Contents

1	Diagram
2	Pin configuration
3	Maximum ratings
4	Application circuit
5	Electrical characteristics9
6	Typical application
7	Package mechanical data 23
8	Packaging mechanical data 31
9	Ordering information
10	Revision history

List of tables

Table 1.	Absolute maximum ratings	7
Table 2.	Thermal data	7
Table 3.	L4931Cxx27 electrical characteristics	9
Table 4.	L4931Cxx27-TRY (automotive-grade) electrical characteristics	10
Table 5.	L4931ABxx33 electrical characteristics	11
Table 6.	L4931Cxx33 electrical characteristics	12
Table 7.	L4931Cxx33-TRY (automotive-grade) electrical characteristics	13
Table 8.	L4931ABxx35 electrical characteristics	14
Table 9.	L4931Cxx35 electrical characteristics	15
Table 10.	L4931ABxx50 electrical characteristics	16
Table 11.	L4931Cxx50 electrical characteristics	17
Table 12.	L4931ABxx80 electrical characteristics	18
Table 13.	L4931Cxx80 electrical characteristics	19
Table 14.	L4931ABxx120 electrical characteristics	20
Table 15.	L4931Cxx120 electrical characteristics	21
Table 16.	TO-92 mechanical data	23
Table 17.	PPAK mechanical data	25
Table 18.	DPAK mechanical data	27
Table 19.	SO-8 mechanical data	30
Table 20.	TO-92 tape and reel mechanical data	31
Table 21.	PPAK and DPAK tape and reel mechanical data	
Table 22.	SO-8 tape and reel mechanical data	35
Table 23.	Order codes	
Table 24.	Document revision history	37

List of figures

Figure 1.	Schematic diagram	. 5
Figure 2.	Pin connections (top view)	. 6
Figure 3.	Test circuit	. 8
Figure 4.	Line regulation vs temperature	22
Figure 5.	Dropout voltage vs temperature	22
Figure 6.	Supply current vs input voltage	22
Figure 7.	Supply current vs temperature	22
Figure 8.	Short-circuit current vs dropout voltage	22
Figure 9.	SVR vs input voltage signal frequency	22
Figure 10.	TO-92 drawings	24
Figure 11.	PPAK drawings	26
Figure 12.	DPAK drawings.	28
Figure 13.	DPAK footprint	29
Figure 14.	SO-8 drawings	30
Figure 15.	TO-92 tape and reel dimensions	32
Figure 16.	Tape for PPAK and DPAK	34
Figure 17.	Reel for PPAK and DPAK	34
Figure 18.	SO-8 tape and reel dimensions	35

1 Diagram

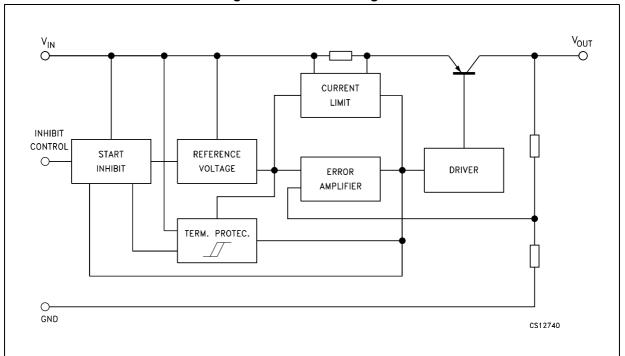


Figure 1. Schematic diagram

2 Pin configuration

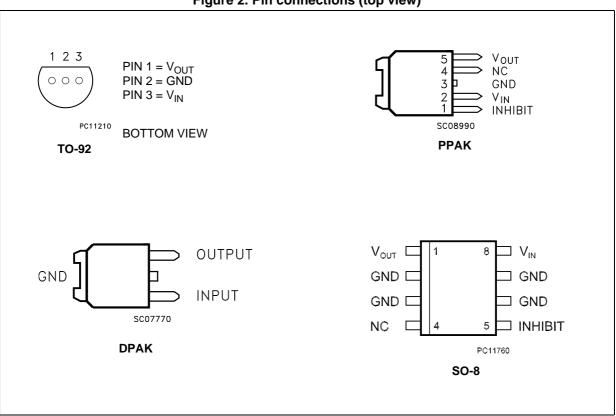
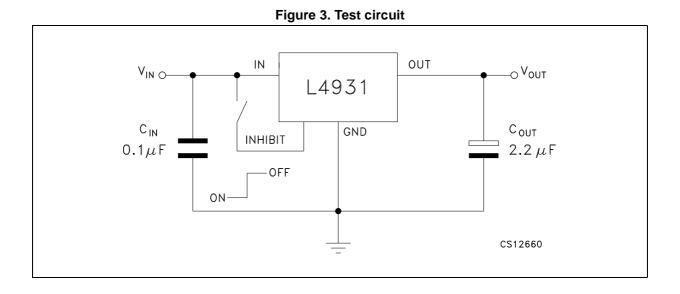


Figure 2. Pin connections (top view)

3 Maximum ratings

Table 1. Absolu	ute maximum	ratings
-----------------	-------------	---------


Symbol	Parameter	Value	Unit
VI	DC Input voltage	20	V
Ι _Ο	Output current	Internally limited	mA
P _D	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	-40 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2.	Thermal	data
----------	---------	------

Symbol	Parameter	TO-92	DPAK	SO-8	Unit
R _{thJC}	Thermal resistance junction-case		8	20	°C/W
R _{thJA}	Thermal resistance junction-ambient	200	100	55	°C/W

4 Application circuit

8/38

5 Electrical characteristics

(Refer to the test circuits, T_A = 25 °C, C_I = 0.1 $\mu\text{F},$ C_O = 2.2 μF unless otherwise specified).

