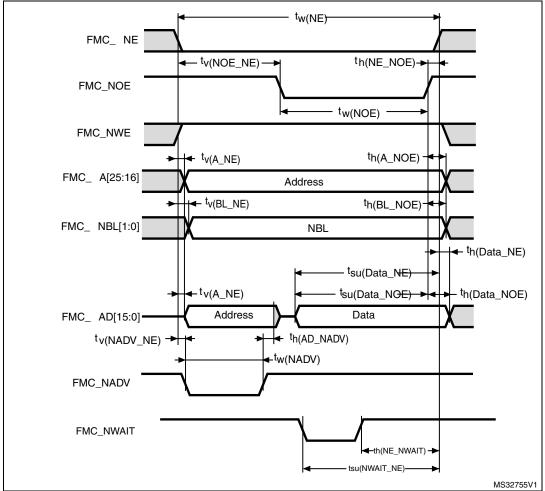


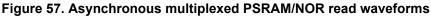
Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR v	rite timinas ⁽¹⁾⁽²⁾
Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR v	/rite timings('//-/

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK}	3T _{HCLK} +1	ns
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} – 0.5	T _{HCLK} + 0.5	ns
t _{w(NWE)}	FMC_NWE low time	T _{HCLK}	T _{HCLK} + 0.5	ns
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK} +1.5	-	ns
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	ns
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK} +0.5	-	ns
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	1.5	ns
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} +0.5	-	ns
t _{v(Data_NE)}	Data to FMC_NEx low to Data valid	-	T _{HCLK} + 2	ns
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-	ns
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0.5	ns
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} + 0.5	ns


1. C_L = 30 pF.


2. Guaranteed by characterization results.

Symbol Parameter		Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +1	8T _{HCLK} +2	ns
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} – 1	6T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +1.5	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1		ns

Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings $^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK} – 1	3T _{HCLK} +0.5	ns
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	2T _{HCLK} – 0.5	2T _{HCLK}	ns
t _{tw(NOE)}	FMC_NOE low time	T _{HCLK} – 1	T _{HCLK} +1	ns
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	1	-	ns
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	2	ns
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	2	ns
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} – 0.5	T _{HCLK} +0.5	ns
t _{h(AD_NADV)}	FMC_AD(address) valid hold time after FMC_NADV high)	0	-	ns
t _{h(A_NOE)}	Address hold time after FMC_NOE high	T _{HCLK} – 0.5	-	ns
t _{h(BL_NOE)}	FMC_BL time after FMC_NOE high	0	-	ns
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	ns
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} +1.5	-	ns
t _{su(Data_NOE)}	Data to FMC_NOE high setup time	T _{HCLK} +1	-	ns
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	ns
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	ns

2. Guaranteed by characterization results.

Table 91. Asynchronous	multiplexed PSRAM/NOR read-NWAIT timings ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +0.5	8T _{HCLK} +2	ns
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} – 1	5T _{HCLK} +1.5	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} +1.5	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1		ns

1. C_L = 30 pF.

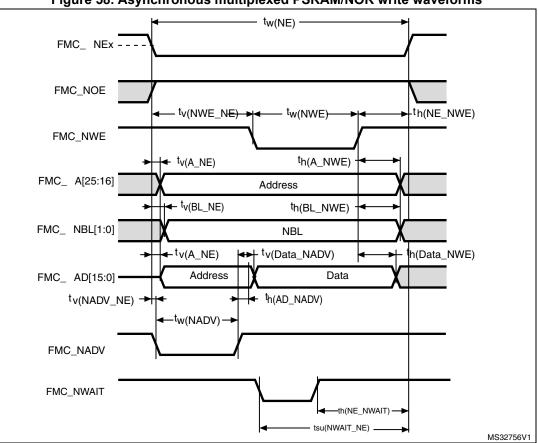


Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	4T _{HCLK}	4T _{HCLK} +0.5	ns
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} – 1	T _{HCLK} +0.5	ns
t _{w(NWE)}	FMC_NWE low time	2T _{HCLK}	2T _{HCLK} +0.5	ns
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK}	-	ns
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	ns
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0.5	1	ns
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} – 0.5	T _{HCLK} + 0.5	ns
t _{h(AD_NADV)}	FMC_AD(adress) valid hold time after FMC_NADV high)	T _{HCLK} – 2	-	ns
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK}	-	ns
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} – 2	-	ns
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	ns
t _{v(Data_NADV)}	FMC_NADV high to Data valid	-	T _{HCLK} +1.5	ns
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-	ns

Symbol	Parameter	Min	Max	Unit	
t _{w(NE)}	FMC_NE low time	9T _{HCLK}	9T _{HCLK} +0.5	ns	
t _{w(NWE)}	FMC_NWE low time	7T _{HCLK}	7T _{HCLK} +2	ns	
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +1.5	-	ns	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} –1	-	ns	

 Table 93. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings⁽¹⁾⁽²⁾

2. Guaranteed by characterization results.

Synchronous waveforms and timings

Figure 59 through *Figure 62* represent synchronous waveforms and *Table 94* through *Table 97* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable;
- MemoryType = FMC_MemoryType_CRAM;
- WriteBurst = FMC_WriteBurst_Enable;
- CLKDivision = 1; (0 is not supported, see the STM32F4xx reference manual : RM0090)
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

In all timing tables, the T_{HCLK} is the HCLK clock period (with maximum FMC_CLK = 90 MHz).

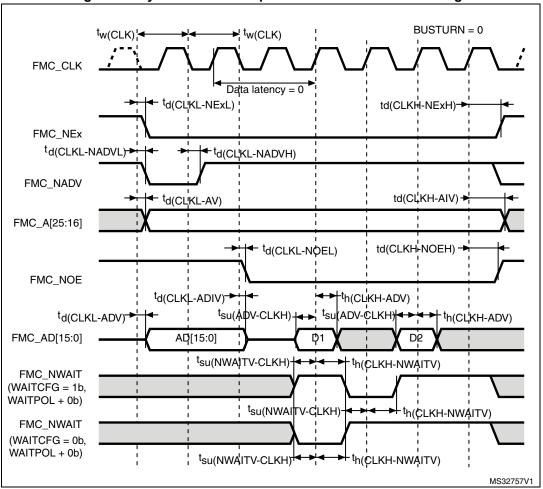
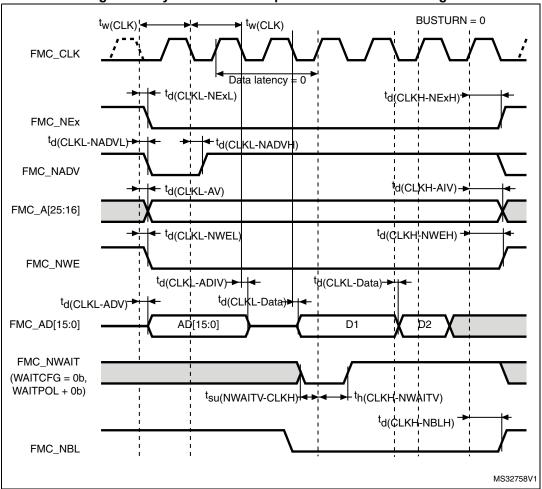


Figure 59. Synchronous multiplexed NOR/PSRAM read timings

Table 94. Synchronous multiplexed NOR/PSRAM read timings ⁽¹⁾⁽
--

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} – 1	-	ns
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	0	ns
t _{d(CLKH_NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	ns
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	ns
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	ns
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	0	-	ns
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	T _{HCLK} +0.5	ns
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	$T_{HCLK} - 0.5$	-	ns
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	0.5	ns
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	ns



Symbol	Parameter	Min	Мах	Unit
t _{su(ADV-CLKH)}	FMC_A/D[15:0] valid data before FMC_CLK high	5	-	ns
t _{h(CLKH-ADV)}	FMC_A/D[15:0] valid data after FMC_CLK high	0	-	ns
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	4	-	ns
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0	-	ns

Table 94. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾ (continued)

1. C_L = 30 pF.

2. Guaranteed by characterization results.

Figure 60. Synchronous multiplexed PSRAM write timings

178/239

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period, VDD range= 2.7 to 3.6 V	2T _{HCLK} – 1	-	ns
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	1.5	ns
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	ns
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	ns
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	ns
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	ns
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	0	ns
t _(CLKH-NWEH)	FMC_CLK high to FMC_NWE high	T _{HCLK} -0.5	-	ns
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3	ns
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	ns
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	3	ns
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	0	-	ns
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} -0.5	-	ns
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	4	-	ns
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0	-	ns

Table 95. Synchronous multiplexed PSRAM write timings⁽¹⁾⁽²⁾

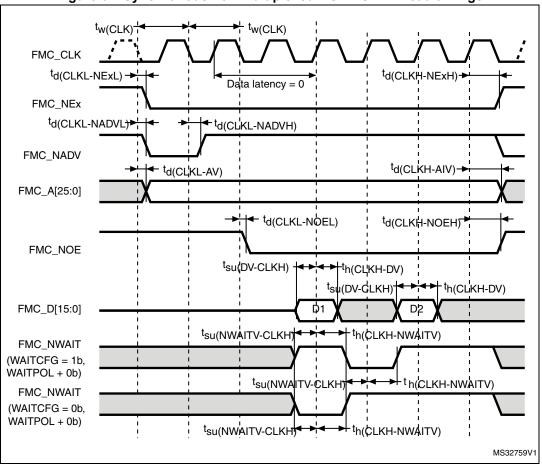
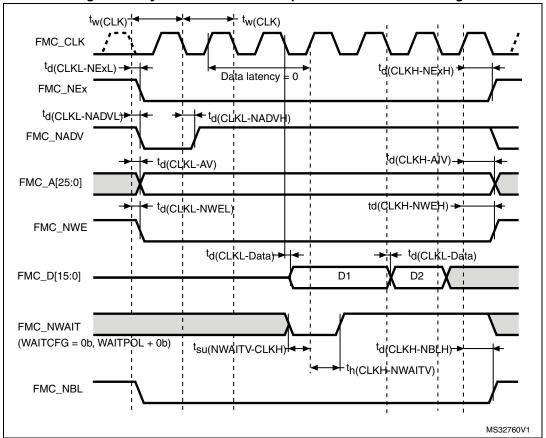


Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings

Table 96. Synchronous non-multiplexed NOR/PSRA	M read timings ⁽¹⁾⁽²⁾
--	----------------------------------


Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} – 1	-	ns
t _(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x=02)	-	0.5	ns
t _{d(CLKH-} NExH)	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	ns
t _{d(CLKL-} NADVL)	FMC_CLK low to FMC_NADV low	-	0	ns
t _{d(CLKL-} NADVH)	FMC_CLK low to FMC_NADV high	0	-	ns
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK} – 0.5	-	ns
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	T _{HCLK} +2	ns
t _{d(CLKH-} NOEH)	FMC_CLK high to FMC_NOE high	T _{HCLK} – 0.5	-	ns
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	5	_	ns

Symbol	Parameter	Min	Мах	Unit
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	0	-	ns
t _(NWAIT-CLKH)	FMC_NWAIT valid before FMC_CLK high	4		
t _{h(CLKH-} NWAIT)	FMC_NWAIT valid after FMC_CLK high	0		

Table 96. Synchronous non-multiplexed NOR/PSRAM read timings ⁽¹⁾⁽²⁾ (continued)
--

2. Guaranteed by characterization results.

Figure 62. Synchronous non-multiplexed PSRAM write timings

Symbol	Parameter	Min	Max	Unit
t _(CLK)	FMC_CLK period	2T _{HCLK} – 1	-	ns
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	0.5	ns
t _(CLKH-NExH)	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	ns
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	ns
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	ns
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	ns

			(00110100	,
Symbol	Parameter	Min	Max	Unit
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	0	-	ns
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	0	ns
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} -0.5	-	ns
t _{d(CLKL-Data)}	FMC_D[15:0] valid data after FMC_CLK low	-	2.5	ns
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	0	-	ns
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} -0.5	-	ns
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	4		
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0		

	Table 97. Synchronous non-multi	plexed PSRAM write timings ⁽¹⁾⁽²⁾ (continued)
--	---------------------------------	--	------------

1. C_L = 30 pF.

2. Guaranteed by characterization results.

PC Card/CompactFlash controller waveforms and timings

Figure 63 through *Figure 68* represent synchronous waveforms, and *Table 98* and *Table 99* provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- COM.FMC_SetupTime = 0x04;
- COM.FMC_WaitSetupTime = 0x07;
- COM.FMC_HoldSetupTime = 0x04;
- COM.FMC_HiZSetupTime = 0x00;
- ATT.FMC_SetupTime = 0x04;
- ATT.FMC_WaitSetupTime = 0x07;
- ATT.FMC_HoldSetupTime = 0x04;
- ATT.FMC_HiZSetupTime = 0x00;
- IO.FMC_SetupTime = 0x04;
- IO.FMC_WaitSetupTime = 0x07;
- IO.FMC_HoldSetupTime = 0x04;
- IO.FMC_HiZSetupTime = 0x00;
- TCLRSetupTime = 0;
- TARSetupTime = 0.

In all timing tables, the $T_{\mbox{HCLK}}$ is the HCLK clock period.

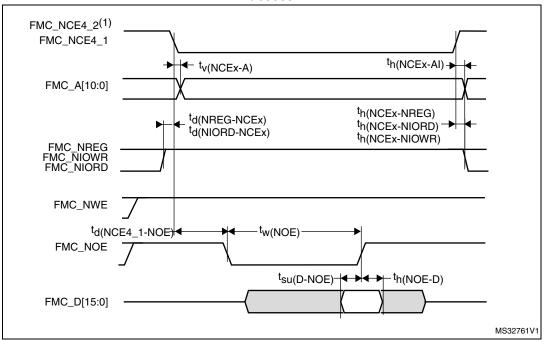
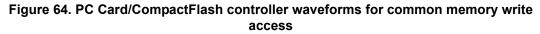
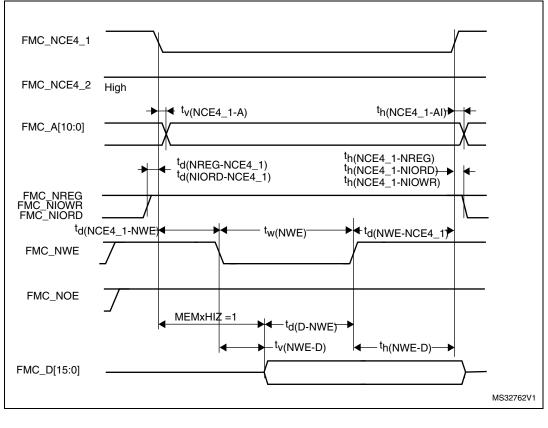




Figure 63. PC Card/CompactFlash controller waveforms for common memory read access

1. FMC_NCE4_2 remains high (inactive during 8-bit access.

57

DocID024030 Rev 10

183/239

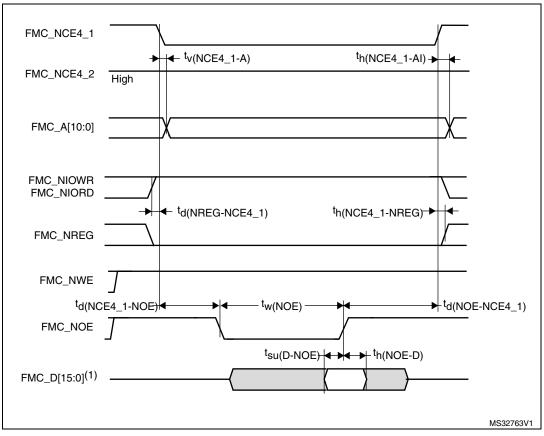


Figure 65. PC Card/CompactFlash controller waveforms for attribute memory read access

1. Only data bits 0...7 are read (bits 8...15 are disregarded).

184/239

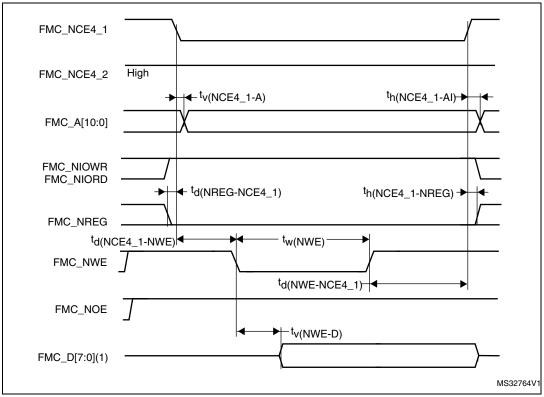


Figure 66. PC Card/CompactFlash controller waveforms for attribute memory write access

1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).

Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access

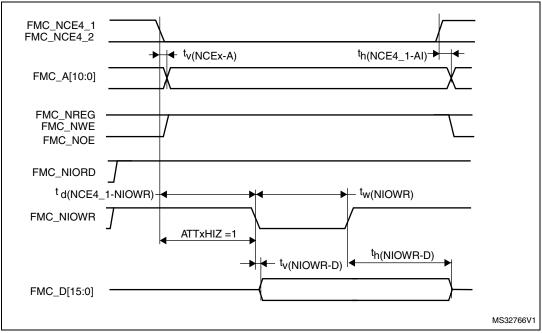


Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access

Table 98. Switching characteristics for PC Card/CF read and write cycles
in attribute/common space ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{v(NCEx-A)}	FMC_Ncex low to FMC_Ay valid	-	0	ns
t _{h(NCEx_AI)}	FMC_NCEx high to FMC_Ax invalid	0	-	ns
t _{d(NREG-NCEx)}	FMC_NCEx low to FMC_NREG valid	-	1	ns
t _{h(NCEx-NREG)}	FMC_NCEx high to FMC_NREG invalid	T _{HCLK} – 2	-	ns
t _{d(NCEx-NWE)}	FMC_NCEx low to FMC_NWE low	-	5T _{HCLK}	ns
t _{w(NWE)}	FMC_NWE low width	8T _{HCLK} – 0.5	8T _{HCLK} +0.5	ns
t _{d(NWE_NCEx)}	FMC_NWE high to FMC_NCEx high	5T _{HCLK} +1	-	ns
t _{V(NWE-D)}	FMC_NWE low to FMC_D[15:0] valid	-	0	ns
t _{h(NWE-D)}	FMC_NWE high to FMC_D[15:0] invalid	9T _{HCLK} – 0.5	-	ns
t _{d(D-NWE)}	FMC_D[15:0] valid before FMC_NWE high	13T _{HCLK} – 3		ns
t _{d(NCEx-NOE)}	FMC_NCEx low to FMC_NOE low	-	5T _{HCLK}	ns
t _{w(NOE)}	FMC_NOE low width	8 T _{HCLK} – 0.5	8 T _{HCLK} +0.5	ns
t _{d(NOE_NCEx)}	FMC_NOE high to FMC_NCEx high	5T _{HCLK} – 1	-	ns
t _{su (D-NOE)}	FMC_D[15:0] valid data before FMC_NOE high	T _{HCLK}	-	ns
t _{h(NOE-D)}	FMC_NOE high to FMC_D[15:0] invalid	0	-	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results.

