

Table 1. PIN DESCRIPTION

Pin	Function
Qn, Qn	PECL Differential Outputs*
Dn	TTL Inputs
V _{CC}	Positive Supply
GND	Ground

^{*}Output state undetermined when inputs are open.

Figure 1. Logic Diagram and Pinout Assignment

Table 2. ATTRIBUTES

Characte	Value					
Internal Input Pulldown Resistor	N/A					
Internal Input Pullup Resistor		N/A				
ESD Protection	Human Body Model Machine Model	> 2 kV > 200 V				
Moisture Sensitivity, Indefinite T	ime Out of Drypack (Note 1)	Level 1				
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in				
Transistor Count		51				
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test						

^{1.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	Positive Power Supply	GND = 0 V		7	V
V _{IN}	Input Voltage	GND = 0 V		$\begin{array}{c} \text{GND} + 0.025 \leq V_{I} \\ \leq V_{CC} - 0.025 \end{array}$	V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θJΑ	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	8 SOIC 8 SOIC	190 130	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	8 SOIC	41 to 44	°C/W
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	8 TSSOP 8 TSSOP	185 140	°C/W
θ _{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	8 TSSOP	41 to 44 ± 5%	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 4. 10ELT SERIES PECL DC CHARACTERISTICS V_{CC} = 5.0 V; GND = 0.0 V (Note 2)

		−40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{CC}	Power Supply Current			22			22			22	mA
V _{OH}	Output HIGH Voltage (Note 3)	3920	4010	4110	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 3)	3050	3200	3350	3050	3210	3370	3050	3227	3405	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 2. Output parameters vary 1:1 with V_{CC} . V_{CC} can vary \pm 0.25 V.
- 3. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V.

Table 5. 100ELT SERIES PECL DC CHARACTERISTICS V_{CC} = 5.0 V; GND = 0.0 V (Note 4)

		-40°C		25°C		85°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{CC}	Power Supply Current			22			22			22	mA
V _{OH}	Output HIGH Voltage (Note 5)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 5)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 4. Output parameters vary 1:1 with V_{CC} . V_{CC} can vary \pm 0.25 V.
- 5. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V.

Table 6. TTL INPUT DC CHARACTERISTICS $V_{CC} = 4.75 \text{ V}$ to 5.25 V; $T_A = -40 ^{\circ}\text{C}$ to $85 ^{\circ}\text{C}$

Symbol	Characteristic	Condition	Min	Тур	Max	Unit
I _{IH}	Input HIGH Current	$V_{IN} = 2.7 \text{ V};$ $V_{IN} = (V_{CC} - 0.025) \text{ V}$			20	μΑ
Іінн	Input HIGH Current	V _{IN} = 7.0 V			100	μΑ
I _{IL}	Input LOW Current	$V_{IN} = 0.5 \text{ V};$ $V_{IN} = (GND + 0.025) \text{ V}$			-0.6	mA
V _{IK}	Input Clamp Diode Voltage	I _{IN} = -18 mA			-1.2	V
V_{IH}	Input HIGH Voltage		2.0		V _{CC} - 0.025 V	V
V _{IL}	Input LOW Voltage		GND + 0.025 V		0.8	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 7. AC CHARACTERISTICS V_{CC} = 4.75 V to 5.25 V; GND= 0.0 V

			-40°C		25°C		85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	Maximum Input Frequency					500					MHz
t _{PLH}	Propagation Delay (Note 6) 1.5 V to 50%	0.6		1.2	0.9	1.2	1.5	0.6		1.35	ns
t _{PHL}	Propagation Delay (Note 6) 1.5 V to 50%	0.4		1.0	0.5	0.8	1.1	0.7		1.30	ns
t _{skew}	Within-Device Skew (Note 7) Device-to-Device Skew (Note 8)		50 300	100 600		50 300	100 600		50 350	100 750	ps
t _{JITTER}	CLOCK Random Jitter (RMS)					0.5					ps
t _r /t _f	Output Rise/Fall Time (20-80%)	0.4		1.6	0.4		1.6	0.4		1.6	ns

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 6. Specifications for standard TTL input signal.
- 7. Skew is measured between outputs under identical transitions and conditions on any one device.
- 8. Device-to-Device Skew for identical transitions at identical V_{CC} levels.

