General Purpose Transistors

PNP Silicon

Features

• These are Pb-Free Devices*

MAXIMUM RATINGS

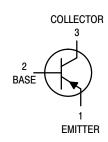
Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	-60	Vdc
Collector - Base Voltage	V _{CBO}	-60	Vdc
Emitter - Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current - Continuous	I _C	-600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

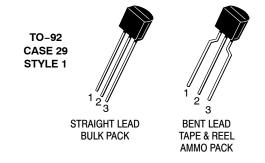
THERMAL CHARACTERISTICS

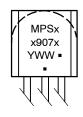
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

DEVICE MARKING


Device	Line 1	Line 2
MPS2907AG	MPS	2907A
MPS2907ARLG	MPS2	907A
MPS2907ARLRAG	MPS	2907
MPS2907ARLRPG	MPS	2907


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

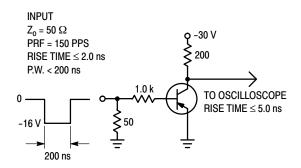

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

Y = Year WW = Work Week ■ = Pb-Free Package

(Note: Microdot may be in either location)


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Cr	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS			1	1	
Collector - Emitter Breakdown Voltage	(Note 1) (I _C = -10 mAdc, I _B = 0)	V _{(BR)CEO}	-60	-	Vdc
Collector - Base Breakdown Voltage (Ic	_C = -10 μAdc, I _E = 0)	V _{(BR)CBO}	-60	_	Vdc
Emitter – Base Breakdown Voltage (I _E =	= -10 μAdc, I _C = 0)	V _{(BR)EBO}	-5.0	-	Vdc
Collector Cutoff Current (V _{CE} = −30 Vd	c, V _{EB(off)} = -0.5 Vdc)	I _{CEX}	-	-50	nAdc
		I _{CBO}	- -	-0.01 -10	μAdc
Base Current (V _{CE} = -30 Vdc, V _{EB(off)}	= -0.5 Vdc)	I _B	-	-50	nAdc
ON CHARACTERISTICS					
$\begin{array}{l} \text{DC Current Gain} \\ (I_{C}=-0.1 \text{ mAdc, V}_{CE}=-10 \text{ Vdc)} \\ (I_{C}=-1.0 \text{ mAdc, V}_{CE}=-10 \text{ Vdc)} \\ (I_{C}=-10 \text{ mAdc, V}_{CE}=-10 \text{ Vdc)} \\ (I_{C}=-150 \text{ mAdc, V}_{CE}=-10 \text{ Vdc)} \\ (I_{C}=-500 \text{ mAdc, V}_{CE}=-10 \text{ Vdc)} \end{array}$	Note 1) Note 1)	h _{FE}	75 100 100 100 50	- - - 300 -	-
	Note 1)	V _{CE(sat)}	_ _	-0.4 -1.6	Vdc
Base – Emitter Saturation Voltage (Note (I _C = -150 mAdc, I _B = -15 mAdc) (I _C = -500 mAdc, I _B = -50 mAdc)	e 1)	V _{BE(sat)}	- -	-1.3 -2.6	Vdc
SMALL-SIGNAL CHARACTERISTICS	3	L	I	I	I
Current – Gain – Bandwidth Product (N (I _C = –50 mAdc, V _{CE} = –20 Vdc, f =		f _T	200	-	MHz
Output Capacitance (V _{CB} = -10 Vdc, I _E	= 0, f = 1.0 MHz)	C _{obo}	-	8.0	pF
Input Capacitance (V _{EB} = -2.0 Vdc, I _C	= 0, f = 1.0 MHz)	C _{ibo}	-	30	pF
SWITCHING CHARACTERISTICS					
Turn-On Time	$(V_{CC} = -30 \text{ Vdc}, I_C = -150 \text{ mAdc},$	t _{on}	-	45	ns
Delay Time	I _{B1} = −15 mAdc) (Figures 1 and 5)	t _d	-	10	ns
Rise Time		t _r	-	40	ns
Turn-Off Time	$(V_{CC} = -6.0 \text{ Vdc}, I_{C} = -150 \text{ mAdc},$	t _{off}	-	100	ns
Storage Time	I _{B1} = I _{B2} = 15 mAdc) (Figure 2)	t _s	-	80	ns
Fall Time		t _f	-	30	ns

