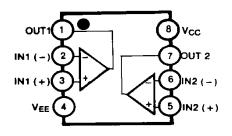
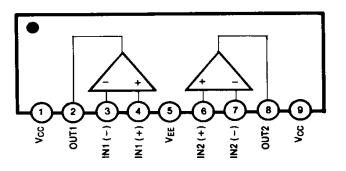
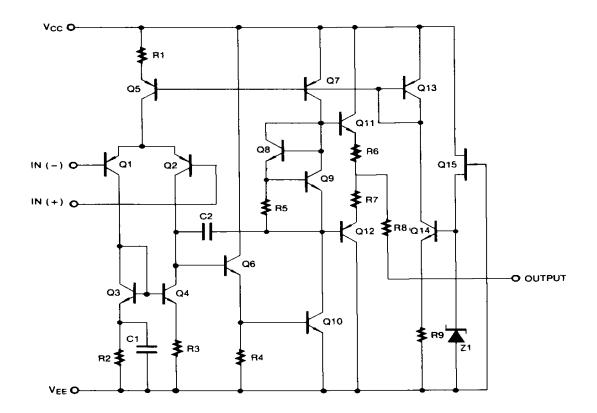

KA4558 Dual Operational Amplifier

Features


- No frequency compensation required.
- No latch up.
- Large common mode and differential voltage range.
- Parameter tracking over temperature range.
- Gain and phase match between amplifiers.
- Internally frequency compensated.
- Low noise input transistors.


Descriptions

The KA4558 is a monolithic integrated circuit designed for dual operational amplifier.


Internal Block Diagram

Schematic Diagram

(One Section Only)

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	±22	V
Differential Input Voltage	VI(DIFF)	30	V
Input Voltage	VI	±15	V
Power Dissipation	PD	400	mW
Operating Temperature Range KA4558 KA4558I	TOPR	0 ~ 70 -40 ~ 85	°C
Storage Temperature Range	TSTG	-65 ~ 150	°C

Electrical Characteristics

(VCC = 15V, VEE = - 15V , TA = 25 °C unless otherwise specified)

Denerseter	0l	Conditions		KA4558/KA4558I				
Parameter	Symbol			Min	Тур	Мах	Unit	
Input Offset Voltage	VIO	Rs≤10KΩ		-	2	6	mV	
	VIO		Note 1	-	-	7.5	mv	
Input Offset Current				-	5	200		
	lio		TA=TA(MAX)	-	-	300	nA	
			TA =TA(MIN)	-	-	300		
Input Bias Current					30	500	nA	
	IBIAS	TA=TA(MAX)		-	-	800		
			TA =TA(MIN)		-	800		
Large Signal Gy VO(P-		VO(P-P)= ±1	0V,RL≤2KΩ	20	200	-	V/mV	
Voltage Gain	0,		Note 1	-	-	-	v/mv	
Common Mode Input Voltage Range	VI(R)			±12	±13	-	V	
	VI(R)		Note 1	-	-	-		
Common Mode Rejection Ratio	CMRR	Rs≤10KΩ		70	90	-	dB	
	CIMICIC		Note 1	-	-	-		
Supply Voltage Rejection Ratio	PSRR	Rs≤10KΩ		76	90	-	dB	
	FORK		Note 1	76	90	-		
Output Voltage Swing	VO(P-P)	RL≥10KΩ	- Note1	±12	±14	-	V	
	VO(P-P)	RL≥2KΩ	NOLET	±10	±13	-		
Supply Current (Both Amplifiers)				-	3.5	5.8	mA	
	ICC		TA =TA(MAX)	1	-	5.0		
			TA =TA(MIN)	-	-	6.7		
Power Consumption (Both Amplifiers)				1	70	170		
	PC	$T_{A} = T_{A}(MAX)$ $T_{a} = T_{A}(MIN)$		-	-	150	mW	
				-	-	200		
Slew Rate (Note2)	SR	VI =10V, RL≥2KΩ Cl≤100pF		1.2	-	-	V/µs	
Rise Time (Note2)	TR	VI =20mV, RL≥2KΩ CI≤100pF		-	0.3	-	μs	
Overshoot (Note2)	OS	VI =20mV, RL≥2KΩ CI≤100pF		-	15	-	%	

Note :

 $1. \text{ KA4558}: \text{T}_{A}(\text{MIN}) \leq \text{T}_{A} \leq \text{T}_{A}(\text{MAX}) = 0 \leq \text{T}_{A} \leq 70 \ ^{\circ}\text{C} \ , \text{ KA4558I}: \text{T}_{A}(\text{MIN}) \leq \text{T}_{A} \leq \text{T}_{A}(\text{MAX}) = -40 \leq \text{T}_{A} \leq +85 \ ^{\circ}\text{C}$