Symbol	Parameter	Min	Мах	Unit
tw(NIOWR)	FMC_NIOWR low width	8T _{HCLK} – 0.5	-	ns
tv(NIOWR-D)	FMC_NIOWR low to FMC_D[15:0] valid	-	0	ns
th(NIOWR-D)	FMC_NIOWR high to FMC_D[15:0] invalid	9T _{HCLK} – 2	-	ns
td(NCE4_1-NIOWR)	FMC_NCE4_1 low to FMC_NIOWR valid	-	5T _{HCLK}	ns
th(NCEx-NIOWR)	FMC_NCEx high to FMC_NIOWR invalid	5T _{HCLK}	-	ns
td(NIORD-NCEx)	FMC_NCEx low to FMC_NIORD valid	-	5T _{HCLK}	ns
th(NCEx-NIORD)	FMC_NCEx high to FMC_NIORD) valid	6T _{HCLK} +2	-	ns
tw(NIORD)	FMC_NIORD low width	8T _{HCLK} – 0.5	8T _{HCLK} +0.5	ns
tsu(D-NIORD)	FMC_D[15:0] valid before FMC_NIORD high	T _{HCLK}	-	ns
td(NIORD-D)	FMC_D[15:0] valid after FMC_NIORD high	0	-	ns

Table 99. Switching characteristics for PC Card/CF read and write cycles in I/O space $^{(1)(2)}$

1. C_L = 30 pF.

2. Guaranteed by characterization results.

NAND controller waveforms and timings

Figure 69 through *Figure 72* represent synchronous waveforms, and *Table 100* and *Table 101* provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- COM.FMC_SetupTime = 0x01;
- COM.FMC_WaitSetupTime = 0x03;
- COM.FMC_HoldSetupTime = 0x02;
- COM.FMC_HiZSetupTime = 0x01;
- ATT.FMC_SetupTime = 0x01;
- ATT.FMC_WaitSetupTime = 0x03;
- ATT.FMC_HoldSetupTime = 0x02;
- ATT.FMC_HiZSetupTime = 0x01;
- Bank = FMC_Bank_NAND;
- MemoryDataWidth = FMC_MemoryDataWidth_16b;
- ECC = FMC_ECC_Enable;
- ECCPageSize = FMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0.

In all timing tables, the T_{HCLK} is the HCLK clock period.

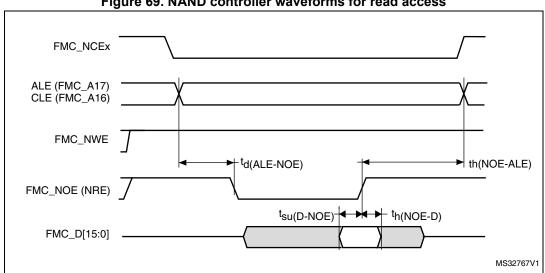
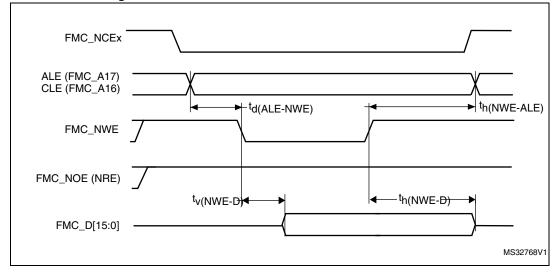



Figure 69. NAND controller waveforms for read access

Figure 70. NAND controller waveforms for write access

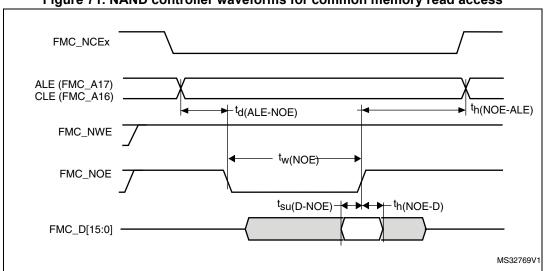


Figure 71. NAND controller waveforms for common memory read access

Figure 72. NAND controller waveforms for common memory write access

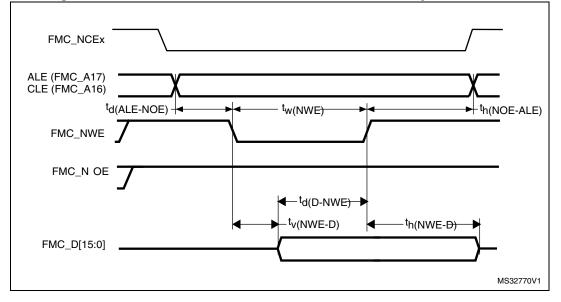


Table 100. Switching characteristics for NAND Flash read cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(N0E)}	FMC_NOE low width	4T _{HCLK} – 0.5	4T _{HCLK} +0.5	ns
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	9	-	ns
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	0	-	ns
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	-	3T _{HCLK} – 0.5	ns
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} – 2	-	ns

1. C_L = 30 pF.

······································				
Symbol	Parameter	Min	Мах	Unit
t _{w(NWE)}	FMC_NWE low width	4T _{HCLK}	4T _{HCLK} +1	ns
t _{v(NWE-D)}	FMC_NWE low to FMC_D[15-0] valid	0	-	ns
t _{h(NWE-D)}	FMC_NWE high to FMC_D[15-0] invalid	3T _{HCLK} – 1	-	ns
t _{d(D-NWE)}	FMC_D[15-0] valid before FMC_NWE high	5T _{HCLK} – 3	-	ns
t _{d(ALE-NWE)}	FMC_ALE valid before FMC_NWE low	-	3T _{HCLK} -0.5	ns
t _{h(NWE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} – 1	-	ns

Table 101. Switching characteristics for NAND Flash write cycles⁽¹⁾

1. C_L = 30 pF.

SDRAM waveforms and timings

Symbol	Parameter	Min	Мах	Unit	
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5		
t _{su(SDCLKH _Data)}	Data input setup time	2	-		
t _{h(SDCLKH_Data)}	Data input hold time	0	-		
$t_{d(SDCLKL_Add)}$	Address valid time	-	1.5		
$t_{d(SDCLKL-SDNE)}$	Chip select valid time	-	0.5	ns	
$t_{h(SDCLKL_SDNE)}$	Chip select hold time	0	-	115	
td(SDCLKL_SDNRAS)	SDNRAS valid time	-	0.5		
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-		
td(SDCLKL_SDNCAS)	SDNCAS valid time	-	0.5		
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-		

Table 102. SDRAM read timings⁽¹⁾⁽²⁾

1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.

2. Guaranteed by characterization results.

Table 103. LPSDR SDRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{W(SDCLK)}	FMC_SDCLK period	2T _{HCLK} - 0.5	2T _{HCLK} +0.5	
t _{su(SDCLKH_Data)}	Data input setup time	2.5	-	
t _{h(SDCLKH_Data)}	Data input hold time	0	-	
t _{d(SDCLKL_Add)}	Address valid time	-	1	
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	1	ns
t _{h(SDCLKL_SDNE)}	Chip select hold time	1	-	115
t _{d(SDCLKL_SDNRAS}	SDNRAS valid time	-	1	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	1	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	1	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	1	-	

1. CL = 10 pF.

2. Guaranteed by characterization results.

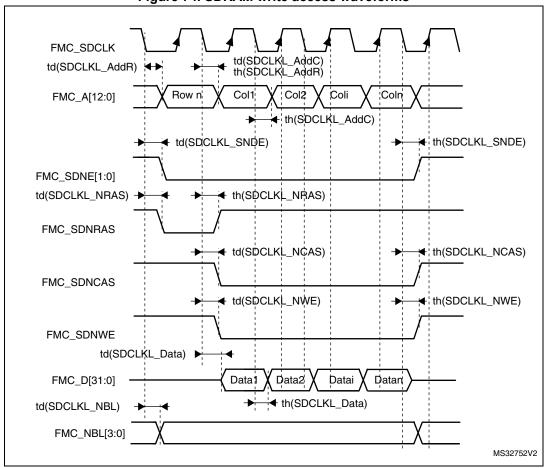


Figure 74. SDRAM write access waveforms

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	3.5	
t _{h(SDCLKL} _Data)	Data output hold time	0	-	
t _{d(SDCLKL_Add)}	Address valid time	-	1.5	
t _{d(SDCLKL_SDNWE)}	SDNWE valid time	-	1	
t _{h(SDCLKL_SDNWE)}	SDNWE hold time	0	-	
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	0.5	ns
t _{h(SDCLKLSDNE)}	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	2	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	0.5	
t _{d(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	
t _{d(SDCLKL_NBL)}	NBL valid time	-	0.5	
t _{h(SDCLKL_NBL)}	NBLoutput time	0	-	

Table 104. SDRAM write timings⁽¹⁾⁽²⁾

1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.

2. Guaranteed by characterization results.

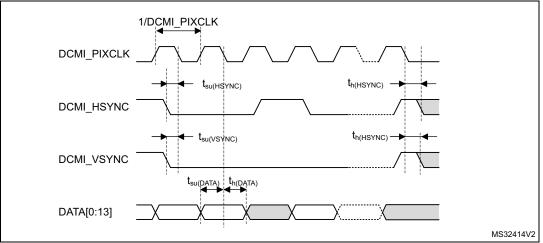
Table 105. LPSDR SDRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL _Data})	Data output valid time	-	5	
t _{h(SDCLKL} _Data)	Data output hold time	2	-	
t _{d(SDCLKL_Add)}	Address valid time	-	2.8	
t _{d(SDCLKL-SDNWE)}	SDNWE valid time	-	2	
t _{h(SDCLKL-SDNWE)}	SDNWE hold time	1	-	
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	1.5	
t _{h(SDCLKL} - SDNE)	Chip select hold time	1	-	ns
t _d (SDCLKL-SDNRAS)	SDNRAS valid time	-	1.5	
t _{h(SDCLKL-SDNRAS)}	SDNRAS hold time	1.5	-	
td(SDCLKL-SDNCAS)	SDNCAS valid time	-	1.5	
td(SDCLKL-SDNCAS)	SDNCAS hold time	1.5	-	
t _{d(SDCLKL_NBL)}	NBL valid time	-	1.5	
t _{h(SDCLKL-NBL)}	NBL output time	1.5	-	

1. CL = 10 pF.

2. Guaranteed by characterization results.

6.3.27 Camera interface (DCMI) timing specifications


Unless otherwise specified, the parameters given in *Table 106* for DCMI are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage summarized in *Table 17*, with the following configuration:

- DCMI_PIXCLK polarity: falling
- DCMI_VSYNC and DCMI_HSYNC polarity: high
- Data formats: 14 bits

Symbol	Parameter	Min	Max	Unit
	Frequency ratio DCMI_PIXCLK/f _{HCLK}	-	0.4	
DCMI_PIXCLK	Pixel clock input	-	54	MHz
D _{Pixel}	Pixel clock input duty cycle	30	70	%
t _{su(DATA)}	Data input setup time	2	-	
t _{h(DATA)}	Data input hold time	2.5	-	
t _{su(HSYNC)} t _{su(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input setup time	0.5	-	ns
t _{h(HSYNC)} t _{h(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input hold time	1	-	

