# **MMBV409LT1**

Preferred Device

# **Silicon Tuning Diode**

This device is designed in the Surface Mount package for general frequency control and tuning applications. It provides solid–state reliability in replacement of mechanical tuning methods.

#### **Features**

- High Q with Guaranteed Minimum Values at VHF Frequencies
- Controlled and Uniform Tuning Ratio
- Available in Surface Mount Package
- Pb-Free Package is Available

#### **MAXIMUM RATINGS**

| Rating                                                              | Symbol           | Value       | Unit        |
|---------------------------------------------------------------------|------------------|-------------|-------------|
| Reverse Voltage                                                     | V <sub>R</sub>   | 20          | Vdc         |
| Forward Current                                                     | I <sub>F</sub>   | 200         | mAdc        |
| Forward Power Dissipation @ T <sub>A</sub> = 25°C Derate above 25°C | P <sub>D</sub>   | 225<br>1.8  | mW<br>mW/°C |
| Junction Temperature                                                | TJ               | +125        | °C          |
| Storage Temperature Range                                           | T <sub>stg</sub> | -55 to +150 | °C          |

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.



# ON Semiconductor®

http://onsemi.com





SOT-23 (TO-236) CASE 318 STYLE 8

#### **MARKING DIAGRAM**



X5 = Specific Device Code

M = Date Code\*

■ = Pb-Free Package

(Note: Microdot may be in either location)

\*Date Code orientation and/or overbar may vary depending upon manufacturing location.

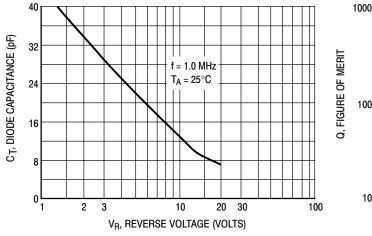
## ORDERING INFORMATION

| Device      | Package             | Shipping <sup>†</sup> |
|-------------|---------------------|-----------------------|
| MMBV409LT1  | SOT-23              | 3,000 / Tape & Reel   |
| MMBV409LT1G | SOT-23<br>(Pb-Free) | 3,000 / Tape & Reel   |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

**Preferred** devices are recommended choices for future use and best overall value.

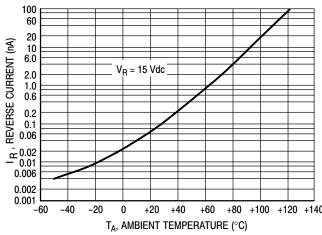
#### MMBV409LT1


# **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic                                                                    | Symbol             | Min | Тур | Max | Unit   |
|-----------------------------------------------------------------------------------|--------------------|-----|-----|-----|--------|
| Reverse Breakdown Voltage<br>(I <sub>R</sub> = 10 μAdc)                           | V <sub>(BR)R</sub> | 20  | -   | -   | Vdc    |
| Reverse Voltage Leakage Current (V <sub>R</sub> = 15 Vdc)                         | I <sub>R</sub>     | -   | -   | 0.1 | μAdc   |
| Diode Capacitance Temperature Coefficient (V <sub>R</sub> = 3.0 Vdc, f = 1.0 MHz) | TC <sub>C</sub>    | -   | 300 | -   | ppm/°C |

|            | $C_t$ , Diode Capacitance $V_R = 3.0 \text{ Vdc}$ , $f = 1.0 \text{ MHz}$ pF |     |     | Q, Figure of Merit<br>V <sub>R</sub> = 3.0 Vdc<br>f = 50 MHz | C <sub>R</sub> , Capacitance Ratio<br>C <sub>3</sub> /C <sub>8</sub><br>f = 1.0 MHz (Note 1) |     |  |
|------------|------------------------------------------------------------------------------|-----|-----|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----|--|
| Device     | Min                                                                          | Nom | Max | Min                                                          | Min                                                                                          | Max |  |
| MMBV409LT1 | 26                                                                           | 29  | 32  | 200                                                          | 1.5                                                                                          | 1.9 |  |

<sup>1.</sup>  $C_R$  is the ratio of  $C_t$  measured at 3 Vdc divided by  $C_t$  measured at 8 Vdc.


## **TYPICAL CHARACTERISTICS**




V<sub>R</sub> = 3 Vdc T<sub>A</sub> = 25°C 100 10 <u>L</u> 10 100 1000 f, FREQUENCY (MHz)

Figure 1. Diode Capacitance

Figure 2. Figure of Merit





1.04

1.03

1.02

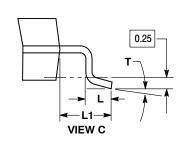
V<sub>R</sub> = 3.0 Vdc

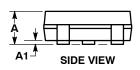
f = 1.0 MHz

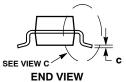
Figure 3. Leakage Current

Figure 4. Diode Capacitance

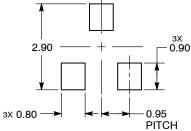
+125





SOT-23 (TO-236) CASE 318-08 **ISSUE AS** 


**DATE 30 JAN 2018** 

# SCALE 4:1 D - 3X b


**TOP VIEW** 







#### **RECOMMENDED SOLDERING FOOTPRINT**



DIMENSIONS: MILLIMETERS

SOT-23 (TO-236)