2. Guaranteed by design.

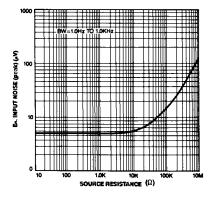


Figure 1. Burst Noise vs Source Resistance

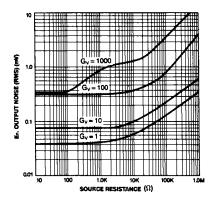


Figure 3. Output Noise vs Source Resistance

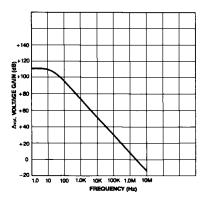


Figure 5. Open Loop Frequency Response

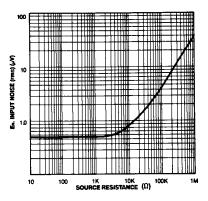


Figure 2. RMS Noise vs Source Resistance

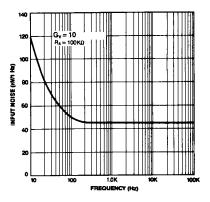


Figure 4. Spectral Noise Density

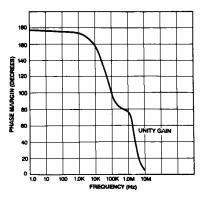


Figure 6. Phase Margin vs Frequency

Typical Performance Characteristics (continued)

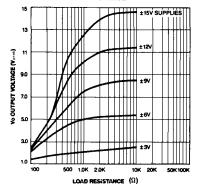


Figure 7. Positive Output Voltage Swing vs Load Resistance

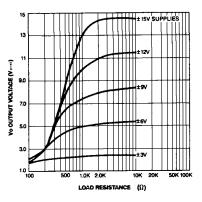


Figure 8. Negative Output Voltage Swing vs Load Resistance

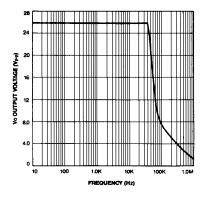
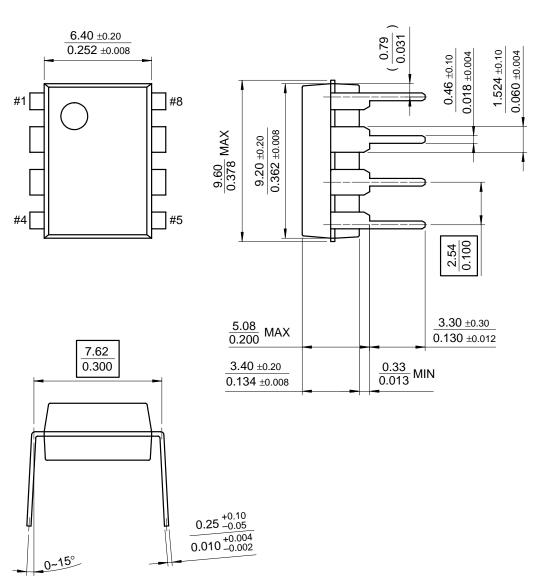
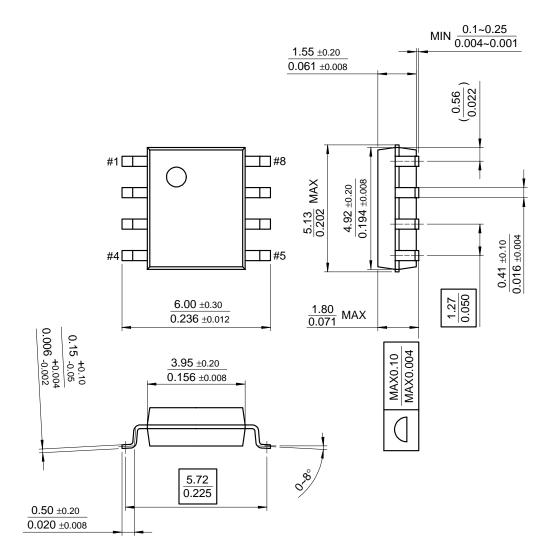



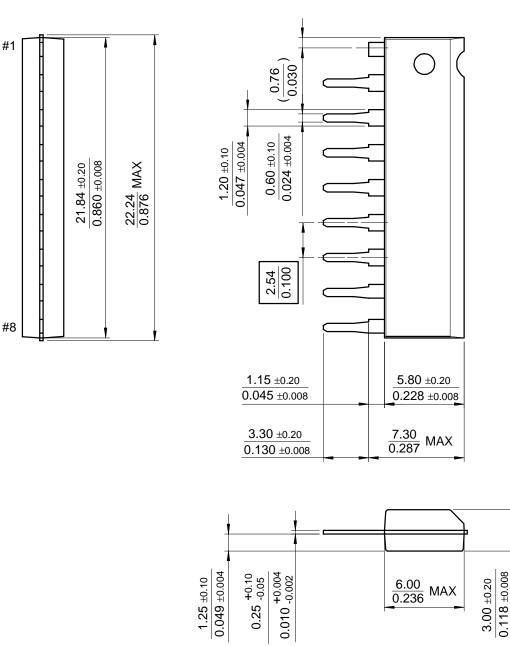
Figure 9. Power Bandwidth (Large Signal Output Swing vs Frequency)

Mechanical Dimensions


Package

8-DIP

Mechanical Dimensions (Continued)


Package

8-SOP

Mechanical Dimensions (Continued)

Package

9-SIP

Ordering Information

Product Number	Package	Operating Temperature		
KA4558	8-DIP			
KA4558D	8-SOP	0 ~ + 70°C		
KA4558S	9-SIP			
KA4558I	8-DIP	-40 ~ + 85°C		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.