Table 106. DCMI characteristics

Figure 75. DCMI timing diagram

6.3.28 LCD-TFT controller (LTDC) characteristics

Unless otherwise specified, the parameters given in *Table 107* for LCD-TFT are derived from tests performed under the ambient temperature, f_{HCLK} frequency and VDD supply voltage summarized in *Table 17*, with the following configuration:

- LCD_CLK polarity: high
- LCD_DE polarity : low
- LCD_VSYNC and LCD_HSYNC polarity: high
- Pixel formats: 24 bits

Symbol	Parameter	Min	Мах	Unit
f _{CLK}	LTDC clock output frequency	-	83	MHz
D _{CLK}	LTDC clock output duty cycle	45	55	%
t _{w(CLKH)} t _{w(CLKL)}	Clock High time, low time	tw(CLK)/2 - 0.5	tw(CLK)/2+0.5	
t _{v(DATA)}	Data output valid time	-	3.5	
t _{h(DATA)}	Data output hold time	1.5	-	
t _{v(HSYNC)}				
t _{v(VSYNC)}	HSYNC/VSYNC/DE output valid time	-	2.5	ns
t _{v(DE)}				
t _{h(HSYNC)}				
t _{h(VSYNC)}	HSYNC/VSYNC/DE output hold time	2	-	
th(DE)				

Table 107. LTDC characteristics

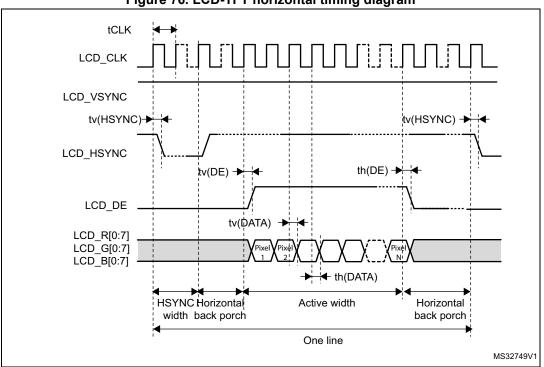
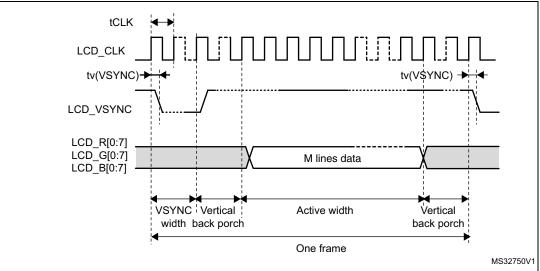



Figure 76. LCD-TFT horizontal timing diagram

6.3.29 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 108* for the SDIO/MMC interface are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

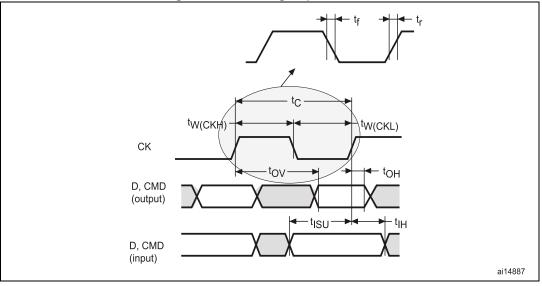
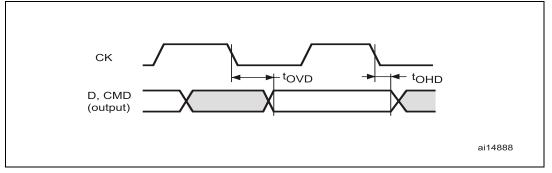



Figure 78. SDIO high-speed mode

Figure 79. SD default mode

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PP}	Clock frequency in data transfer mode		0		48	MHz
-	SDIO_CK/fPCLK2 frequency ratio		-	-	8/3	-
t _{W(CKL)}	Clock low time	fpp =48 MHz	8.5	9	-	ns
t _{W(CKH)}	Clock high time	fpp =48 MHz	8.3	10	-	115
CMD, D in	outs (referenced to CK) in MMC and SE) HS mode				
t _{ISU}	Input setup time HS	fpp =48 MHz	3.5	-	-	
t _{IH}	Input hold time HS	fpp =48 MHz	0	-	-	ns
CMD, D ou	tputs (referenced to CK) in MMC and S	SD HS mode				
t _{OV}	Output valid time HS	fpp =48 MHz	-	4.5	7	ns
t _{OH}	Output hold time HS	fpp =48 MHz	3	-	-	115
CMD, D inj	outs (referenced to CK) in SD default m	node				
tISUD	Input setup time SD	fpp =24 MHz	1.5	-	-	
tIHD	Input hold time SD	fpp =24 MHz	0.5	-	-	ns
CMD, D ou	tputs (referenced to CK) in SD default	mode				
tOVD	Output valid default time SD	fpp =24 MHz	-	4.5	6.5	
tOHD	Output hold default time SD	fpp =24 MHz	3.5	_	-	ns

Table 108. Dynamic characteristics: SD / MMC characteristics ⁽¹⁾⁽²	Table 108. D	vnamic characteristics:	SD / MMC characteris	tics ⁽¹⁾⁽²⁾
---	--------------	-------------------------	----------------------	------------------------

1. Guaranteed by characterization results.

2. V_{DD} = 2.7 to 3.6 V.

6.3.30 RTC characteristics

Table 109. RTC characteristics

Symbol	Parameter	Conditions	Min	Max
-	f _{PCLK1} /RTCCLK frequency ratio	Any read/write operation from/to an RTC register	4	-

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 package information

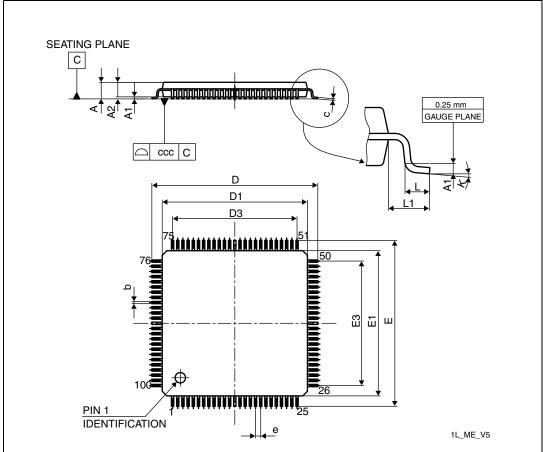
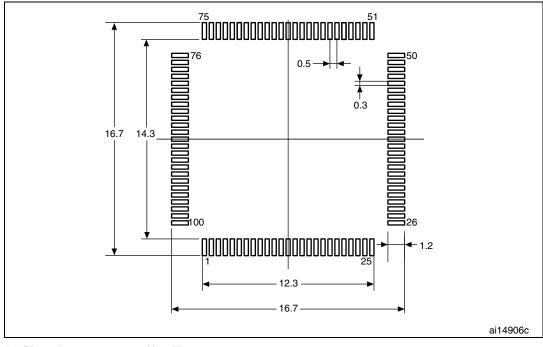


Figure 80. LQFP100 -100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.



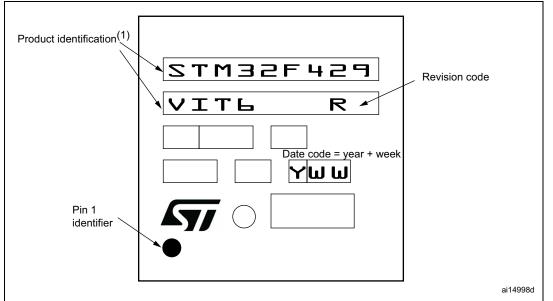
0 mm h a l		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.000	-	-	0.4724	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.000	-	-	0.4724	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
ссс	-	-	0.080	-	-	0.0031	

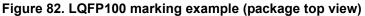
Table 110. LQPF100 100-pin, 14 x 14 mm low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 81. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.


200/239



Device marking for LQFP100

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depend on assembly location, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.2 WLCSP143 package information

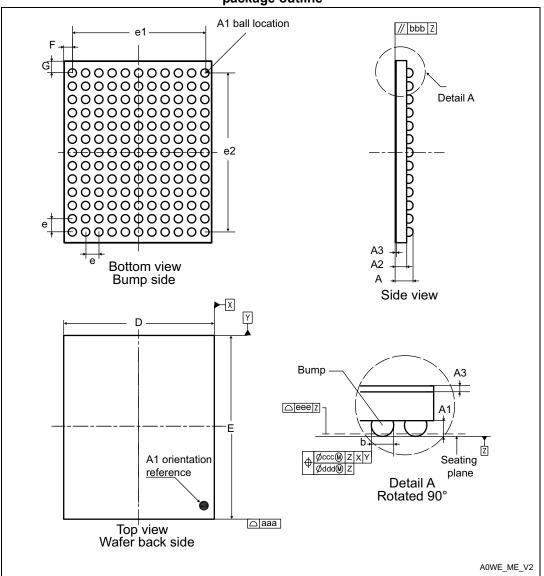
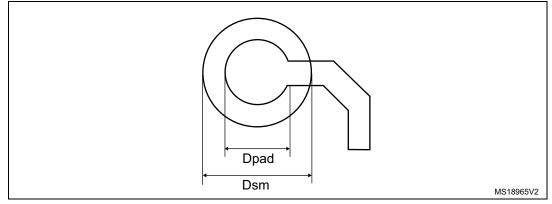


Figure 83. WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale package outline

1. Drawing is not to scale.

Symbol		millimeters	gemeename		inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	0.155	0.175	0.195	-	0.0069	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110
D	4.486	4.521	4.556	0.1766	0.1780	0.1794
E	5.512	5.547	5.582	0.2170	0.2184	0.2198
е	-	0.400	-	-	0.0157	-
e1	-	4.000	-	-	0.1575	-
e2	-	4.800	-	-	0.1890	-
F	-	0.2605	-	-	0.0103	-
G	-	0.3735	-	-	0.0147	-
aaa	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
CCC	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020


Table 111. WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 84. WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale recommended footprint

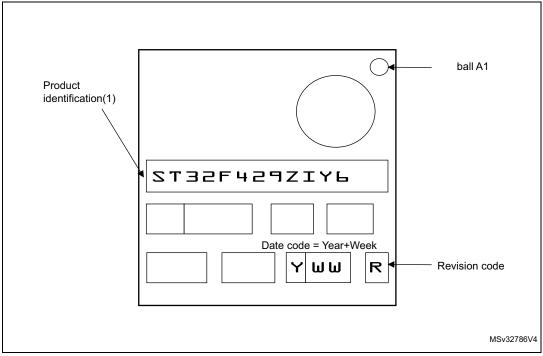
Dimension	Recommended values				
Pitch	0.4				
Dpad	260 µm max. (circular)				
Deau	220 µm recommended				
Dsm	300 μm min. (for 260 μm diameter pad)				
PCB pad design	Non-solder mask defined via underbump allowed.				