Symbol	Parameter		conditions	Min.	Тур.	Max.	Unit
		I _O = 5 mA, V _I = 4.	7 V	2.646	2.7	2.754	
Vo	Output voltage	$I_0 = 5 \text{ mA}, V_1 = 4.7$	7 V, T _A = -25 to 85 °C	2.592		2.808	V
VI	Operating input voltage	I _O = 250 mA				20	V
I _{out}	Output current limit				300		mA
DVO	Line regulation	$V_{\rm I} = 3.4$ to 20 V, I ₀	₀ = 0.5 mA		3	18	mV
DVO	Load regulation ⁽¹⁾	V _I = 3.6 V, I _O = 0.9	5 to 250 mA		3	18	mV
	Quiescent current	$V_{\rm I} = 3.6$ to 20 V, I ₀	₀ = 0 mA		0.6	1	
I _d	ON mode	V _I = 3.6 to 20 V, I _O = 250 mA			4	6	mA
	OFF mode	V _I = 6 V	V ₁ = 6 V		50	100	μA
			f = 120 Hz		74		
SVR	Supply voltage rejection	$I_0 = 5 \text{ mA}$ $V_1 = 4.6 \pm 1 \text{ V}$	f = 1 kHz		71		dB
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100	(Hz		50		μV
V	Dropout voltage ⁽¹⁾	I _O = 250 mA			0.4	0.6	V
V _d	Diopout voltage V	I _O = 250 mA, T _A =	-40 to 125 °C			0.8	V
V _{IL}	Control input logic low	T _A = -40 to 125 °C				0.8	V
V_{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
I _I	Control input current	$V_{I} = 6 V, V_{C} = 6 V$			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 V	/, I _O = 0 to 250 mA	2	10		μF

Table 3. L4931Cxx27 electrical ch	aracteristics
-----------------------------------	---------------

Symbol	Parameter	Test c	onditions	Min.	Тур.	Max.	Unit
V		$I_0 = 5 \text{ mA}, V_1 = 4.7$	V, T _A = 25 °C	2.646	2.7	2.754	V
Vo	Output voltage	I _O = 5 mA, V _I = 4.7	V	2.592		2.808	v
VI	Operating input voltage	I _O = 250 mA				20	V
I _{out}	Output current limit	T _A = 25 °C			300		mA
ΔV_{O}	Line regulation	$V_{\rm I} = 3.4$ to 20 V, $I_{\rm O}$	= 0.5 mA			20	mV
ΔV_O	Load regulation	V _I = 3.6 V, I _O = 0.5	to 250 mA			38	mV
	Quiescent current	$V_{\rm I}$ = 3.6 to 20 V, $I_{\rm O}$	= 0 mA			1	
I _d ON mode	V _I = 3.6 to 20 V, I _O = 250 mA				6	6 mA	
	OFF mode	V _I = 6 V	V _I = 6 V			100	μA
		$I_{O} = 5 \text{ mA}$	f = 120 Hz		74		
SVR	Supply voltage rejection	$V_{I} = 4.6 \pm 1 \text{ V}$	f = 1 kHz		71		dB
		T _A = 25 °C	f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 k	Hz, T _A = 25 °C		50		μV
M	Dranautualtana	I _O = 250 mA, T _A =	25 °C		0.4	0.6	V
V _d	Dropout voltage	I _O = 250 mA				0.82	V
V _{IL}	Control input logic low					0.82	V
V _{IH}	Control input logic high						V
I	Control input current	$V_{I} = 6 V, V_{C} = 6 V,$	V _I = 6 V, V _C = 6 V, T _A = 25 °C		10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, T _A = 25 °C	I _O = 0 to 250 mA,	2	10		μF

Table 4. L4931Cxx27-TRY (automotive-grade) electrical characteristics

L4931

Symbol	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit
M		$I_0 = 5 \text{ mA}, V_1 = 5.3$	V	3.267	3.3	3.333	V
Vo	Output voltage	$I_0 = 5 \text{ mA}, V_1 = 5.3$	V, T _A =-25 to 85 °C	3.234		3.366	v
VI	Operating input voltage	l _O = 250 mA				20	V
I _{out}	Output current limit				300		mA
ΔV_{O}	Line regulation	$V_{I} = 4$ to 20 V, $I_{O} =$	0.5 mA		3	15	mV
ΔV_O	Load regulation ⁽¹⁾	V _I = 4.2 V, I _O = 0.5	to 250 mA		3	15	mV
	Quiescent current	$V_{\rm I} = 4.2 \text{ to } 20 \text{ V}, \text{ I}_{\rm O}$	= 0 mA		0.6	1	
۱ _d	ON mode	V _I = 4.2 to 20 V, I _O = 250 mA			4	6	mA
	OFF mode	V _I = 6 V			50	100	μA
			f = 120 Hz		73		
SVR	Supply voltage rejection	I _O = 5 mA V _I = 5.2 ± 1 V	f = 1 kHz		70		dB
		1 - 0.2 - 1 1	f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kH	Hz		50		μV
V	Dropout voltage ⁽¹⁾	l _O = 250 mA			0.4	0.6	V
V _d	$I_{O} = 250 \text{ mA}, T_{A} = -40 \text{ to } 125 \text{ °C}$	40 to 125 °C			0.8	V	
V _{IL}	Control input logic low	$T_{A} = -40$ to 125 °C	T _A = -40 to 125 °C			0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
I	Control input current	$V_{I} = 6 V, V_{C} = 6 V$			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω ,	I _O = 0 to 250 mA	2	10		μF