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%. 2. f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

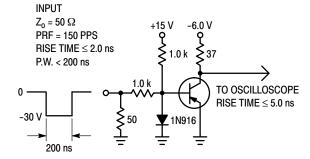


Figure 1. Delay and Rise Time Test Circuit

Figure 2. Storage and Fall Time Test Circuit

TYPICAL CHARACTERISTICS

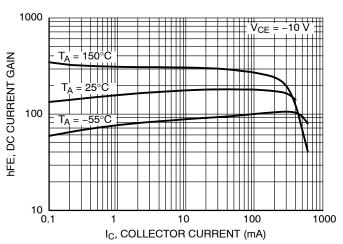


Figure 3. DC Current Gain

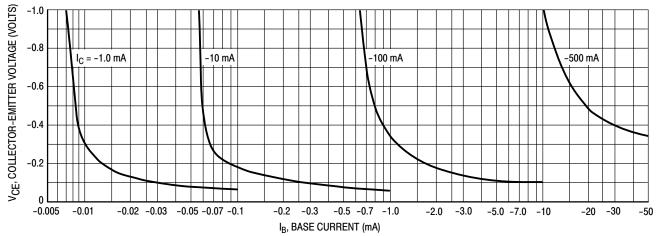


Figure 4. Collector Saturation Region

ORDERING INFORMATION

Device	Package	Shipping [†]	
MPS2907AG	TO-92 (Pb-Free)	5000 Units / Bulk	
MPS2907ARLG	TO-92 (Pb-Free)	0000 (Table 0 Deal	
MPS2907ARLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel	
MPS2907ARLRPG	TO-92 (Pb-Free)	2000 / Ammo Pack	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

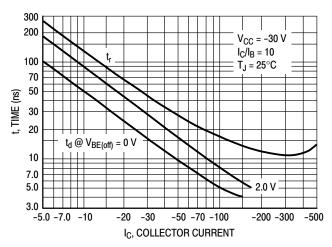


Figure 5. Turn-On Time

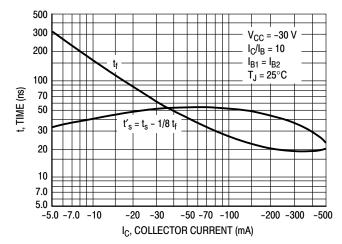


Figure 6. Turn-Off Time

TYPICAL SMALL-SIGNAL CHARACTERISTICS **NOISE FIGURE**

 V_{CE} = 10 Vdc, T_A = 25°C

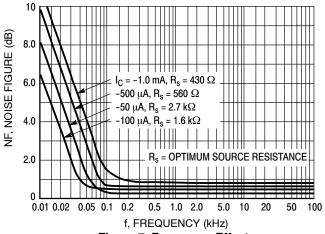


Figure 7. Frequency Effects

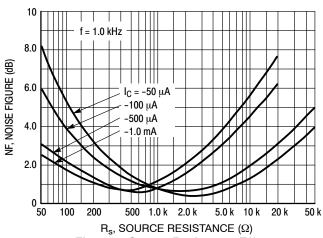


Figure 8. Source Resistance Effects

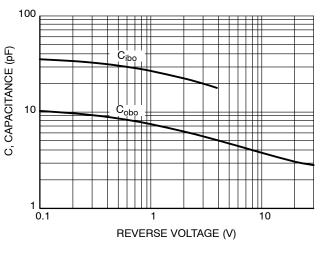


Figure 9. Capacitances

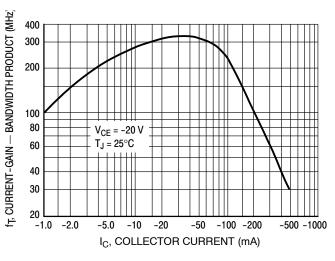
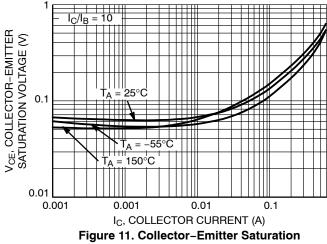