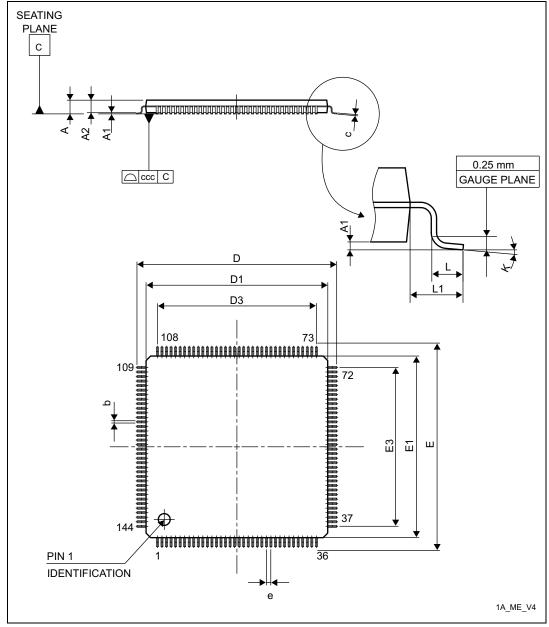
 Table 112. WLCSP143 recommended PCB design rules (0.4 mm pitch)

Device marking for WLCSP143

The following figure gives an example of topside marking orientation versus ball A 1 identifier location.

Other optional marking or inset/upset marks, which depend on assembly location, are not indicated below.



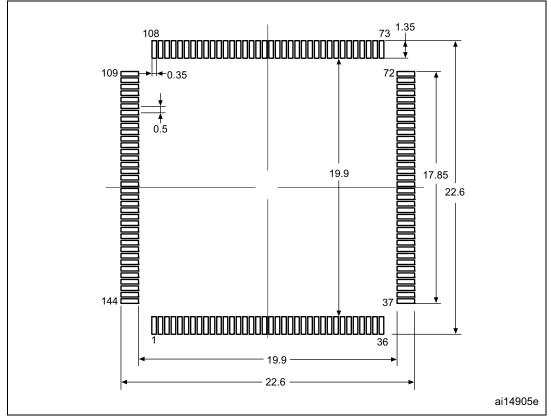

Figure 85. WLCSP143 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.3 LQFP144 package information

Figure 86. LQFP144-144-pin, 20 x 20 mm low-profile quad flat package outline

1. Drawing is not to scale.



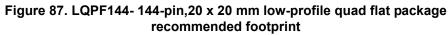

Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
с	0.090	-	0.200	0.0035	-	0.0079	
D	21.800	22.000	22.200	0.8583	0.8661	0.874	
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
D3	-	17.500	-	-	0.689	-	
E	21.800	22.000	22.200	0.8583	0.8661	0.8740	
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
E3	-	17.500	-	-	0.6890	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.080	-	-	0.0031	

Table 113. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat packagemechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device marking for LQFP144

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depend on assembly location, are not indicated below.

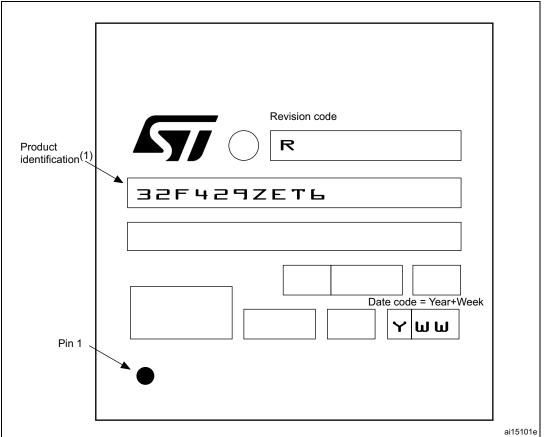
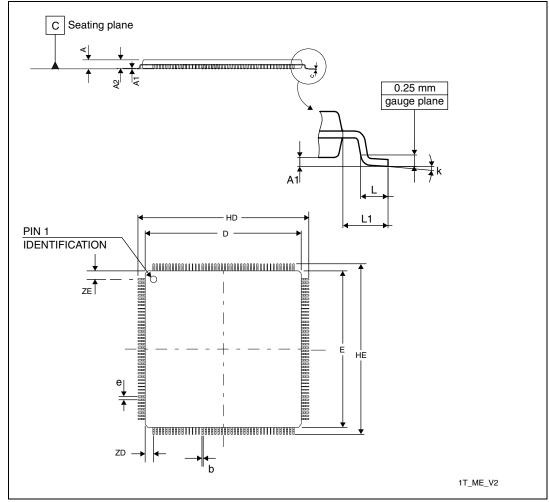


Figure 88. LQFP144 marking example (package top view)


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

208/239

7.4 LQFP176 package information

Figure 89. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 114. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat packagemechanical data

Or work of	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	-	1.450	0.0531	-	0.0571
b	0.170	-	0.270	0.0067	-	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	23.900	-	24.100	0.9409	-	0.9488
HD	25.900	-	26.100	1.0197	-	1.0276

O		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
ZD	-	1.250	-	-	0.0492	-	
E	23.900	-	24.100	0.9409	-	0.9488	
HE	25.900	-	26.100	1.0197	-	1.0276	
ZE	-	1.250	-	-	0.0492	-	
е	-	0.500	-	-	0.0197	-	
L ⁽²⁾	0.450	-	0.750	0.0177	-	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	-	7°	0°	-	7°	
CCC	-	-	0.080	-	-	0.0031	

Table 114. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.

210/239

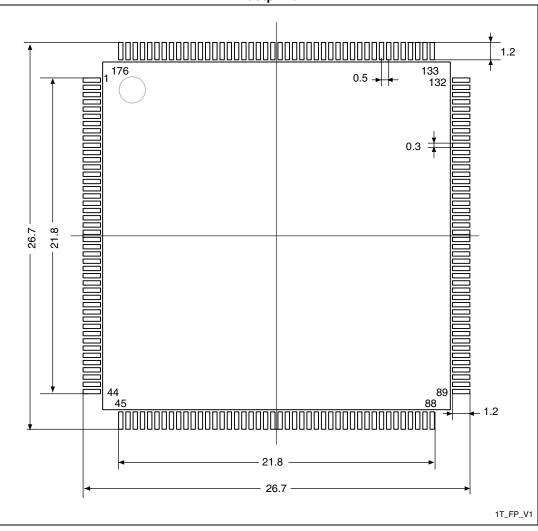


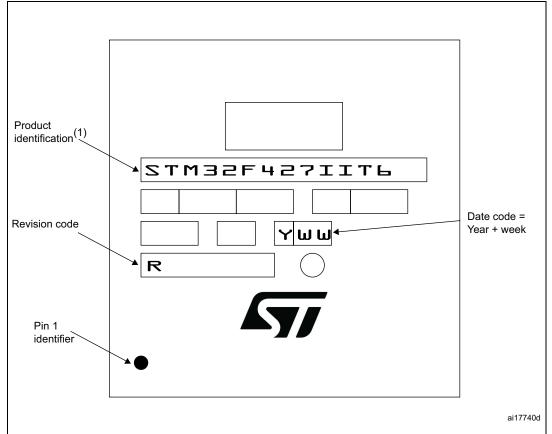
Figure 90. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint

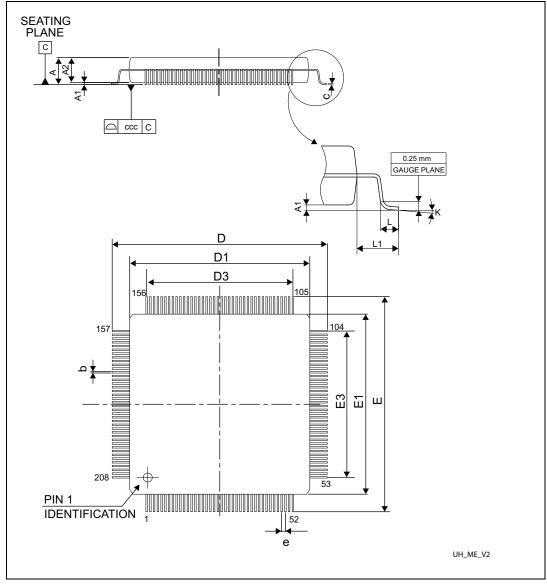
1. Dimensions are expressed in millimeters.

Device marking for LQFP176

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depend on assembly location, are not indicated below.



