

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters

are referenced to Ground lead. (Tambient=25°C unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units
Vds	Maximum drain to source voltage	-0.3	36	V
Vds cont.	Maximum continuous drain to source voltage	-	28	V
Vin	Maximum input voltage	-0.3	6	V
Isd cont.	Max. diode continuous current (limited by thermal dissipation)	_	4.5	Α
	Maximum power dissipation (internally limited by thermal protection)			
Pd	Rth=5°C/W IPS1021	_	25	W
Fu	Rth=40°C/W IPS1021S 1" sqr. footprint	_	3.1	
	Rth=50°C/W IPS1021R 1" sqr. footprint	_	2.5	
	Electrostatic discharge voltage (Human body) C=100pF, R=1500Ω			
	Between drain and source	_	4	
ESD	Other combinations	_	3	kV
E9D	Electrostatic discharge voltage (Machine Model) C=200pF,R=0Ω			KV
	Between drain and source	_	0.5	
	Other combinations	_	0.3	
Tj max.	Max. storage & operating temperature junction temperature	-40	150	°C
Tsoldering	Lead soldering temperature (10 seconds)		300	ç

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
Rth1	Thermal resistance junction to ambient IPS1021 TO-220 free air	50	_	
Rth2	Thermal resistance junction to case IPS1021 TO-220	2.6	_	
Rth1	Thermal resistance junction to ambient IPS1021S D2Pak std. footprint	60	_	
Rth2	Thermal resistance junction to ambient IPS1021S D2Pak 1" sqr. footprint	40	_	°C/W
Rth3	Thermal resistance junction to case IPS1021S D ² Pak	2.6	_	C/VV
Rth1	Thermal resistance junction to ambient IPS1021R D-Pak std. footprint	70		
Rth2	Thermal resistance junction to ambient IPS1021R D-Pak 1" sqr. footprint	50	_	
Rth3	Thermal resistance junction to case IPS1021R D-Pak	2.6	_	

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
VIH	High level input voltage	4.5	5.5	
VIL	Low level input voltage	0	0.5	
lds	Continuous drain current, Tambient=85°C, Tj=125°C, Vin=5V			
	Rth=5°C/W IPS1021	_	13.5	Α
	Rth=40°C/W IPS1021S 1" sqr. footprint	_	4.8	
	Rth=50°C/W IPS1021R 1" sqr. footprint	_	4.3	
Rin	Recommended resistor in series with IN pin to generate a diagnostic	0.5	10	kΩ
Max L	Max. recommended load inductance (including line inductance) (1)	_	20	μH
Max F	Max. frequency (switching losses = conduction losses)		500	Hz
Max t rise	Max. input rising time		1	μs

⁽¹⁾ Higher inductance is possible if maximum load current is limited - see figure 11

Static Electrical Characteristics

Tj=25°C, Vcc=14V (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rds(on)	ON state resistance Tj=25°C	_	20	25	mΩ	Vin=5V. Ids=8A
	ON state resistance Tj=150°C (2)	_	38	48	1112.2	VIII=5V, IUS=6A
ldss1	Drain to source leakage current		0.1	10		Vcc=14V, Tj=25°C
ldss2	Drain to source leakage current		0.2	20	μA	Vcc=28V, Tj=25°C
V clamp1	Drain to source clamp voltage 1	36	39	_		Id=20mA
V clamp2	Drain to source clamp voltage 2	_	40	42	\/	Id=2A
Vin clamp	IN to source pin clamp voltage	5.5	6.5	7.5	V	lin=1mA
Vth	Input threshold voltage	_	1.7	_		Id=10mA