Table 5, L4931ABxx33	electrical characteristics

Symbol	Parameter	Test c	onditions	Min.	Тур.	Max.	Unit
M	Output voltogo	I _O = 5 mA, V _I = 5.3	V	3.234	3.3	3.366	V
Vo	Output voltage	I _O = 5 mA, V _I = 5.3	V, T _A =-25 to 85 °C	3.168		3.432	V
VI	Operating input voltage	I _O = 250 mA				20	V
I _{out}	Output current limit				300		mA
ΔV_O	Line regulation	$V_{I} = 4.1$ to 20 V, I_{O}	= 0.5 mA		3	18	mV
ΔV_{O}	Load regulation ⁽¹⁾	V _I = 4.3 V, I _O = 0.5	to 250 mA		3	18	mV
	Quiescent current	$V_{I} = 4.3 \text{ to } 20 \text{ V}, I_{O} = 0 \text{ mA}$			0.6	1	
I _d	ON mode	V_{I} = 4.3 to 20 V, I_{O}	$V_{\rm I}$ = 4.3 to 20 V, I _O = 250 mA		4	6	mA
	OFF mode	V _I = 6 V	$V_1 = 6 V$		50	100	μA
		$I_{O} = 5 \text{ mA}$ $V_{I} = 5.3 \pm 1 \text{ V}$	f = 120 Hz		73		
SVR	Supply voltage rejection		f = 1 kHz		70		dB
		V = 0.0 ± 1 V	f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 k	Hz		50		μV
.,		l _O = 250 mA			0.4	0.6	V
V _d	Dropout voltage ⁽¹⁾	I _O = 250 mA, T _A = -	40 to 125°C			0.8	V
VIL	Control input logic low	T _A = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
l	Control input current	$V_{I} = 6 V, V_{C} = 6 V$	$V_{I} = 6 V, V_{C} = 6 V$		10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω,	I _O = 0 to 250 mA	2	10		μF

Table 6. L4931Cxx33 electrical characteristics

(Refer to the test circuits, T_A = -40 to 125 °C, C_I = 0.1 μ F, C_O = 2.2 μ F unless otherwise specified).

Symbol	Parameter	Test o	conditions	Min.	Тур.	Max.	Unit
V	Output voltogo	I _O = 5 mA, V _I = 5.3	3 V, T _A = 25 °C	3.234	3.3	3.366	V
Vo	Output voltage	I _O = 5 mA, V _I = 5.3	3 V	3.168		3.432	v
VI	Operating input voltage	I _O = 250 mA				20	V
I _{out}	Output current limit	T _A = 25 °C			300		mA
ΔV_O	Line regulation	$V_{\rm I} = 4.1$ to 20 V, $I_{\rm C}$	₀ = 0.5 mA			20	mV
ΔV_{O}	Load regulation	V _I = 4.3 V, I _O = 0.5	5 to 250 mA			38	mV
	Quiescent current	$V_{I} = 4.3 \text{ to } 20 \text{ V}, I_{O} = 0 \text{ mA}$				1	
I _d	ON mode	$V_{\rm I}$ = 4.3 to 20 V, I _C	V_{I} = 4.3 to 20 V, I_{O} = 250 mA			6	mA
	OFF mode	V _I = 6 V	V _I = 6 V			100	μA
		I _O = 5 mA	f = 120 Hz		73		
SVR	Supply voltage rejection	$V_{I} = 5.3 \pm 1 \text{ V}$	f = 1 kHz		70		dB
		T _A = 25 °C	f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 k	κHz, T _A = 25 °C		50		μV
N	Dranautwaltana	I _O = 250 mA, T _A =	25 °C		0.4	0.6	V
V _d	Dropout voltage	I _O = 250 mA				0.82	V
V _{IL}	Control input logic low					0.82	V
V _{IH}	Control input logic high						V
lı	Control input current	$V_{I} = 6 V, V_{C} = 6 V,$	V _I = 6 V, V _C = 6 V, T _A = 25 °C		10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω T _A = 25 °C	, I _O = 0 to 250 mA,	2	10		μF

Table 7. L4931Cxx33-TRY (automotive-grade) electrical characteristics

Symbol	Parameter	Test c	onditions	Min.	Тур.	Max.	Unit
V	Output voltogo	I _O = 5 mA, V _I = 5.5	V	3.465	3.5	3.535	V
Vo	Output voltage	I _O = 5 mA, V _I = 5.5	V, T _A =-25 to 85 °C	3.43		3.57	V
VI	Operating input voltage	I _O = 250 mA	I _O = 250 mA			20	V
I _{out}	Output current limit				300		mA
ΔV_{O}	Line regulation	$V_{\rm I}$ = 4.2 to 20 V, $I_{\rm O}$	= 0.5 mA		3	15	mV
ΔV_{O}	Load regulation ⁽¹⁾	V _I = 4.4 V, I _O = 0.5	to 250 mA		3	15	mV
	Quiescent current	$V_{\rm I} = 4.4$ to 20 V, $I_{\rm O}$	$V_{I} = 4.4$ to 20 V, $I_{O} = 0$ mA		0.6	1	
I _d	ON mode	$V_{\rm I} = 4.4$ to 20 V, $I_{\rm O} = 250$ mA			4	6	mA
	OFF mode	V ₁ = 6 V			50	100	μA
	Supply voltage rejection	$I_{O} = 5 \text{ mA}$ $V_{I} = 5.4 \pm 1 \text{ V}$	f = 120 Hz		73		
SVR			f = 1 kHz		70		dB
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 k	Hz		50		μV
M	Drep out volto de (1)	I _O = 250 mA			0.4	0.6	V
V _d	Dropout voltage ⁽¹⁾	$I_{O} = 250 \text{ mA}, T_{A} = -$	$I_{O} = 250 \text{ mA}, T_{A} = -40 \text{ to } 125 \text{ °C}$			0.8	V
V _{IL}	Control input logic low	$T_A = -40$ to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C	T _A = -40 to 125 °C				V
I _I	Control input current	$V_{I} = 6 V, V_{C} = 6 V$			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω,	$I_{O} = 0$ to 250 mA	2	10		μF

