## **Pin Descriptions**

| Pin Name             | Туре   | Pin #                                                             | Descriptions                                                                                                                                   |
|----------------------|--------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| SRC_DIV#             | Input  | 1                                                                 | 3.3V LVTTL input for selecting input frequency divide by 2, active LOW.                                                                        |
| SRC & SRC#           | Input  | 4, 5                                                              | 0.7V Differential SRC input from PI6C410 clock synthesizer                                                                                     |
| OE [0:7]             | Input  | 6, 7, 14, 15, 35, 36,<br>43, 44                                   | 3.3V LVTTL input for enabling outputs, active HIGH.                                                                                            |
| OE_INV               | Input  | 40                                                                | 3.3V LVTTL input for inverting the OE, SRC_STOP# and<br>PWRDWN# pins.<br>When 0 = same stage<br>When 1 = OE[0:7], SRC_STOP#, PWRDWN# inverted. |
| OUT[0:7] & OUT[0:7]# | Output | 8, 9, 12, 13, 16 17,<br>20, 21, 29, 30, 33, 34,<br>37, 38, 41, 42 | 0.7V Differential outputs                                                                                                                      |
| PLL/BYPASS#          | Input  | 22                                                                | 3.3V LVTTL input for selecting fan-out of PLL operation.                                                                                       |
| SCLK                 | Input  | 23                                                                | SMBus compatible SCLOCK input                                                                                                                  |
| SDA                  | I/O    | 24                                                                | SMBus compatible SDATA                                                                                                                         |
| I <sub>REF</sub>     | Input  | 46                                                                | External resistor connection to set the differential output current                                                                            |
| SRC_STOP#            | Input  | 27                                                                | 3.3V LVTTL input for SRC stop, active LOW                                                                                                      |
| PLL_BW#              | Input  | 28                                                                | 3.3V LVTTL input for selecting the PLL bandwidth                                                                                               |
| PWRDWN#              | Input  | 26                                                                | 3.3V LVTTL input for Power Down operation, active LOW                                                                                          |
| LOCK                 | Output | 45                                                                | 3.3V LVTTL output, transition high when PLL lock is achieved (Latched output)                                                                  |
| V <sub>DD</sub>      | Power  | 2, 11, 19, 31, 39                                                 | 3.3V Power Supply for Outputs                                                                                                                  |
| V <sub>SS</sub>      | Ground | 3, 10, 18, 25, 32                                                 | Ground for Outputs                                                                                                                             |
| V <sub>SS_A</sub>    | Ground | 47                                                                | Ground for PLL                                                                                                                                 |
| V <sub>DD_A</sub>    | Power  | 48                                                                | 3.3V Power Supply for PLL                                                                                                                      |

### Serial Data Interface (SMBus)

This part is a slave only SMBus device that supports indexed block read and indexed block write protocol using a single 7-bit address and read/write bit as shown below.

### **Address assignment**

| A6 | A5 | A4 | A3 | A2 | A1 | A0 | W/R |
|----|----|----|----|----|----|----|-----|
| 1  | 1  | 0  | 1  | 1  | 1  | 0  | 0/1 |

### Data Write Protocol<sup>(1)</sup>

| 1 bit        | 7 bits        | 1 | 1   | 8 bits             | 1   | 8 bits               | 1   | 8 bits                 | 1   | 8 bits                | 1   | 1 bit    |
|--------------|---------------|---|-----|--------------------|-----|----------------------|-----|------------------------|-----|-----------------------|-----|----------|
| Start<br>bit | Slave<br>Addr | W | Ack | Register<br>offset | Ack | Byte<br>Count<br>= N | Ack | Data<br>Byte<br>Offset | Ack | Data<br>Byte N<br>- 1 | Ack | Stop bit |

#### Note:

1. Register offset for indicating the starting register for indexed block write and indexed block read. Byte Count in write mode cannot be 0.