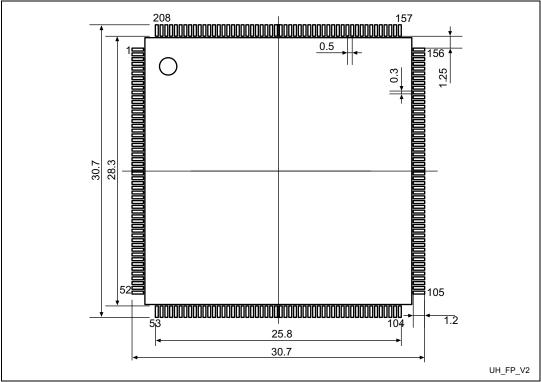

Figure 91. LQFP176 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.5 LQFP208 package information

Figure 92. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline

1. Drawing is not to scale.

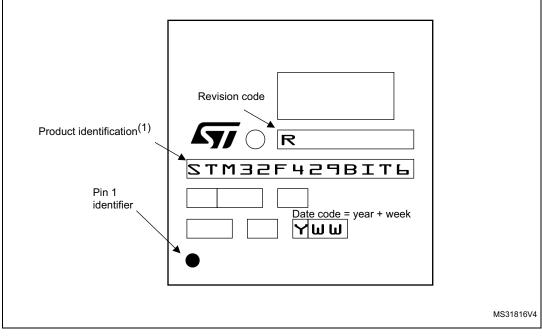


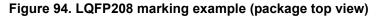
Querra la c		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.600		-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	29.800	30.000	30.200	1.1732	1.1811	1.1890	
D1	27.800	28.000	28.200	1.0945	1.1024	1.1102	
D3	-	25.500	-	-	1.0039	-	
E	29.800	30.000	30.200	1.1732	1.1811	1.1890	
E1	27.800	28.000	28.200	1.0945	1.1024	1.1102	
E3	-	25.500	-	-	1.0039	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7.0°	0°	3.5°	7.0°	
CCC	-	-	0.080	-	-	0.0031	

Table 115. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat packagemechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 93. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package recommended footprint

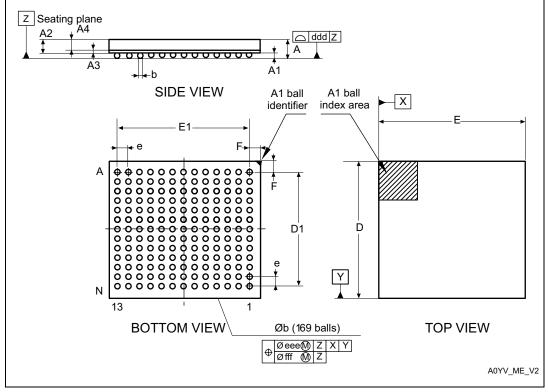

1. Dimensions are expressed in millimeters.



Device marking for LQFP208

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depend on assembly location, are not indicated below.


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

216/239

7.6 UFBGA169 package information

Figure 95. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 116. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid arraypackage mechanical data

package mechanical data							
Cumhal		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max	
А	0.460	0.530	0.600	0.0181	0.0209	0.0236	
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043	
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197	
A3	-	0.130	-	-	0.0051	-	
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146	
b	0.230	0.280	0.330	0.0091	0.0110	0.0130	
D	6.950	7.000	7.050	0.2736	0.2756	0.2776	
D1	5.950	6.000	6.050	0.2343	0.2362	0.2382	
E	6.950	7.000	7.050	0.2736	0.2756	0.2776	
E1	5.950	6.000	6.050	0.2343	0.2362	0.2382	
е	-	0.500	-	-	0.0197	-	

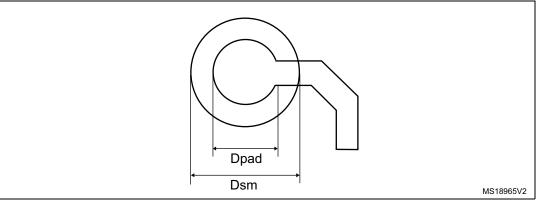


Table 116. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data (continued)

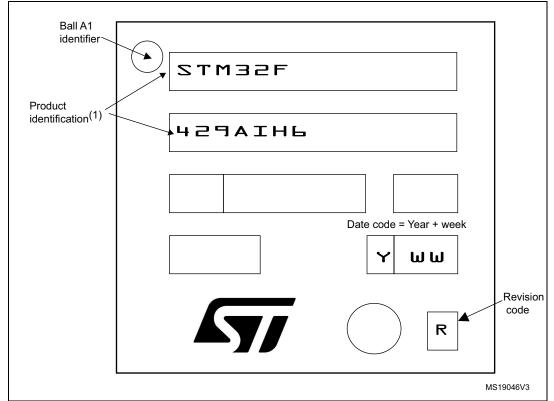
Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
F	0.450	0.500	0.550	0.0177	0.0197	0.0217
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

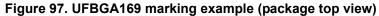
1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 96. UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array recommended footprint

Table 117. UFBGA169 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values		
Pitch	0.5		
Dpad	0.27 mm		
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)		
Solder paste	0.27 mm aperture diameter.		


Note:Non-solder mask defined (NSMD) pads are recommended.4 to 6 mils solder paste screen printing process.



Device marking for UFBGA169

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which depend on assembly location, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.7 UFBGA176+25 package information

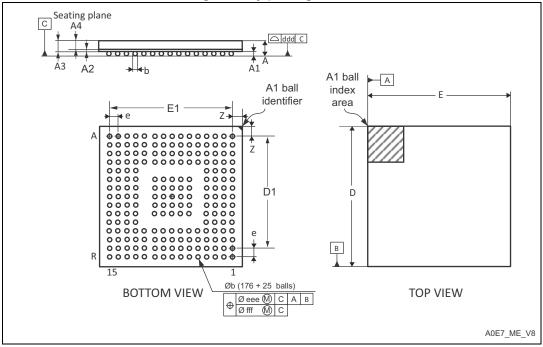


Figure 98. UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 118. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package mechanical data

Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	-	-	0.600	-	-	0.0236	
A1	-	-	0.110	-	-	0.0043	
A2	-	0.130	-	-	0.0051	-	
A3	-	0.450	-	-	0.0177	-	
A4	-	0.320	-	-	0.0126	-	
b	0.240	0.290	0.340	0.0094	0.0114	0.0134	
D	9.850	10.000	10.150	0.3878	0.3937	0.3996	
D1	-	9.100	-	-	0.3583	-	
Е	9.850	10.000	10.150	0.3878	0.3937	0.3996	
E1	-	9.100	-	-	0.3583	-	
е	-	0.650	-	-	0.0256	-	
Z	-	0.450	-	-	0.0177	-	
ddd	-	-	0.080	-	-	0.0031	

Table 118. UFBGA176+25 - ball, 10	x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package	mechanical data (continued)
	(0)

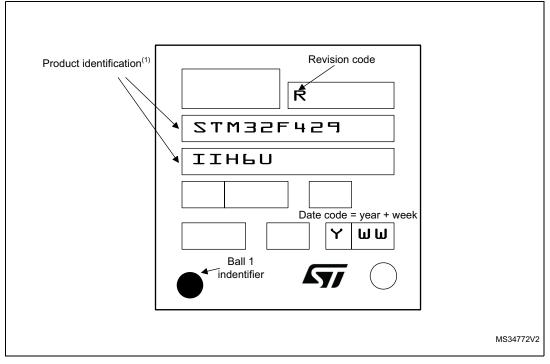
Symbol	Symbol					
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 99. UFBGA176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package recommended footprint

000000000000000000000000000000000000	
000000000000000000000000000000000000000	A0E7_FP_V1

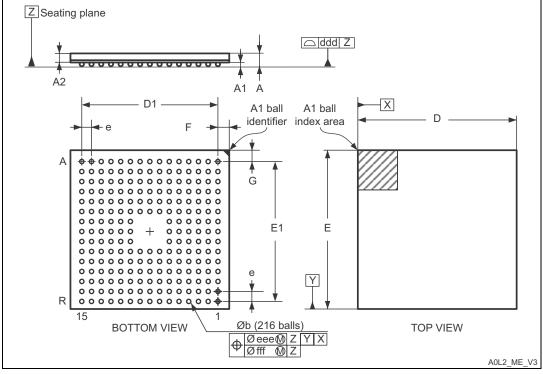
Table 119. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)


Dimension	Recommended values
Pitch	0.65 mm
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.300 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

Device marking for UFBGA176+25

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which depend on assembly location, are not indicated below.



 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.8 **TFBGA216** package information

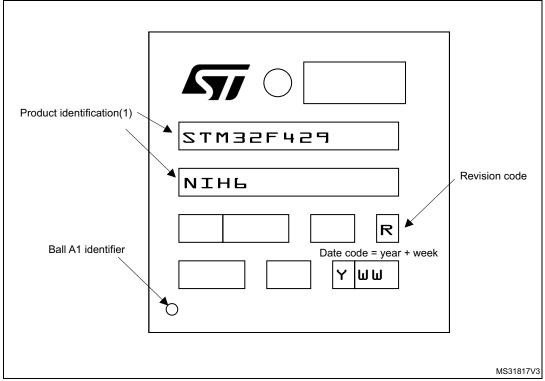
Figure 101. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 120. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array package mechanical data

Cumhal		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.100	-	-	0.0433	
A1	0.150	-	-	0.0059	-	-	
A2	-	0.760	-	-	0.0299	-	
b	0.350	0.400	0.450	0.0138	0.0157	0.0177	
D	12.850	13.000	13.150	0.5118	0.5118	0.5177	
D1	-	11.200	-	-	0.4409	-	
E	12.850	13.000	13.150	0.5118	0.5118	0.5177	
E1	-	11.200	-	-	0.4409	-	
e	-	0.800	-	-	0.0315	-	
F	-	0.900	-	-	0.0354	-	
ddd	-	-	0.100	-	-	0.0039	

Table 120. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid arraypackage mechanical data (continued)


Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Device marking for TFBGA176

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which depend on assembly location, are not indicated below.