Table 8. L4931ABxx35 electrical characteristics

Symbol	Parameter	Test c	onditions	Min.	Тур.	Max.	Unit
M	Output voltogo	I _O = 5 mA, V _I = 5.5	V	3.43	3.5	3.57	V
Vo	Output voltage	I _O = 5 mA, V _I = 5.5	V, T _A =-25 to 85 °C	3.36		3.64	V
VI	Operating input voltage	I _O = 250 mA	I _O = 250 mA			20	V
I _{out}	Output current limit				300		mA
ΔV_{O}	Line regulation	$V_{\rm I}$ = 4.3 to 20 V, $I_{\rm O}$	= 0.5 mA		3	18	mV
ΔV_{O}	Load regulation ⁽¹⁾	V _I = 4.5 V, I _O = 0.5	to 250 mA		3	18	mV
	Quiescent current	$V_{\rm I}$ = 4.5 to 20 V, $I_{\rm O}$	V _I = 4.5 to 20 V, I _O = 0 mA		0.6	1	
I _d	ON mode	$V_{I} = 4.5 \text{ to } 20 \text{ V}, \text{ I}_{O} = 250 \text{ mA}$			4	6	mA
	OFF mode	V _I = 6 V	V ₁ = 6 V		50	100	μA
		I _O = 5 mA V _I = 5.5 ± 1 V	f = 120 Hz		73		
SVR	Supply voltage rejection		f = 1 kHz		70		dB
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kl	Hz		50		μV
.,	D (1)	l _O = 250 mA			0.4	0.6	V
V _d	Dropout voltage ⁽¹⁾	I _O = 250 mA, T _A = -	I _O = 250 mA, T _A = -40 to 125 °C			0.8	V
V _{IL}	Control input logic low	T _A = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
I _I	Control input current	$V_{1} = 6 V, V_{C} = 6 V$			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω,	I _O = 0 to 250 mA	2	10		μF

Table 9	1 4931Cxx35	electrical	characteristics
Table 3.		CIECUICAI	characteristics

Symbol	Parameter	Test o	onditions	Min.	Тур.	Max.	Unit
N/	Output valtage	I _O = 5 mA, V _I = 7 \	/	4.95	5	5.05	V
Vo	Output voltage	I _O = 5 mA, V _I = 7 \	/, T _A =-25 to 85 °C	4.9		5.1	V
VI	Operating input voltage	I _O = 250 mA				20	V
I _{out}	Output current limit				300		mA
ΔV_{O}	Line regulation	$V_{\rm I} = 5.8$ to 20 V, $I_{\rm C}$	= 0.5 mA		3.5	17.5	mV
ΔV_{O}	Load regulation ⁽¹⁾	$V_{\rm I} = 6 \text{ V}, \text{ I}_{\rm O} = 0.5 \text{ to}$	o 250 mA		3	15	mV
Quiescent current		$V_{\rm I} = 6 \text{ to } 20 \text{ V}, \text{ I}_{\rm O} =$	$V_{I} = 6 \text{ to } 20 \text{ V}, I_{O} = 0 \text{ mA}$		0.6	1	
I _d	ON mode	$V_{I} = 6 \text{ to } 20 \text{ V}, I_{O} = 250 \text{ mA}$			4	6	mA
	OFF mode	V ₁ = 6 V			50	100	μA
	Supply voltage rejection	$I_{O} = 5 \text{ mA}$ $V_{I} = 7 \pm 1 \text{ V}$	f = 120 Hz		70		
SVR			f = 1 kHz		67		dB
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 k	:Hz		50		μV
M	Dropout voltage ⁽¹⁾	I _O = 250 mA			0.4	0.6	V
V _d	Dropout voltage V	$I_{O} = 250 \text{ mA}, T_{A} = -40 \text{ to } 125 \text{ °C}$				0.8	V
V _{IL}	Control input logic low	T _A = -40 to 125 °C				0.8	V
V_{IH}	Control input logic high	T _A = -40 to 125 °C	T _A = -40 to 125 °C				V
I _I	Control input current	$V_{I} = 6 V, V_{C} = 6 V$	$V_{I} = 6 V, V_{C} = 6 V$		10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω	, I _O = 0 to 250 mA	2	10		μF

Table 10. L4931ABxx50 electrical characteristics

Symbol	Parameter	Test	conditions	Min.	Тур.	Max.	Unit
V	Output voltage	I _O = 5 mA, V _I = 7 V	I _O = 5 mA, V _I = 7 V		5	5.1	V
Vo	Output voltage	$I_0 = 5 \text{ mA}, V_1 = 7 V_1$	$_{O}$ = 5 mA, V _I = 7 V, T _A =-25 to 85 °C			5.2	v
VI	Operating input voltage	l _O = 250 mA				20	V
I _{out}	Output current limit				300		mA
ΔV_{O}	Line regulation	$V_{\rm I} = 5.8$ to 20 V, $I_{\rm C}$	₀ = 0.5 mA		3.5	17.5	mV
ΔV_{O}	Load regulation ⁽¹⁾	$V_{\rm I} = 6 \text{ V}, \text{ I}_{\rm O} = 0.5 \text{ t}$	o 250 mA		3	15	mV
	Quiescent current	t current $V_1 = 6$ to 20 V, $I_0 = 0$ mA			0.6	1	
I _d	ON mode	$V_{I} = 6 \text{ to } 20 \text{ V}, I_{O} = 250 \text{ mA}$			4	6	mA
	OFF mode	V _I = 6 V	V ₁ = 6 V		50	100	μA
		I _O = 5 mA V _I = 7 ± 1 V	f = 120 Hz		70		
SVR	Supply voltage rejection		f = 1 kHz		67		dB
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 H	κHz		50		μV
V	Dropout voltage ⁽¹⁾	I _O = 250 mA			0.4	0.6	V
V _d	Dropout voltage V	$I_{O} = 250 \text{ mA}, T_{A} = -40 \text{ to } 125 \text{ °C}$				0.8	V
V _{IL}	Control input logic low	$T_{A} = -40$ to 125 °C				0.8	V
V_{IH}	Control input logic high	$T_{A} = -40$ to 125 °C	T _A = -40 to 125 °C				V
I	Control input current	$V_{I} = 6 V, V_{C} = 6 V$			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω	, I _O = 0 to 250 mA	2	10		μF