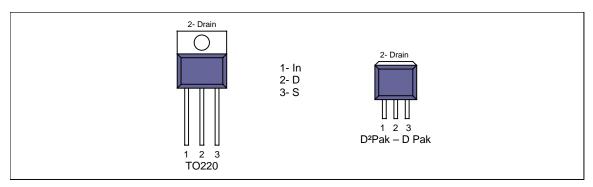
Switching Electrical Characteristics

Vcc=14V, Resistive load=1.5Ω, Rinput=0Ω, Vin=5V, Tj=25°C

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tdon	Turn-on delay time to 20%	10	30	100		
Tr	Rise time 20% to 80%	10	30	60		See figure 2
Tdoff	Turn-off delay time to 80%	40	150	400	μs	See ligure 2
Tf	Fall time 80% to 20%	15	30	60		
Eon + Eoff	Turn on and off energy	_	2	_	mJ	

Protection Characteristics

	101001101101101101								
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions			
Tsd	Over temperature threshold	150(2)	165	_	°C	See figure 1			
Isd	Over current threshold	32	45	58	Α	See figure 1			
OV	Over voltage protection (not active when the device is ON)	34	37	_	V				
Vreset	IN protection reset threshold	_	1.7	_	V				
Treset	Time to reset protection	15(2)	50	200	μs	Vin=0V			


Diagnostic

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
lin, on	ON state IN positive current	15	32	70		Vin=5V
lin, off	OFF state IN positive current	150	230	350	μA	Vin=5V
	(after protection latched)					


(2) Guaranteed by design

Lead Assignments

Functional Block Diagram

IPS1021(S)(R)PbF

All curves are typical values. Operating in the shaded area is not recommended.

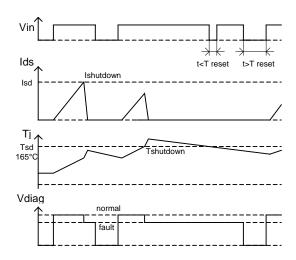


Figure 1 - Timing diagram

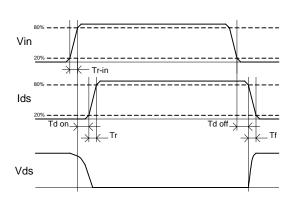


Figure 2 - IN rise time & switching definitions

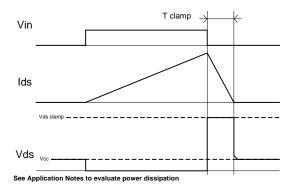


Figure 3 - Active clamp waveforms

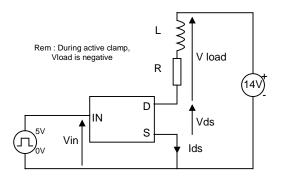


Figure 4 - Active clamp test circuit

IPS1021(S)(R)PbF

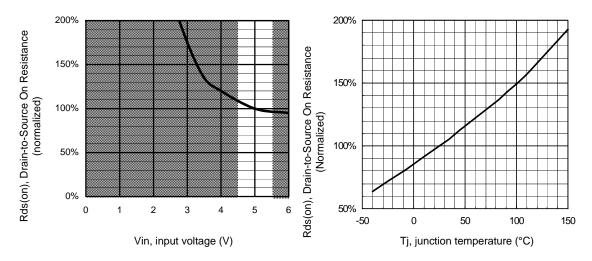


Figure 5 – Normalized Rds(on) (%) Vs Input voltage (V)

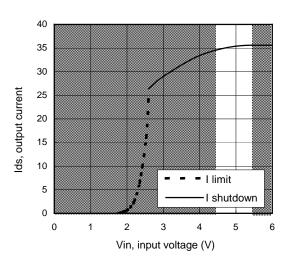


Figure 7 – Current limitation and current shutdown Vs Input voltage (V)

Figure 6 - Normalized Rds(on) (%) Vs Tj (°C)

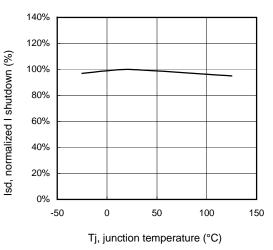
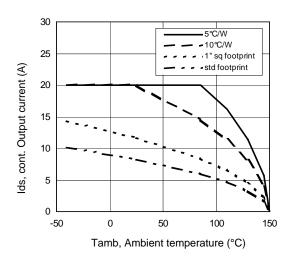