# Data Read Protocol<sup>(2)</sup>

| 1 bit        | 7 bits        | 1 | 1   | 8 bits             | 1   | 1               | 7 bits        | 1 | 1   | 8 bits               | 1   | 8 bits                 | 1   | 8 bits                | 1          | 1 bit       |
|--------------|---------------|---|-----|--------------------|-----|-----------------|---------------|---|-----|----------------------|-----|------------------------|-----|-----------------------|------------|-------------|
| Start<br>bit | Slave<br>Addr | W | Ack | Register<br>offset | Ack | Repeat<br>Start | Slave<br>Addr | R | Ack | Byte<br>Count<br>= N | Ack | Data<br>Byte<br>Offset | Ack | Data<br>Byte<br>N - 1 | Not<br>Ack | Stop<br>bit |

Note:

2. Register offset for indicating the starting register for indexed block write and indexed block read.

## Data Byte 0: Control Register

| Bit | Descriptions                                              | Туре | Power Up Condition      | Output(s) Affected  | Pin |
|-----|-----------------------------------------------------------|------|-------------------------|---------------------|-----|
| 0   | SRC_DIV#<br>0 = Divide by 2<br>1 = Normal                 | RW   | 1 = x1                  | OUT[0:7], OUT[0:7]# | NA  |
| 1   | PLL/BYPASS#<br>0 = Fanout<br>1 = PLL                      | RW   | 1 = PLL                 | OUT[0:7], OUT[0:7]# | NA  |
| 2   | PLL Bandwidth<br>0 = HIGH Bandwidth,<br>1 = LOW Bandwidth | RW   | 1 = Low                 | OUT[0:7], OUT[0:7]# | NA  |
| 3   | RESERVED                                                  |      |                         |                     |     |
| 4   | RESERVED                                                  |      |                         |                     |     |
| 5   | RESERVED                                                  |      |                         |                     |     |
| 6   | SRC_STOP#<br>0 = Driven when stopped<br>1 = Tristate      | RW   | 0 = Driven when stopped | OUT[0:7], OUT[0:7]# |     |
| 7   | PWRDWN#<br>0 = Driven when stopped<br>1 = Tristate        | RW   | 0 = Driven when stopped | OUT[0:7], OUT[0:7]# | NA  |

# Data Byte 1: Control Register

| Bit | Descriptions                  | Туре | Power Up Condition | Output(s) Affected | Pin |
|-----|-------------------------------|------|--------------------|--------------------|-----|
| 0   |                               | RW   | 1 = Enabled        | OUT0, OUT0#        | NA  |
| 1   |                               | RW   | 1 = Enabled        | OUT1, OUT1#        | NA  |
| 2   |                               | RW   | 1 = Enabled        | OUT2, OUT2#        | NA  |
| 3   | OUTPUTS enable<br>1 = Enabled | RW   | 1 = Enabled        | OUT3, OUT3#        | NA  |
| 4   | 0 = Disabled                  | RW   | 1 = Enabled        | OUT4, OUT4#        | NA  |
| 5   |                               | RW   | 1 = Enabled        | OUT5, OUT5#        | NA  |
| 6   |                               | RW   | 1 = Enabled        | OUT6, OUT6#        | NA  |
| 7   |                               | RW   | 1 = Enabled        | OUT7, OUT7#        | NA  |

# Data Byte 2: Control Register

| Bit | Descriptions                  | Туре | Power Up Condition | Output(s) Affected | Pin |
|-----|-------------------------------|------|--------------------|--------------------|-----|
| 0   |                               | RW   | 0 = Free running   | OUT0, OUT0#        | NA  |
| 1   |                               | RW   | 0 = Free running   | OUT1, OUT1#        | NA  |
| 2   | Allow control of OUTPUTS with | RW   | 0 = Free running   | OUT2, OUT2#        | NA  |
| 3   | assertion of SRC_STOP#        | RW   | 0 = Free running   | OUT3, OUT3#        | NA  |
| 4   | 0 = Free running              | RW   | 0 = Free running   | OUT4, OUT4#        | NA  |
| 5   | 1 = Stopped with SRC_Stop#    | RW   | 0 = Free running   | OUT5, OUT5#        | NA  |
| 6   |                               | RW   | 0 = Free running   | OUT6, OUT6#        | NA  |
| 7   |                               | RW   | 0 = Free running   | OUT7, OUT7#        | NA  |