Table 11	L4931Cxx50	electrical	characteristics
	LACCIONNOC	cicotiioui	

Symbol	Parameter	Test c	onditions	Min.	Тур.	Max.	Unit
V	Output voltogo	I _O = 5 mA, V _I = 10	I _O = 5 mA, V _I = 10 V		8	8.08	v
Vo	Output voltage	$I_0 = 5 \text{ mA}, V_1 = 10$	V, T _A =-25 to 85 °C	7.84		8.16	v
VI	Operating input voltage	I _O = 250 mA	I _O = 250 mA			20	V
I _{out}	Output current limit				300		mA
ΔV_{O}	Line regulation	$V_{\rm I}$ = 8.8 to 20 V, $I_{\rm O}$	= 0.5 mA		4	20	mV
ΔV_{O}	Load regulation ⁽¹⁾	$V_{\rm I} = 9 \text{ V}, \text{ I}_{\rm O} = 0.5 \text{ to}$	o 250 mA		3	15	mV
	Quiescent current	$V_{\rm I} = 9$ to 20 V, $I_{\rm O} =$	$V_{I} = 9 \text{ to } 20 \text{ V}, I_{O} = 0 \text{ mA}$		0.8	1.6	~ ^
I _d	ON mode	$V_{I} = 9 \text{ to } 20 \text{ V}, I_{O} = 250 \text{ mA}$			4.5	7	mA
	OFF mode	V _I = 6 V	V ₁ = 6 V		70	140	μA
	Supply voltage rejection	I _O = 5 mA V _I = 10 ± 1 V	f = 120 Hz		67		
SVR			f = 1 kHz		64		dB
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 k	Hz		50		μV
M	Dropout voltage ⁽¹⁾	I _O = 250 mA			0.4	0.6	V
V _d	Dropout voltage V	$I_{O} = 250 \text{ mA}, T_{A} = -40 \text{ to } 125 \text{ °C}$				0.8	V
V _{IL}	Control input logic low	T _A = -40 to 125 °C				0.8	V
V_{IH}	Control input logic high	$T_{A} = -40$ to 125 °C	T _A = -40 to 125 °C				V
l	Control input current	$V_{I} = 6 V, V_{C} = 6 V$	$V_{I} = 6 V, V_{C} = 6 V$		10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω	I _O = 0 to 250 mA	2	10		μF

Table 12. L4931ABxx80 electrical characteristics

Symbol	Parameter	Test c	onditions	Min.	Тур.	Max.	Unit
M	Output voltogo	$I_0 = 5 \text{ mA}, V_1 = 10$	V	7.84	8	8.16	V
Vo	Output voltage	$I_0 = 5 \text{ mA}, V_1 = 10$	V, T _A =-25 to 85 °C	7.68		8.32	V
VI	Operating input voltage	I _O = 250 mA				20	V
I _{out}	Output current limit				300		mA
ΔV_{O}	Line regulation	$V_{\rm I}$ = 8.9 to 20 V, $I_{\rm O}$	= 0.5 mA		4	24	mV
ΔV_{O}	Load regulation ⁽¹⁾	V _I = 9.1 V, I _O = 0.5	to 250 mA		3	18	mV
	Quiescent current	$V_{\rm I} = 9.1$ to 20 V, $I_{\rm O}$	$V_{I} = 9.1$ to 20 V, $I_{O} = 0$ mA		0.8	1.6	
۱ _d	ON mode	$V_{I} = 9.1$ to 20 V, $I_{O} = 250$ mA			4.5	7	mA
	OFF mode	V _I = 6 V	V ₁ = 6 V		70	140	μA
		$I_{O} = 5 \text{ mA}$ $V_{I} = 10.1 \pm 1 \text{ V}$	f = 120 Hz		67		
SVR	Supply voltage rejection		f = 1 kHz		64		dB
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kl	Hz		50		μV
		l _O = 250 mA			0.4	0.6	V
V _d	Dropout voltage ⁽¹⁾	I _O = 250 mA, T _A = -40 to 125 °C				0.8	V
V _{IL}	Control input logic low	$T_A = -40$ to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C	T _A = -40 to 125 °C				V
l _l	Control input current	$V_{I} = 6 V, V_{C} = 6 V$			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω,	I _O = 0 to 250 mA	2	10		μF

Table 13	1 4931Cxx80	electrical	characteristics
		ciccuicai	characteristics

Symbol	Parameter	Test c	onditions	Min.	Тур.	Max.	Unit
M	Output voltogo	I _O = 5 mA, V _I = 14	V	11.88	12	12.12	V
Vo	Output voltage	$I_0 = 5 \text{ mA}, V_1 = 14$	V, T _A =-25 to 85 °C	11.76		12.24	V
VI	Operating input voltage	I _O = 250 mA	I _O = 250 mA			20	V
I _{out}	Output current limit				300		mA
ΔV_{O}	Line regulation	V _I = 12.8 to 20 V, I	_O = 0.5 mA		4	20	mV
ΔV_{O}	Load regulation ⁽¹⁾	V _I = 13 V, I _O = 0.5	V _I = 13 V, I _O = 0.5 to 250 mA		3	15	mV
	Quiescent current	$V_{I} = 13 \text{ to } 20 \text{ V}, I_{O} = 0 \text{ mA}$			0.8	1.6	
۱ _d	I _d ON mode	$V_{I} = 13 \text{ to } 20 \text{ V}, I_{O} = 250 \text{ mA}$			4.5	7	mA
	OFF mode	V _I = 6 V	V ₁ = 6 V		90	180	μA
	Supply voltage rejection	I _O = 5 mA V _I = 14 ± 1 V	f = 120 Hz		64		
SVR			f = 1 kHz		61		dB
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 k	Hz		50		μV
N/	Dropout voltage ⁽¹⁾	I _O = 250 mA			0.4	0.6	V
V _d	Dropout voltage V	I _O = 250 mA, T _A = -	40 to 125 °C			0.8	V
V _{IL}	Control input logic low	T _A = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
I _I	Control input current	$V_{I} = 6 V, V_{C} = 6 V$	$V_{I} = 6 V, V_{C} = 6 V$		10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω,	I _O = 0 to 250 mA	2	10		μF