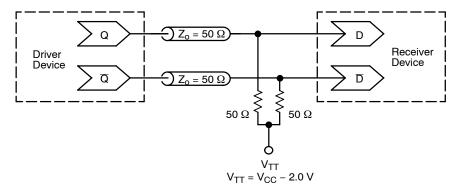


Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]
MC10ELT22D	SO-8	98 Units / Rail
MC10ELT22DG	SO-8 (Pb-Free)	98 Units / Rail
MC10ELT22DR2	SO-8	2500 Tape & Reel
MC10ELT22DR2G	SO-8 (Pb-Free)	2500 Tape & Reel
MC10ELT22DT	TSSOP-8	100 Units / Rail
MC10ELT22DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC10ELT22DTR2	TSSOP-8	2500 Tape & Reel
MC10ELT22DTR2G	TSSOP-8 (Pb-Free)	2500 Tape & Reel
MC100ELT22D	SO-8	98 Units / Rail
MC100ELT22DG	SO-8 (Pb-Free)	98 Units / Rail
MC100ELT22DR2	SO-8	2500 Tape & Reel
MC100ELT22DR2G	SO-8 (Pb-Free)	2500 Tape & Reel
MC100ELT22DT	TSSOP-8	100 Units / Rail
MC100ELT22DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC100ELT22DTR2	TSSOP-8	2500 Tape & Reel
MC100ELT22DTR2G	TSSOP-8 (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

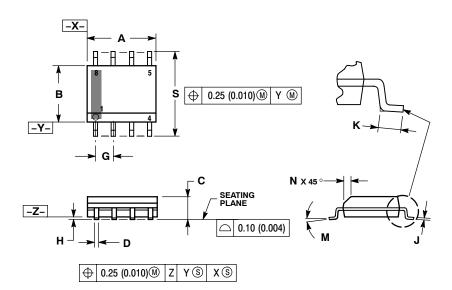
AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

AN1504/D - Metastability and the ECLinPS Family

AN1568/D - Interfacing Between LVDS and ECL

AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design

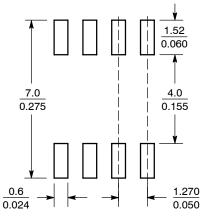
AND8002/D - Marking and Date Codes


AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

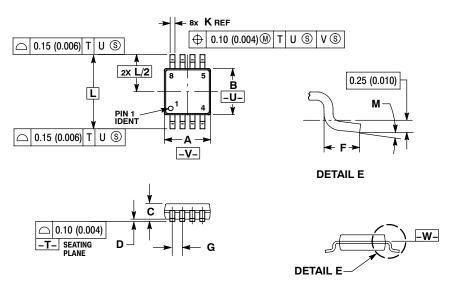
PACKAGE DIMENSIONS


SOIC-8 NB CASE 751-07 **ISSUE AH**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE
 MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- MAXIMUM MIOLD PHOTHUSION 0.13 (0.000)
 PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
- MAXIMUM MATERIAL CONDITION.
 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIN	IETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.053	0.069		
D	0.33	0.33 0.51		0.020		
G	1.27	7 BSC	0.050 BSC			
Н	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
M	1 0° 8°		0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		

SOLDERING FOOTPRINT*



SCALE 6:1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-8 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**

NOTES

- DIMENSIONS AND TOLERANCING PER
- ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS.
- FLASH. PHOI HUSIONS OH GATE BURRS.
 MOLD FLASH OR GATE BURRS SHALL NOT
 EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES			
DIM	MIN	MIN MAX		MIN MAX MIN		MAX
Α	2.90	3.10	0.114	0.122		
В	2.90	3.10	0.114	0.122		
С	0.80	1.10	0.031	0.043		
D	0.05	0.15	0.002	0.006		
F	0.40	0.70	0.016	0.028		
G	0.65	BSC	0.026 BSC			
K	0.25	0.40	0.010	0.016		
L	4.90	4.90 BSC		BSC		
M	0°	6 °	0°	6°		

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

MC10ELT22/D