# Data Byte 3: Control Register

| Bit | Descriptions | Туре | Power Up Condition | Output(s) Affected | Pin |
|-----|--------------|------|--------------------|--------------------|-----|
| 0   |              | RW   |                    |                    |     |
| 1   |              | RW   |                    |                    |     |
| 2   |              | RW   |                    |                    |     |
| 3   | DECEDVED     | RW   |                    |                    |     |
| 4   | RESERVED     | RW   |                    |                    |     |
| 5   |              | RW   |                    |                    |     |
| 6   |              | RW   |                    |                    |     |
| 7   |              | RW   |                    |                    |     |

## **Data Byte 4: Pericom ID Register**

| Bit | Descriptions | Туре | Power Up Condition | Output(s) Affected | Pin |
|-----|--------------|------|--------------------|--------------------|-----|
| 0   |              | R    | 0                  | NA                 | NA  |
| 1   |              | R    | 0                  | NA                 | NA  |
| 2   |              | R    | 0                  | NA                 | NA  |
| 3   | Derigen ID   | R    | 0                  | NA                 | NA  |
| 4   | Pericom ID   | R    | 0                  | NA                 | NA  |
| 5   |              | R    | 1                  | NA                 | NA  |
| 6   |              | R    | 0                  | NA                 | NA  |
| 7   |              | R    | 0                  | NA                 | NA  |



## Functionality

| PWRDWN# | OUT                         | OUT#   | SRC_Stop# | OUT                         | OUT#   |
|---------|-----------------------------|--------|-----------|-----------------------------|--------|
| 1       | Normal                      | Normal | 1         | Normal                      | Normal |
| 0       | $I_{REF} \times 2$ or Float | LOW    | 0         | $I_{REF} \times 6$ or Float | LOW    |

## Power Down (PWRDWN# assertion)

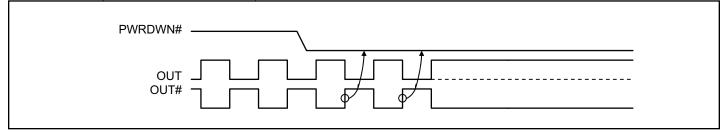
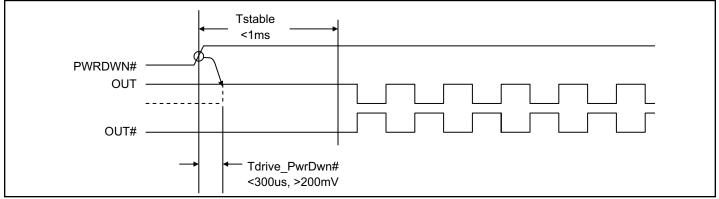




Figure 1. Power down sequence

## Power Down (PWRDWN# De-assertion)



#### Figure 2. Power down de-assert sequence

5

# Current-mode output buffer characteristics of OUT[0:7], OUT[0:7]#

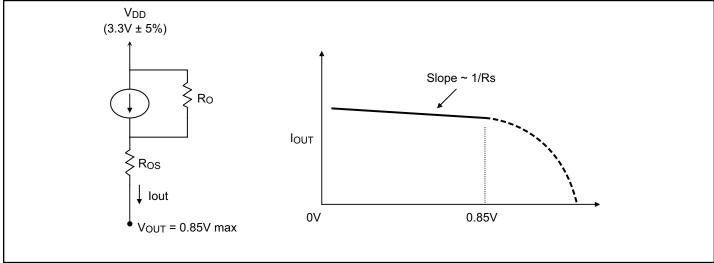



Figure 9. Simplified diagram of current-mode output buffer

## **Differential Clock Buffer characteristics**

| Symbol           | Minimum     | Maximum     |  |
|------------------|-------------|-------------|--|
| R <sub>O</sub>   | 3000Ω       | N/A         |  |
| R <sub>OS</sub>  | unspecified | unspecified |  |
| V <sub>OUT</sub> | N/A         | 850mV       |  |

## **Current Accuracy**

| Symbol           | Conditions              | Configuration                                  | Load                                      | Min.                         | Max.                         |
|------------------|-------------------------|------------------------------------------------|-------------------------------------------|------------------------------|------------------------------|
| I <sub>OUT</sub> | $V_{DD} = 3.30 \pm 5\%$ | $R_{REF} = 475\Omega \ 1\%$ $I_{REF} = 2.32mA$ | Nominal test load for given configuration | -12%<br>I <sub>NOMINAL</sub> | +12%<br>I <sub>NOMINAL</sub> |

Note:

1.  $I_{NOMINAL}$  refers to the expected current based on the configuration of the device.