Figure 10. Current-Gain - Bandwidth Product

Voltage vs. Collector Current

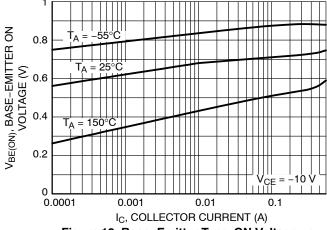
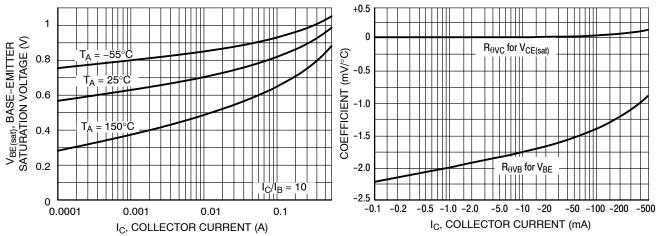
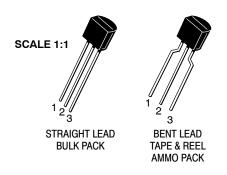



Figure 12. Base-Emitter Turn-ON Voltage vs. **Collector Current**



I_C, COLLECTOR CURRENT (A)

Figure 13. Base Emitter Saturation Voltage vs.

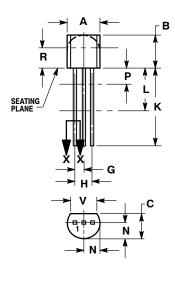
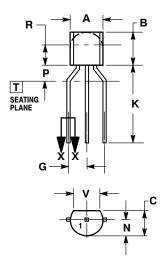

Collector Current

Figure 14. Temperature Coefficients

TO-92 (TO-226) CASE 29-11 **ISSUE AM**

DATE 09 MAR 2007



STRAIGHT LEAD **BULK PACK**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

BENT LEAD TAPE & REEL AMMO PACK

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS			
DIM	MIN	MAX		
Α	4.45	5.20		
В	4.32	5.33		
С	3.18	4.19		
D	0.40	0.54		
G	2.40	2.80		
J	0.39	0.50		
K	12.70			
N	2.04	2.66		
P	1.50	4.00		
R	2.93			
٧	3.43			

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolled except when
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped
NEW STANDARD:		"CONTROLLED COPY" in red.
DESCRIPTION:	TO-92 (TO-226)	PAGE 1 OF 3

TO-92 (TO-226) CASE 29-11

ISSUE AM

DATE 09 MAR 2007

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	PIN 1. 2.	BASE EMITTER COLLECTOR	PIN 1. 2. 3	ANODE ANODE CATHODE	PIN 1. 2.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	DRAIN
	GATE SOURCE & SUBSTRATE DRAIN	STYLE 7: PIN 1. 2. 3.	SOURCE DRAIN GATE	STYLE 8: PIN 1. 2. 3.	DRAIN GATE SOURCE & SUBSTRATE	STYLE 9: PIN 1. 2. 3.	BASE 1 EMITTER BASE 2	STYLE 10: PIN 1. 2. 3.	
2.	ANODE	STYLE 12: PIN 1. 2. 3.	MAIN TERMINAL 1	PIN 1.		PIN 1.		PIN 1. 2.	ANODE 1
2.		2.	BASE	2.	ANODE CATHODE NOT CONNECTED	2.	ANODE	2.	NOT CONNECTED
PIN 1. 2.	COLLECTOR	PIN 1. 2.	SOURCE GATE DRAIN	DINI 1	GATE SOURCE DRAIN	PIN 1. 2.	EMITTER	PIN 1. 2.	MT 1
	V _{CC}	PIN 1. 2.	MT SUBSTRATE MT	PIN 1. 2.	CATHODE	PIN 1. 2.		PIN 1. 2.	DRAIN
	GATE	PIN 1. 2.	BASE	STYLE 33: PIN 1. 2. 3.	RETURN	PIN 1. 2.	INPUT GROUND LOGIC		

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolle	' '	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	' '	
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226)		PAGE 2 OF 3	

ON	Semiconductor [®]
----	----------------------------

DOCUMENT NUMBER: 98ASB42022B

PAGE 3 OF 3

ISSUE	REVISION	DATE
AM	ADDED BENT-LEAD TAPE & REEL VERSION. REQ. BY J. SUPINA.	09 MAR 2007

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthnoized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com **TECHNICAL SUPPORT**

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

For additional information, please contact your local Sales Representative