#### NOTES:

- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
  2. CONTROLLING DIMENSION: MILLIMETERS.
  3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
  MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

|     | M    | ILLIMETE | RS   | INCHES |       |       |  |
|-----|------|----------|------|--------|-------|-------|--|
| DIM | MIN  | NOM      | MAX  | MIN    | NOM   | MAX   |  |
| Α   | 0.89 | 1.00     | 1.11 | 0.035  | 0.039 | 0.044 |  |
| A1  | 0.01 | 0.06     | 0.10 | 0.000  | 0.002 | 0.004 |  |
| b   | 0.37 | 0.44     | 0.50 | 0.015  | 0.017 | 0.020 |  |
|     | 0.08 | 0.14     | 0.20 | 0.003  | 0.006 | 0.008 |  |

| Α  | 0.89 | 1.00      | 1.11 | 0.035 | 0.039 | 0.044 |
|----|------|-----------|------|-------|-------|-------|
| A1 | 0.01 | 0.06      | 0.10 | 0.000 | 0.002 | 0.004 |
| b  | 0.37 | 0.44      | 0.50 | 0.015 | 0.017 | 0.020 |
| С  | 0.08 | 0.14      | 0.20 | 0.003 | 0.006 | 0.008 |
| D  | 2.80 | 2.90      | 3.04 | 0.110 | 0.114 | 0.120 |
| E  | 1.20 | 1.30      | 1.40 | 0.047 | 0.051 | 0.055 |
| е  | 1.78 | 78 1.90 2 |      | 0.070 | 0.075 | 0.080 |
| L  | 0.30 | 0.43      | 0.55 | 0.012 | 0.017 | 0.022 |
| L1 | 0.35 | 0.54      | 0.69 | 0.014 | 0.021 | 0.027 |
| HE | 2.10 | 2.40      | 2.64 | 0.083 | 0.094 | 0.104 |
| T  | 0°   |           | 10°  | 0°    |       | 10°   |

### **GENERIC MARKING DIAGRAM\***



XXX = Specific Device Code

= Date Code

= Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

| STYLE 1 THRU 5: STYLE 6: CANCELLED PIN 1. BASE 2. EMITTER 3. COLLECTOR | STYLE 7:<br>PIN 1. EMITTER<br>2. BASE<br>3. COLLECTOR | STYLE 8:<br>PIN 1. ANODE<br>2. NO CONNECTION<br>3. CATHODE |
|------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|
|------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|

| STYLE 9:                  | STYLE 10:                | STYLE 11:                       | STYLE 12:                 | STYLE 13:     | STYLE 14:               |
|---------------------------|--------------------------|---------------------------------|---------------------------|---------------|-------------------------|
| PIN 1. ANODE              | PIN 1. DRAIN             | PIN 1. ANODE                    | PIN 1. CATHODE            | PIN 1. SOURCE | PIN 1. CATHODE          |
| <ol><li>ANODE</li></ol>   | <ol><li>SOURCE</li></ol> | <ol><li>CATHODE</li></ol>       | <ol><li>CATHODE</li></ol> | 2. DRAIN      | 2. GATE                 |
| <ol><li>CATHODE</li></ol> | 3. GATE                  | <ol><li>CATHODE-ANODE</li></ol> | <ol><li>ANODE</li></ol>   | 3. GATE       | <ol><li>ANODE</li></ol> |

| STYLE 1 | 5:      | STYLE 1 | 6:      | STYLE 1 | 7:            | STYLE 1 | 18:           | STYLE 1 | 9:            | STYLE 2 | :0:     |
|---------|---------|---------|---------|---------|---------------|---------|---------------|---------|---------------|---------|---------|
| PIN 1.  | GATE    | PIN 1.  | ANODE   | PIN 1.  | NO CONNECTION | PIN 1.  | NO CONNECTION | PIN 1.  | CATHODE       | PIN 1.  | CATHODE |
| 2.      | CATHODE | 2.      | CATHODE | 2.      | ANODE         | 2.      | CATHODE       | 2.      | ANODE         | 2.      | ANODE   |
| 3.      | ANODE   | 3.      | CATHODE | 3.      | CATHODE       | 3.      | ANODE         | 3.      | CATHODE-ANODE | 3.      | GATE    |

| STYLE 21:                | STYLE 22:                | STYLE 23:    | STYLE 24:   | STYLE 25:    | STYLE 26:                       |
|--------------------------|--------------------------|--------------|-------------|--------------|---------------------------------|
| PIN 1. GATE              | PIN 1. RETURN            | PIN 1. ANODE | PIN 1. GATE | PIN 1. ANODE | PIN 1. CATHODE                  |
| <ol><li>SOURCE</li></ol> | <ol><li>OUTPUT</li></ol> | 2. ANODE     | 2. DRAIN    | 2. CATHODE   | 2. ANODE                        |
| 3 DRAIN                  | 3 INPLIT                 | 3 CATHODE    | 3. SOURCE   | 3. GATE      | <ol><li>NO CONNECTION</li></ol> |

| PIN 1. CATHODE PIN 2. CATHODE | LE 28:<br>11. ANODE<br>2. ANODE<br>3. ANODE |                                                                                                                                                                                     |
|-------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOCUMENT NUMBER               | R: 98ASB42226B                              | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

**DESCRIPTION:** 

PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthnotized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

# **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

**TECHNICAL SUPPORT** North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 Phone: 011 421 33 790 2910 For additional information, please contact your local Sales Representative