Figure 102. TFBGA176 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.9 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max x \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch	43	
	Thermal resistance junction-ambient WLCSP143	31.2	
	Thermal resistance junction-ambient LQFP144 - 20 × 20 mm / 0.5 mm pitch	40	
0	Thermal resistance junction-ambient LQFP176 - 24 × 24 mm / 0.5 mm pitch	38	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP208 - 28 × 28 mm / 0.5 mm pitch	19	C/W
	Thermal resistance junction-ambient UFBGA169 - 7 × 7mm / 0.5 mm pitch	52	
	Thermal resistance junction-ambient UFBGA176 - 10× 10 mm / 0.5 mm pitch	39	
	Thermal resistance junction-ambient TFBGA216 - 13 × 13 mm / 0.8 mm pitch	29	

Table 121. Package thermal characteristics

Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

8 Part numbering

Table 122. Ordering infor	mation sc	heme			
Example:	STM32	F	429 V	I T	6 xxx
Device family					
STM32 = Arm-based 32-bit microcontroller					
Product type					
F = general-purpose					
Device subfamily					
427= STM32F427xx, USB OTG FS/HS, camera interface, Ethernet					
429= STM32F429xx, USB OTG FS/HS, camera interface, Ethernet, LCD-TFT					
Pin count					
V = 100 pins					
Z = 143 and 144 pins					
A = 169 pins					
I = 176 pins					
B = 208 pins					
N = 216 pins					
Flash memory size					
E = 512 Kbytes of Flash memory				_	
G = 1024 Kbytes of Flash memory					
I = 2048 Kbytes of Flash memory					
Package					
T = LQFP					
H = BGA					
Y = WLCSP					
Temperature range					
6 = Industrial temperature range, -40 to 85 °C.					
7 = Industrial temperature range, -40 to 105 °C.					
Options					

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

Appendix A Recommendations when using internal reset OFF

When the internal reset is OFF, the following integrated features are no longer supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
- The brownout reset (BOR) circuitry must be disabled.
- The embedded programmable voltage detector (PVD) is disabled.
- V_{BAT} functionality is no more available and VBAT pin should be connected to V_{DD}.
- The over-drive mode is not supported.

A.1 Operating conditions

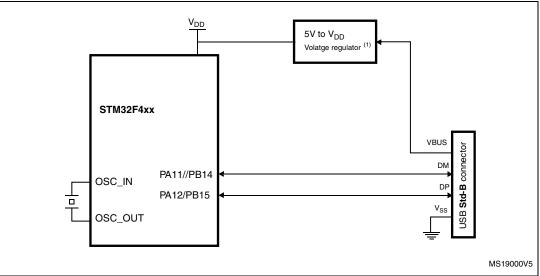
Table 123. Limitations depending on the operating power supply range

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum Flash memory access frequency with wait states ⁽¹⁾⁽²⁾	I/O operation	Possible Flash memory operations
V _{DD} =1.7 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz ⁽⁴⁾	168 MHz with 8 wait states and over-drive OFF	 No I/O compensation 	8-bit erase and program operations only

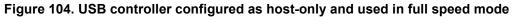
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.

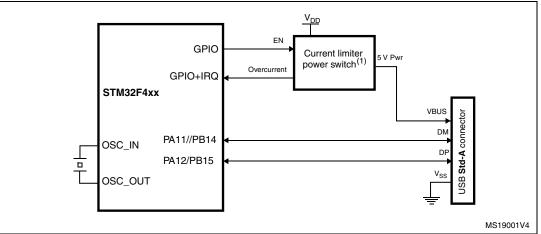
 Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

 V_{DD}/V_{DDA} minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 3.17.1: Internal reset ON).


4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.

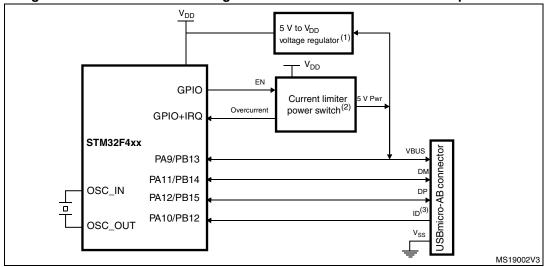
Appendix B Application block diagrams


B.1 USB OTG full speed (FS) interface solutions


Figure 103. USB controller configured as peripheral-only and used in Full speed mode

1. External voltage regulator only needed when building a $V_{\mbox{BUS}}$ powered device.

2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.



 The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.

2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

Figure 105. USB controller configured in dual mode and used in full speed mode

- 1. External voltage regulator only needed when building a $\mathrm{V}_{\mathrm{BUS}}$ powered device.
- The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.
- 3. The ID pin is required in dual role only.
- 4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

B.2 USB OTG high speed (HS) interface solutions

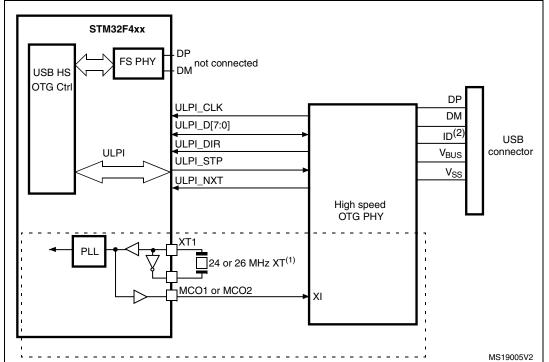
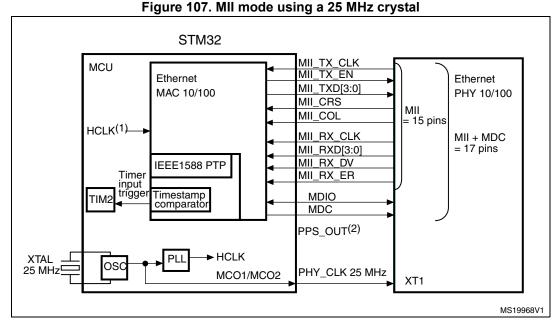
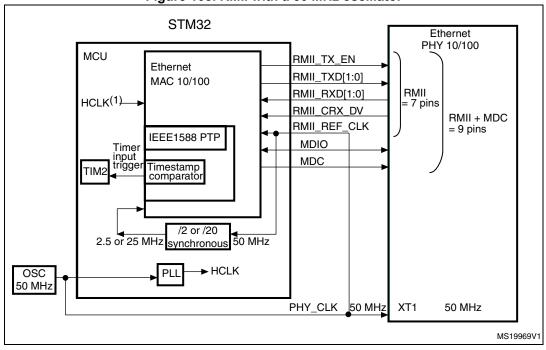


Figure 106. USB controller configured as peripheral, host, or dual-mode and used in high speed mode


It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F42x with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible connection.

2. The ID pin is required in dual role only.

230/239



B.3 Ethernet interface solutions

1. $f_{\mbox{HCLK}}$ must be greater than 25 MHz.

2. Pulse per second when using IEEE1588 PTP optional signal.

Figure 108. RMII with a 50 MHz oscillator

1. f_{HCLK} must be greater than 25 MHz.

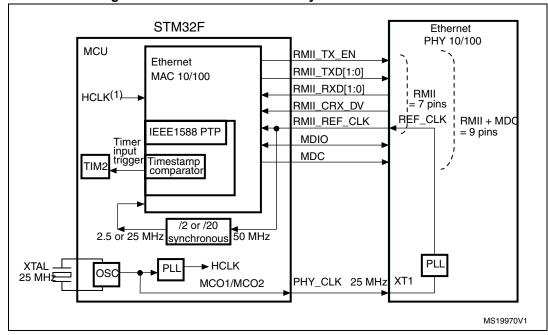


Figure 109. RMII with a 25 MHz crystal and PHY with PLL

1. f_{HCLK} must be greater than 25 MHz.

2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block.

9 Revision history

Date	Revision	Changes
19-Mar-2013	1	Initial release.
10-Sep-2013	2	Added STM32F429xx part numbers and related informations. STM32F427xx part numbers: Replaced FSMC by FMC added Chrom-ART Accelerator and SAI interface. Increased core, timer, GPIOs, SPI maximum frequencies Updated <i>Figure 8</i> .Updated <i>Figure 9</i> . Removed note in <i>Section :: Standby mode</i> . Updated <i>Table 10: STM32F427xx and STM32F429xx pin and ball</i> definitions and Table 12: STM32F427xx and STM32F429xx alternate function mapping Modified <i>Figure 19: Memory map</i> . Updated Table 17: General operating conditions, Table 18: Limitations depending on the operating power supply range. Removed note 1 in Table 22: reset and power control block characteristics. Added Table 33: Over-drive switching characteristics. Updated Section : Typical and maximum current consumption, Table 34: Switching output I/O current consumption, Table 35: Peripheral current consumption and Section : On-chip peripheral current consumption. Updated Table 36: Low-power mode wakeup timings. Modified Section : High-speed external user clock generated from an external source, section : Low-speed external user clock generated from an external source, and Section 6.3.10: Internal clock source characteristics. Updated Table 43: Main PLL characteristics and Table 45: PLLISAI (audio and LCD-TFT PLL) characteristics. Updated Table 60: TIMx characteristics. Updated Table 60: TIMx characteristics, Table 61: I ² C characteristics, Table 62: SPI dynamic characteristics, Table 61: I ² C characteristics, Updated Table 60: TIMx characteristics, Table 61: I ² C characteristics, Updated Table 60: TIMx characteristics, Table 61: I ² C characteristics. Updated Table 60: TIMx characteristics, Table 61: I ² C characteristics, Table 62: SPI dynamic characteristics, Section : SAI characteristics, Updated Table 102: SDRAM read timings and Table 104: SDRAM write timings.