#### **Differential Clock Output Current**

| Board Target Trace/Term Z                                               | Reference R, Iref = V <sub>DD</sub> /(3xRr)        | Output Current              | V <sub>OH</sub> @ Z |
|-------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|---------------------|
| $100\Omega$<br>(100 $\Omega$ differential $\approx$ 15% coupling ratio) | $R_{REF} = 475\Omega \ 1\%,$<br>$I_{REF} = 2.32mA$ | $I_{OH} = 6 \times I_{REF}$ | 0.7V @ 50           |

| Symbol            | Parameters               | Min. | Max. | Units |
|-------------------|--------------------------|------|------|-------|
| V <sub>DD_A</sub> | 3.3V Core Supply Voltage | -0.5 | 4.6  |       |
| V <sub>DD</sub>   | 3.3V I/O Supply Voltage  | -0.5 | 4.6  | V     |
| V <sub>IH</sub>   | Input HIGH Voltage       |      | 4.6  | Ň     |
| V <sub>IL</sub>   | Input LOW Voltage        | -0.5 |      |       |
| Ts                | Storage Temperature      | -65  | 150  | °C    |
| V <sub>ESD</sub>  | ESD Protection           | 2000 |      | V     |

# Absolute Maximum Ratings<sup>(1)</sup> (Over operating free-air temperature range)

Note:

1. Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

| Symbol            | Parameters                  | Condition                             | Min.             | Max.           | Units |
|-------------------|-----------------------------|---------------------------------------|------------------|----------------|-------|
| V <sub>DD_A</sub> | 3.3V Core Supply Voltage    |                                       | 3.135            | 3.465          |       |
| V <sub>DD</sub>   | 3.3V I/O Supply Voltage     |                                       | 3.135            | 3.465          | v     |
| V <sub>IH</sub>   | 3.3V Input HIGH Voltage     |                                       | 2.0              | $V_{DD} + 0.3$ |       |
| V <sub>IL</sub>   | 3.3V Input LOW Voltage      |                                       | $V_{\rm SS}-0.3$ | 0.8            |       |
| I <sub>IK</sub>   | Input Leakage Current       | $0 < V_{IN} < V_{DD}$                 | -5               | +5             | μA    |
| V <sub>OH</sub>   | 3.3V Output HIGH Voltage    | $I_{OH} = -1 mA$                      | 2.4              |                | v     |
| V <sub>OL</sub>   | 3.3V Output LOW Voltage     | $I_{OL} = 1mA$                        |                  | 0.4            | l v   |
| Law               | Output HIGH Current         | $I_{OH} = 6 \text{ x } I_{REF},$      | 12.2             |                | mA    |
| I <sub>OH</sub>   |                             | $I_{REF} = 2.32 \text{mA}$            |                  | 15.6           |       |
| C <sub>IN</sub>   | Logic Input Pin Capacitance |                                       | 1.5              | 5              | ηF    |
| C <sub>OUT</sub>  | Output Pin Capacitance      |                                       |                  | 6              | pF    |
| L <sub>PIN</sub>  | Pin Inductance              |                                       |                  | 7              | nH    |
| I <sub>DD</sub>   | Power Supply Current        | $V_{DD} = 3.465 V, F_{CPU} = 100 MHz$ |                  | 250            |       |
| I <sub>SS</sub>   | Power Down Current          | Driven outputs                        |                  | 80             | mA    |
| I <sub>SS</sub>   | Power Down Current          | Tristate outputs                      |                  | 12             |       |
| Т.                | Ambient Temperature         | Commercial (PI6C20800S)               | 0                | 70             | °C    |
| T <sub>A</sub>    | Ambient Temperature         | Industrial (PI6C20800SI)              | -40              | 85             |       |