Table 14. L4931ABxx120 electrical characteristics

Symbol	Parameter	Test co	Min.	Тур.	Max.	Unit	
V	Output voltage	I _O = 5 mA, V _I = 14 V		11.76	12	12.24	V
Vo	Output voltage	I _O = 5 mA, V _I = 14 V	V, T _A =-25 to 85 °C	11.52		12.48	v
VI	Operating input voltage	I _O = 250 mA				20	V
I _{out}	Output current limit						mA
ΔV_{O}	Line regulation	$V_{\rm I}$ = 12.9 to 20 V, I _C	₀ = 0.5 mA		4	24	mV
ΔV_{O}	Load regulation ⁽¹⁾	V _I = 13.1 V, I _O = 0.5	5 to 250 mA		3	18	mV
	Quiescent current	$V_{\rm I}$ = 13.1 to 20 V, I _C	₀ = 0 mA		0.8	1.6	
۱ _d	ON mode	V _I = 13.1 to 20 V, I _O = 250 mA			4.5	7	mA
	OFF mode	V _I = 6 V			90	180	μA
	Supply voltage rejection	$I_{O} = 5 \text{ mA}$ V _I = 14.1 ± 1 V	f = 120 Hz		64		dB
SVR			f = 1 kHz		61		
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kH	Hz		50		μV
V	Dropout voltage ⁽¹⁾	I _O = 250 mA			0.4	0.6	V
V _d	Dropout voltage V	$I_0 = 250 \text{ mA}, T_A = -4$	I _O = 250 mA, T _A = -40 to 125 °C			0.8	V
V _{IL}	Control input logic low	$T_{A} = -40$ to 125 °C	T _A = -40 to 125 °C			0.8	V
V _{IH}	Control input logic high	$T_{A} = -40$ to 125 °C	2			V	
I _I	Control input current	$V_{I} = 6 V, V_{C} = 6 V$		10		μA	
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω,	I _O = 0 to 250 mA	2	10		μF

Table 15. L4931Cxx120 electrical characteristics
--

6 Typical application

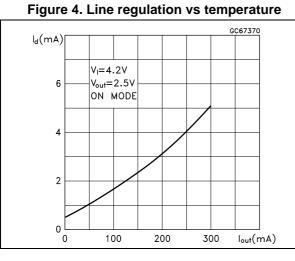


Figure 6. Supply current vs input voltage

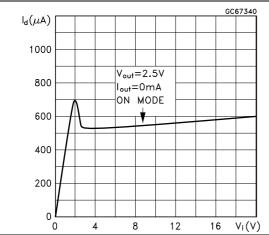
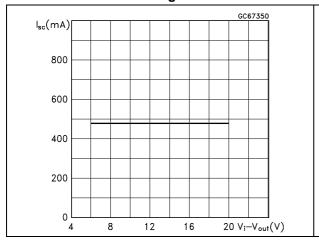
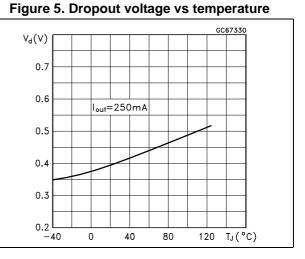




Figure 8. Short-circuit current vs dropout voltage

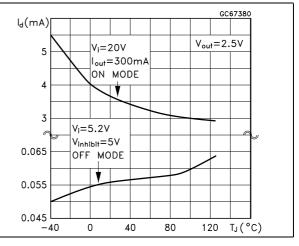
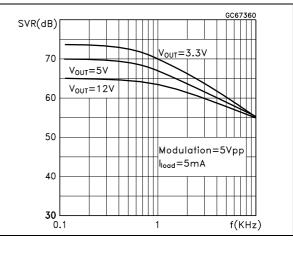
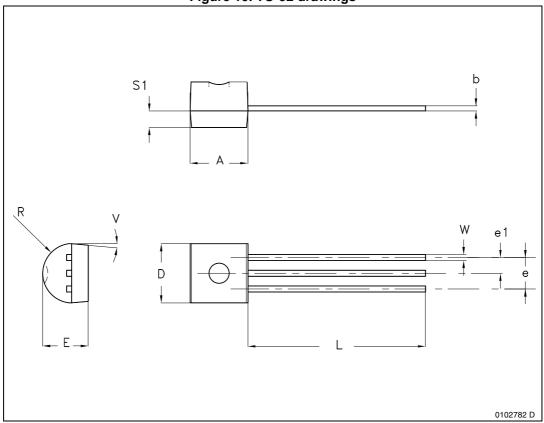



Figure 9. SVR vs input voltage signal frequency

7 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Dim.	mm					
	Min.	Тур.	Max.			
А	4.32		4.95			
b	0.36		0.51			
D	4.45		4.95			
E	3.30		3.94			
е	2.41		2.67			
e1	1.14		1.40			
L	12.70		15.49			
R	2.16		2.41			
S1	0.92		1.52			
W	0.41		0.56			
V		5°				