Table 124. Document revision history

Date	Revision	Changes
24-Jan-2014	3	Added STM32F429xE part numbers featuring 512 Mbytes of Flash memory and UFBGA169 package. Added LPSDR SDRAM. Changed INTN into INTR in <i>Figure 4: STM32F427xx and</i> <i>STM32F429xx block diagram</i> . Added note 4 in <i>Table 2: STM32F427xx and STM32F429xx features</i> <i>and peripheral counts</i> . Updated Section 3.15: Boot modes. Updated Section 3.15: Boot modes. Updated for PA4 and PA5 in <i>Table 10: STM32F427xx and</i> <i>STM32F429xx pin and ball definitions</i> . Added V _{IN} for BOOT0 pins in <i>Table 14: Voltage characteristics</i> . Updated Note 6., added Note 1.,and updated maximum V _{IN} for B pins in <i>Table 17: General operating conditions</i> . Updated maximum Flash memory access frequency with wait states for V _{DD} =1.8 to 2.1 V in <i>Table 18: Limitations depending on the</i> <i>operating power supply range</i> . Updated Table 24: <i>Typical and maximum current consumption in Run</i> <i>mode, code with data processing running from Flash memory (ART</i> <i>accelerator enabled except prefetch) or RAM</i> and <i>Table 25: Typical</i> <i>and maximum current consumption in Run mode, code</i> <i>with data processing running from Flash memory or RAM, regulator</i> ON (<i>ART accelerator enabled except prefetch), VDD=1.7</i> V, <i>Table 31:</i> <i>Typical current consumption in Run mode, code</i> <i>with data processing running from Flash memory or RAM, regulator</i> ON (<i>ART accelerator enabled except prefetch), VDD=1.7</i> V, <i>Table 31:</i> <i>Typical current consumption in Run mode, code</i> <i>with data processing running from Flash memory or RAM, regulator</i> ON (<i>ART accelerator enabled except prefetch), VDD=1.7</i> V, <i>Table 31:</i> <i>Typical current consumption in Run mode, code</i> <i>with data processing running from Flash memory or RAM, regulator</i> ON (<i>ART accelerator enabled except prefetch), VDD=1.7</i> V, <i>Table 31:</i> <i>Typical current consumption in Run mode, code</i> <i>with data processing running from Flash memory or RAM, regulator</i> ON (<i>ART accelerator enabled except prefetch), VDD=1.7</i> V, <i>Table 31:</i> <i>Typical current consumption in Run mode, code</i> <i>with data processing running from Flash memory or RAM, regulator</i> ON (<i>ART</i>

Table 124. Document revision history

STM32F427xx STM32F429xx

Date	Revision	Changes
24-Apr-2014	4	In the whole document, minimum supply voltage changed to 1.7 V when external power supply supervisor is used. Added DCMI_VSYNC alternate function on PG9 and updated note 6. in <i>Table 10: STM32F427xx</i> and <i>STM32F429xx</i> pin and ball definitions and <i>Table 12: STM32F427xx</i> and <i>STM32F429xx</i> pin and ball definitions and <i>Table 12: STM32F427xx</i> and <i>STM32F429xx</i> pin and ball definitions and <i>Table 12: STM32F427xx</i> and <i>STM32F429xx</i> pin and ball definitions and <i>Table 12: STM32F427xx</i> and <i>STM32F429xx</i> pin and ball definitions and <i>Table 12: STM32F427xx</i> and <i>STM32F429xx</i> pin and ball definitions and <i>Table 12: STM32F427xx</i> and <i>STM32F429xx</i> pin and ball definitions and <i>Table 12: STM32F427xx</i> and <i>STM32F429xx</i> pin and ball definitions and <i>Table 50: SEM32F427xx</i> and <i>STM32F422x UFBGA169</i> ballout. Changed SVGA (800x600) into XGA1024x768) on cover page and in <i>Section 3.10: LCD-TFT controller</i> (available only on <i>STM32F429xx</i>). Updated Section <i>3.18.2: Regulator</i> OFF. Updated signal corresponding to pin L5 in <i>Figure 12: STM32F42x</i> <i>WLCSP143</i> ballout. Added ACC _{HSE} in <i>Table 39: HSE 4-26</i> MHz oscillator characteristics and ACC _{LSE} in <i>Table 40: LSE</i> oscillator characteristics (fLSE = 32.768 <i>kHz</i>). Updated <i>Table 53: ESD</i> absolute maximum ratings. Updated <i>Table 53: ESD</i> absolute maximum ratings. Updated V _{IH} in <i>Table 56: I/O</i> static characteristics. Added Z _{DRV} in <i>Table 67: USB</i> OTG full speed electrical characteristics Removed note 3 in <i>Table 80: Temperature</i> sensor characteristics. Added Figure 82: LQFP100 marking example (package top view), Figure 85: WLCSP143 marking example (package top view), Figure 85: WLCSP143 marking example (package top view), Figure 85: WLCSP143 marking example (package top view), Figure 85: UQFP144 marking example (package

Table 124.	Document	revision	historv

DateRevisionChangesUpdate SPI/IS2 in Table 2: STM32F427xx and STM32F429xx features and peripheral counts. Updated LQFP208 in Table 4: Regulator ON/OFF and internal reset ON/OFF availability. Updated LQFP208 in Table 4: Regulator ON/OFF and internal reset ON/OFF availability. Updated Figure 19: Memory map. Changed PLS[2:0]=101 (falling edge) maximum value in Table 22: reset and power control block characteristics. Updated current consumption with all peripherals disabled in Table 24: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch) or RAM. Updated note 1. in Table 28: Typical and maximum current consumptions in Standby mode. Updated ESD standards and Table 33: ESD absolute maximum ratings. Updated Table 56: I/O static characteristics. Section : 12C interface characteristics. Updated Table 51: ESD absolute maximum ratings. Updated Table 56: I/O static characteristics. Updated Table 62: SPI dynamic characteristics.19-Feb-20155Updated Figure 51: Typical connection diagram using the ADC. Updated Section : Device marking for LQFP100. Updated Figure 83: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale package outline and Table 111: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale package mechanical data; added Figure 84: WLCSP143 - 143-ball,
 and peripheral counts. Updated LQFP208 in Table 4: Regulator ON/OFF and internal reset ON/OFF availability. Updated Figure 19: Memory map. Changed PLS[2:0]=101 (falling edge) maximum value in Table 22: reset and power control block characteristics. Updated current consumption with all peripherals disabled in Table 24: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch) or RAM. Updated note 1. in Table 28: Typical and maximum current consumptions in Standby mode. Updated t_{WUSTOP} in Table 36: Low-power mode wakeup timings. Updated Table 56: I/O static characteristics. Section : I2C interface characteristics: updated section introduction, removed Table I2C characteristics. Updated Table 56: I/O static Characteristics. Section : I2C interface characteristics. Updated measurement conditions in Table 62: SPI dynamic characteristics. Updated measurement conditions in Table 62: SPI dynamic characteristics. Updated Figure 51: Typical connection diagram using the ADC. Updated Section : Device marking for LQFP100. Updated Figure 53: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale package outline and Table 111: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale package mechanical data; added Figure 84: WLCSP143 - 143-ball,
 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale recommended footprint and Table 112: WLCSP143 recommended PCB design rules (0.4 mm pitch). Updated Figure 85: WLCSP143 marking example (package top view) and related note. Updated Section : Device marking for WLCSP143. Updated Section : Device marking for LQFP144. Updated Section : Device marking for LQFP176. Updated Figure 92: LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline; Updated Section : Device marking for LQFP176. Modified UFBGA169 pitch, updated Figure 95: UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array package outline and Table 116: UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array package outline is Device marking for LQFP208. Updated Section : Device marking for UFBGA169, Section : Device marking for UFBGA176+25 and Section : Device marking for

Table 124. Document revision history

236/239

STM32F427xx STM32F429xx

Table 124. Document revision history			
Date	Revision	Changes	
17-Sep-2015	6	Updated notes related to the minimum and maximum values guaranteed by design, characterization or test in production. Updated I _{DD_STOP_UDM} in Table 27: Typical and maximum current consumptions in Stop mode. Removed note related to tests in production in Table 24: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch) or RAM and Table 26: Typical and maximum current consumption in Sleep mode. Updated Table 41: HSI oscillator characteristics. Figure 31 renamed ACCHSI accuracy versus temperature and updated. Updated Figure 38: SPI timing diagram - slave mode and CPHA = 0. Updated Section : Ethernet characteristics. Updated Table 43: Main PLL characteristics, Table 44: PLLI2S (audio PLL) characteristics and Table 45: PLLISAI (audio and LCD-TFT PLL) characteristics. Removed note 1 in Table 75: ADC static accuracy at fADC = 18 MHz, Table 76: ADC static accuracy at fADC = 30 MHz and Table 77: ADC static accuracy at fADC = 36 MHz. Updated t _d (SDCLKL_Data) and t _h (SDCLKL_Data) in Table 104: SDRAM write timings. Added Figure 96: UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array recommended footprint and Table 117: UFBGA169 recommended PCB design rules (0.5 mm pitch, gamma). Added Figure 99: UFBGA176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package recommended footprint and Table 119: UFBGA176+25 recommended PCB design rules (0.65 mm pitch, BGA).	
30-Nov-2015	7	Updated $ V_{SSX} - V_{SS} $ in Table 14: Voltage characteristics to add V_{REF} . Updated $t_{d(TXEN)}$ and $t_{d(TXD)}$ minimum value in Table 72: Dynamics characteristics: Ethernet MAC signals for RMII and Table 73: Dynamics characteristics: Ethernet MAC signals for MII. Added V_{REF} in Table 74: ADC characteristics. Added A1 minimum and maximum values in Table 111: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale package mechanical data. Updated Figure 86: LQFP144-144-pin, 20 x 20 mm low-profile quad flat package outline. Updated Figure 98: UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch ball grid array package outline and Table 118: UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package outline figure 101: TFBGA216 - 216 ball 13 x 13 mm 0.8 mm pitch thin fine pitch ball grid array package mechanical data.	
21-Jan-2016	8	Updated <i>Figure 22: Power supply scheme</i> . Added $t_{d(TXD)}$ values corresponding to 1.71 V < V _{DD} < 3.6 V in <i>Table 72: Dynamics characteristics: Ethernet MAC signals for RMII</i> .	

Table 124. Document revision history

Date	Revision	Changes
18-Jul-2016	9	Updated Figure 1: Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package. Added mission profile compliance with JEDEC JESD47 in Section 6.2: Absolute maximum ratings. Changed Figure 31 HSI deviation versus temperature to ACCHSI versus temperature. Updated R _{LOAD} in Table 85: DAC characteristics. Added note 2. related to the position of the 0.1 μF capacitor below Figure 37: Recommended NRST pin protection. Updated Figure 40: SPI timing diagram - master mode. Added reference to optional marking or inset/upset marks in all package device marking sections. Updated Figure 85: WLCSP143 marking example (package top view), Figure 88: LQFP144 marking example (package top view), Figure 91: LQFP176 marking (package top view), Figure 98: UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch ball grid array package outline and Table 118: UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package mechanical data.
19-Jan-2018	10	Updated Arm wordmark and added Arm logo in Section 2: Description. Updated LDC-TFT feature on cover page. Updated Table 24: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch) or RAM and Table 26: Typical and maximum current consumption in Sleep mode. R _{ADC} minimum value added in Table 74: ADC characteristics. LTDC clock output frequency changed to 83 MHz in Table 107: LTDC characteristics.

Table 124. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