7

**DC Electrical Characteristics** (V<sub>DD</sub> = 3.3±5%, V<sub>DD A</sub> = 3.3±5%)

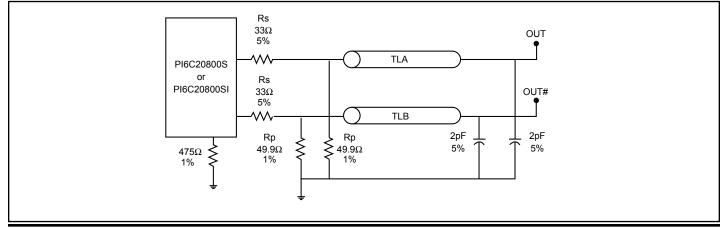
| Symbol                                | Parameters                                                               |             |             | Min  | Max. | Units | Notes |
|---------------------------------------|--------------------------------------------------------------------------|-------------|-------------|------|------|-------|-------|
| Г                                     | SRC/SRC# Input Frequency PLL Mode                                        |             |             | 95   | 105  | MHz   | 6     |
| Fin                                   | SRC/SRC# Input Frequency Bypass Mode                                     |             | 95          | 400  | MHz  | 6     |       |
| T <sub>rise</sub> / T <sub>fall</sub> | Rise and Fall Time (measured between 0.175V to 0.525V)                   |             | 175         | 700  |      | 2     |       |
| $\Delta T_{rise} / \Delta T_{fall}$   | Rise and Fall Time Variation                                             |             |             | 125  | ps   | 2     |       |
|                                       | Input to Output Propagation<br>Delay                                     |             | PI6C20800S  | -250 | 250  | ps    |       |
| Ŧ                                     |                                                                          | PLL Mode    | PI6C20800SI | -450 | 450  |       |       |
| T <sub>pd</sub>                       |                                                                          |             | PI6C20800S  | -6   | 6    |       |       |
|                                       |                                                                          | Bypass Mode | PI6C20800SI | -8   | 8    | ns    |       |
| T                                     | Output-to-Output Skew (PI60                                              | C20800S)    |             |      | 50   |       | 3     |
| T <sub>skew</sub>                     | Output-to-Output Skew (PI6C20800SI)                                      |             |             |      | 65   | ps    | 3     |
| V <sub>HIGH</sub>                     | Voltage HIGH (Measured at 100MHz @ 3.3V)                                 |             |             | 600  | 900  | mV    | 2     |
| V <sub>OVS</sub>                      | Max. Voltage                                                             |             |             |      | 1150 |       |       |
| V <sub>UDS</sub>                      | Min. Voltage                                                             |             |             | -300 |      |       |       |
| V <sub>LOW</sub>                      | Voltage LOW                                                              |             |             | -150 | +150 |       | 2     |
| V <sub>cross</sub>                    | Absolute crossing poing voltages                                         |             |             | 250  | 550  |       | 2     |
| $\Delta V_{cross}$                    | Total Variation of V <sub>cross</sub> over all edges                     |             |             |      | 140  |       | 2     |
| T <sub>DC</sub>                       | Duty Cycle (Measured at 100 MHz)                                         |             |             | 45   | 57   | %     | 3     |
| T <sub>jcyc-cyc</sub>                 | Jitter, Cycle-to-cycle (PLL Mode, Measurement for differential waveform) |             |             | 70   | ps   | 4     |       |
| J-JJ-                                 | Jitter, Cycle-to-cycle (BYPASS mode as additive jitter)                  |             |             | ]    |      |       |       |
| J <sub>add</sub>                      | Additive RMS phase jitter for PCIe 2.0                                   |             |             | <0   | 1    | ps    | 5     |

# AC Switching Characteristics<sup>(1,2,3)</sup> ( $V_{DD} = 3.3\pm5\%$ , $V_{DD A} = 3.3\pm5\%$ )

Notes:

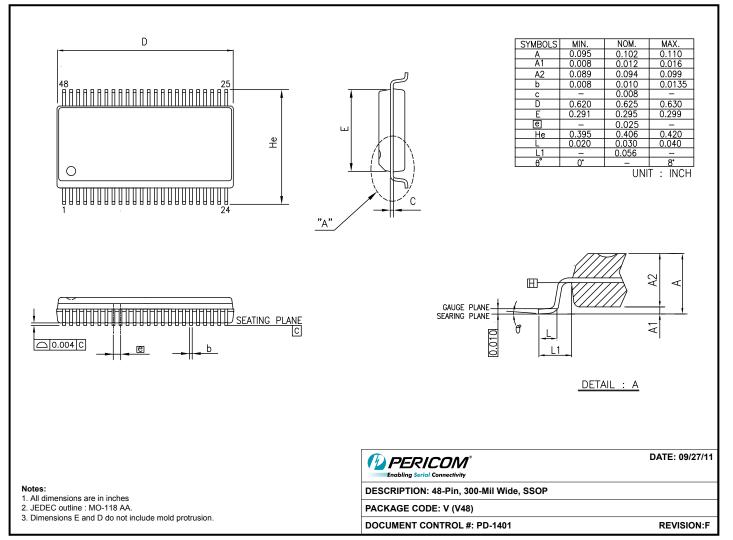
1. Test configuration is  $R_S = 33.2\Omega$ ,  $Rp = 49.9\Omega$ , and 2pF.

2. Measurement taken from Single Ended waveform.


3. Measurement taken from Differential waveform.

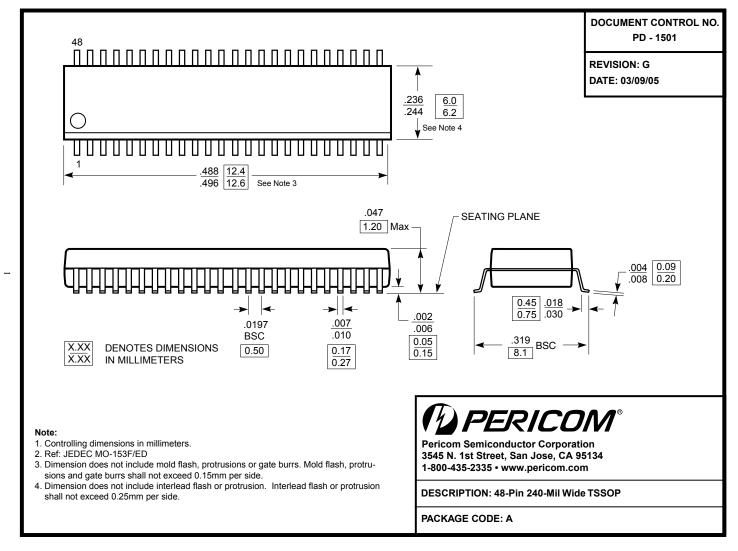
4. Measured using M1 timing analyzer from Amherst.

5. Additive jitter is calculated from input and output RMS phase jitter by using PCIe 2.0 filter.  $(J_{add} = \sqrt{(output jitter)^2 - (input jitter)^2})$ 


6. -0.5% downnspread input

# **Configuration Test Load Board Termination**




14-0190

# Packaging Mechanical: 48-Pin SSOP (V)



PERICOM<sup>®</sup>

## Packaging Mechanical: 48-Pin TSSOP (A)



#### **Ordering Information**<sup>(1,2)</sup>

| Ordering Code | Package Code | Package Description                                         |
|---------------|--------------|-------------------------------------------------------------|
| PI6C20800SVE  | VE           | 48-pin, 300-mil wide, SSOP, Pb-Free and Green               |
| PI6C20800SAE  | AE           | 48-pin, 240-mil wide, TSSOP, Pb-Free and Green              |
| PI6C20800SIVE | VE           | 48-pin, 300-mil wide, SSOP, Pb-Free and Green (Industrial)  |
| PI6C20800SIAE | AE           | 48-pin, 240-mil wide, TSSOP, Pb-Free and Green (Industrial) |

#### Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

14-0190  $\mathsf{PCle}^{\$}$  , and the PCI EXPRESS design mark  $^{\$}$  are trademarks of PCI-SIG  $^{\$}$  (www.pcisig.com)