Table 16. TO-92 mechanical data

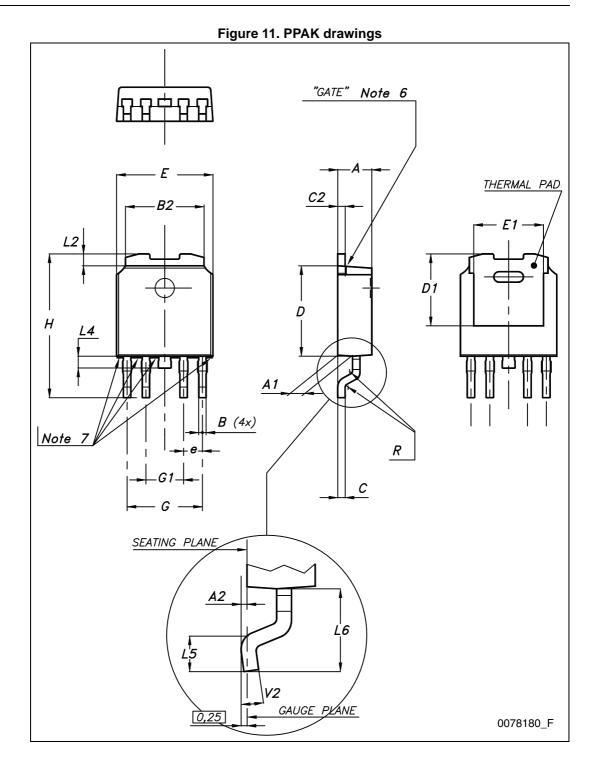
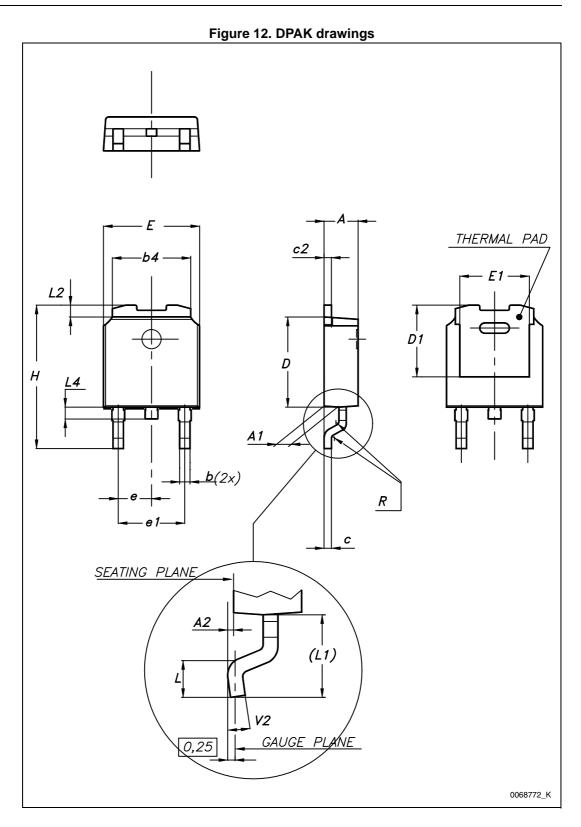


Table 17. PPAK mechanical data							
Dim.	mm						
Dini.	Min.	Тур.	Max.				
А	2.2		2.4				
A1	0.9		1.1				
A2	0.03		0.23				
В	0.4		0.6				
B2	5.2		5.4				
С	0.45		0.6				
C2	0.48		0.6				
D	6		6.2				
D1		5.1					
E	6.4		6.6				
E1		4.7					
е		1.27					
G	4.9		5.25				
G1	2.38		2.7				
Н	9.35		10.1				
L2		0.8	1				
L4	0.6		1				
L5	1						
L6		2.8					
R		0.20					
V2	0°		8°				

Table 17. PPAK mechanical data



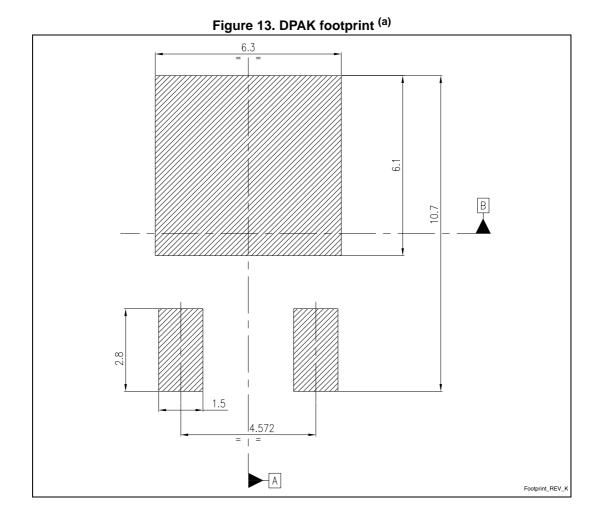
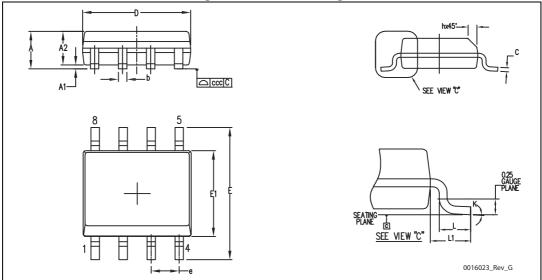

Dim	mm				
Dim.	Min.	Тур.	Max.		
А	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1		5.10			
E	6.40		6.60		
E1		4.70			
е		2.28			
e1	4.40		4.60		
Н	9.35		10.10		
L	1.00		1.50		
(L1)		2.80			
L2		0.80			
L4	0.60		1.00		
R		0.20			
V2	0°		8°		

Table 18.DPAK mechanical data


a. All dimensions are in millimeters.

Dim.	mm					
	Min.	Тур.	Max.			
A			1.75			
A1	0.10		0.25			
A2	1.25					
b	0.28		0.48			
с	0.17		0.23			
D	4.80	4.90	5.00			
E	5.80	6.00	6.20			
E1	3.80	3.90	4.00			
е		1.27				
h	0.25		0.50			
L	0.40		1.27			
L1		1.04				
k	0°		8°			
ссс			0.10			

Table 19. SO-8 mechanical data

Figure 14. SO-8 drawings

8 Packaging mechanical data

Table 20. TO-92 tape and reel mechanical data							
Dim.	mm						
	Min.	Тур.	Max.				
A1		4.80					
Т		3.80					
T1		1.60					
T2		2.30					
d		0.48					
Po	12.5		12.9				
P2	5.65		7.05				
F1, F2	2.44	2.54	2.94				
delta H		±2					
W	17.5	18.00	19				
WO	5.7		6.3				
W1	8.5		9.25				
W2		0.50					
Н		18.50	18.70				
H0	15.50		16.50				
H1		25.00					
D0	3.8		4.2				
t		0.90					
L1		3					
delta P		±1					
u		50					
Φ1		360					
Ф2		30					

Table 20	TO-92 ta	be and ree	l mechanical	data
	10-32 iu	be and ree	meenamea	uata

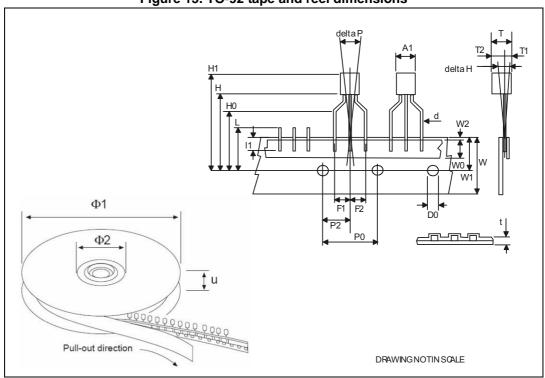
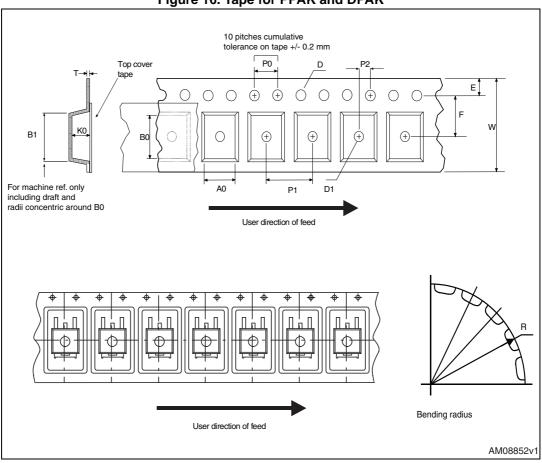


Figure 15. TO-92 tape and reel dimensions


32/38

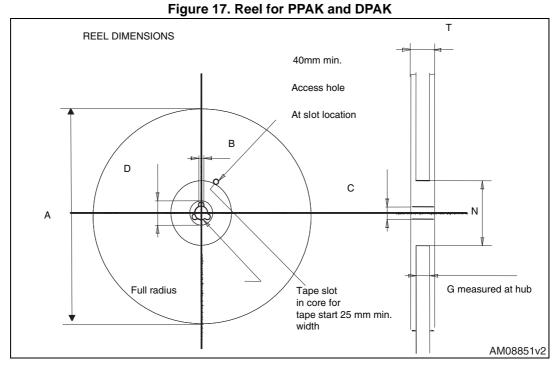
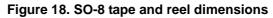
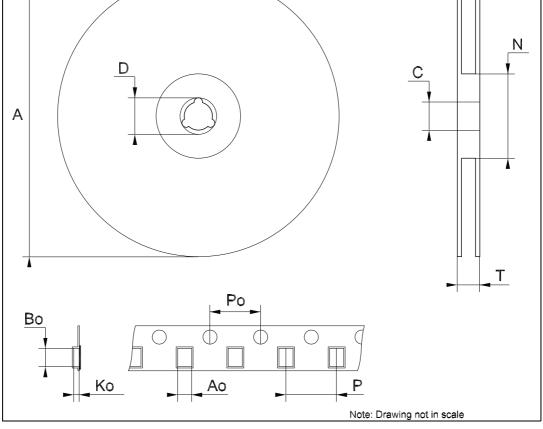

<u> </u>	Таре			Reel					
Dim.	mm		Dim.	mm					
	Min.	Max.		Min.	Max.				
A0	6.8	7	А		330				
B0	10.4	10.6	В	1.5					
B1		12.1	С	12.8	13.2				
D	1.5	1.6	D	20.2					
D1	1.5		G	16.4	18.4				
E	1.65	1.85	Ν	50					
F	7.4	7.6	Т		22.4				
K0	2.55	2.75							
P0	3.9	4.1		Base qty.	2500				
P1	7.9	8.1		Bulk qty.	2500				
P2	1.9	2.1							
R	40								
Т	0.25	0.35							
W	15.7	16.3							

Table 21. PPAK and DPAK tape and reel mechanical data







Dim.		mm					
	Min.	Тур.	Max.				
А			330				
С	12.8		13.2				
D	20.2						
Ν	60						
Т			22.4				
Ao	8.1		8.5				
Bo	5.5		5.9				
Ko	2.1		2.3				
Po	3.9		4.1				
Р	7.9		8.1				

9 Ordering information

Packages						
TO-92	РРАК	DPAK SO-8		SO-8 (automotive-grade)	Output voltage	
			L4931CD27-TR	L4931CD27-TRY	2.7 V	
L4931CZ33-AP		L4931CDT33-TR	L4931CD33-TR	L4931CD33-TRY	3.3 V	
		L4931ABDT33-TR	L4931ABD33-TR		3.3 V	
			L4931CD35-TR		3.5 V	
		L4931ABDT35TR	L4931ABD35-TR		3.5 V	
L4931CZ50-AP	L4931CPT50-TR	L4931CDT50-TR	L4931CD50-TR		5 V	
		L4931ABDT50-TR	L4931ABD50-TR		5 V	
			L4931CD80-TR		8 V	
		L4931ABDT80-TR			8 V	
			L4931CD120-TR		12 V	
			L4931ABD120TR		12 V	

Table 23. Order codes

36/38

10 Revision history

Date	Revision	Changes
21-Jun-2004	11	Document updating.
14-Jun-2006	12	Order codes updated.
31-Jan-2008	13	Added: <i>Table 1</i> and new order codes for Automotive grade products.
20-Feb-2008	14	Modified: Table 23 on page 36.
11-Mar-2008	15	Modified: Table 1 on page 1 and Table 23 on page 36.
15-Jul-2008	16	Modified: Table 1 on page 1 and Table 23 on page 36.
18-Aug-2008	17	Modified: Table 23 on page 36.
30-Oct-2013	18	Changed the L4931ABxx and L4931Cxx to L4931. Updated: Description in cover page. Deleted table1: Device summary. Updated <i>Figure 2: Pin connections (top view)</i> , <i>Table 2: Thermal data</i> , <i>Section 5: Electrical characteristics</i> and <i>Section 7: Package mechanical data</i> . Added <i>Section 8: Packaging mechanical data</i> . Minor text changes.

Table 24. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

38/38