Figure 8 – Normalized I shutdown (%) Vs junction temperature (°C)

50
40
40
40
40
50°C/W 25°C ambient
50°C/W 85°C ambient
50°C/W 40°C ambient
50°C/W 40°C ambient
10
10
100
Protection response time (s)

Figure 9 – Max. continuous output current (A)
Vs Ambient temperature (°C)

Figure 11 – Max. ouput current (A) Vs Inductive load (mH)

Figure 10 – Ids (A) Vs over temperature protection response time (s)

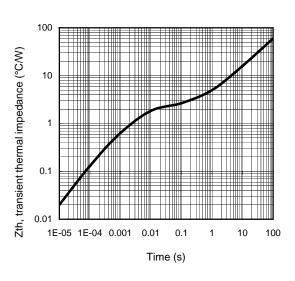
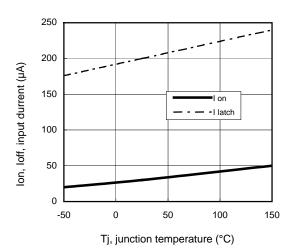
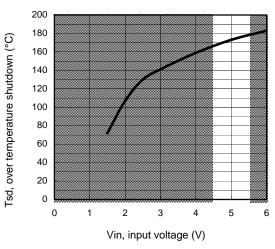
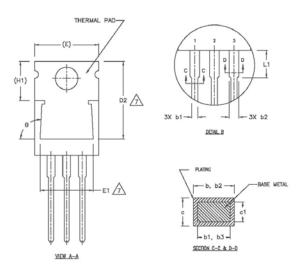



Figure 12 – Transient thermal impedance (°C/W)
Vs time (s)

IPS1021(S)(R)PbF

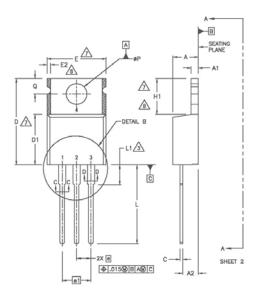
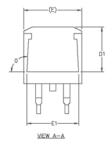
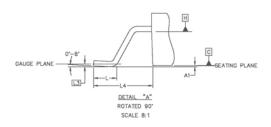
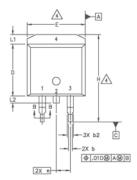

Figure 13 – Input current (μA) On and Off Vs junction temperature (°C)

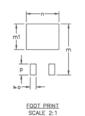
Figure 14 – Over temperature shutdown (°C) Vs input voltage (V)

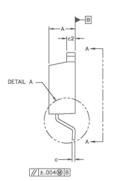
Case Outline - TO-220 AB - Automotive Q100 PbF qualified


SYMBOL	MILLIM	MILLIMETERS		HES	1
	MIN.	MAX.	MIN.	MAX.	NOTES
Α	3.56	4.82	.140	.190	
A1	0.51	1.40	.020	.055	
A2	2.04	2.92	.080	.115	
b	0.38	1.01	.015	.040	
ь1	0.38	0.96	.015	.038	5
b2	1.15	1.77	.045	.070	
b3	1.15	1.73	.045	.068	
с	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	12.19	12.88	.480	.507	7
E	9.66	10.66	.380	.420	4,7
E1	8.38	8.89	.330	.350	7
е	2.54 BSC		.100	BSC	1
e1	5.	08	.200	BSC	-
H1	5.85	6.55	.230	.270	7,8
L	12.70	14.73	.500	.580	
L1	-	6.35	-	.250	3
øP	3.54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	
ø	90"-	-93"	90*-	-93*	1


NOTES:

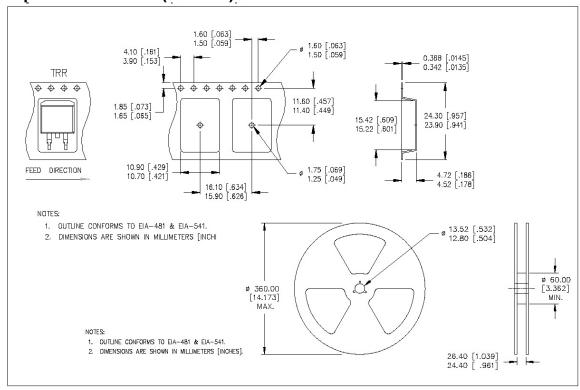

- DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994.
- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].
- LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE, THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION 61 & c1 APPLY TO BASE METAL ONLY. CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- LEADS AND DRAIN ARE PLATED WITH 100% Sn


Case Outline - D²Pak (SMD-220) - Automotive Q100 PbF MSL1 qualified

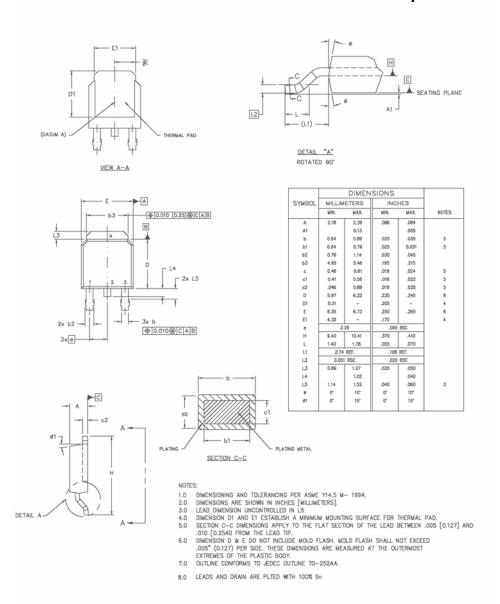


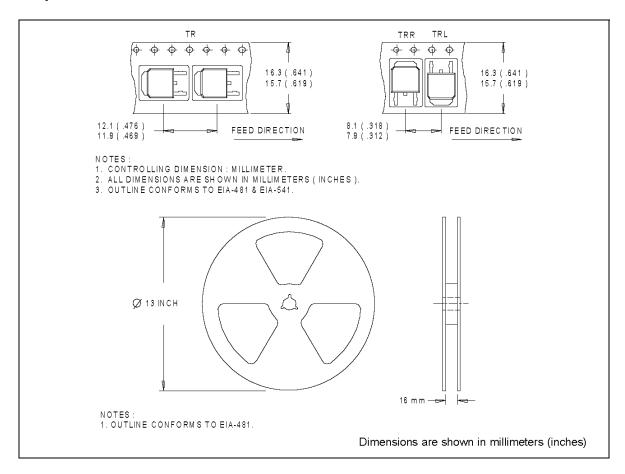
B	MILLIM	ETERS	INC	HES	Ĭ
Ĺ	MIN.	MAX.	MIN.	MAX.	E S
Α	4.06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
b	0.51	0.99	.020	.039	
b1	0.51	0.89	.020	.035	4
b2	1.14	1.78	.045	.070	
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	4
c2	1.14	1.65	.045	.065	
D	8.51	9.65	.335	.380	3
D1	6.86		.270		
Ε	9.65	10.67	.380	.420	3
E1	6.22		.245		
e	2.54	BSC	.100	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1		1.65		.065	
L2	1.27	1.78	.050	.070	
L3	0.25	0.25 BSC		BSC	
L4	4.78	5.28	.188	.208	
m	17.78		.700		
m1	8.89		.350		
n	11.43		.450		
0	2.08		.082		
Р	3.81		.150		
R	0.51	0.71	.020	.028	
θ	90*	93.	90"	93*	
					\Box

DIMENSIONS



NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- 4. DIMENSION b1 AND c1 APPLY TO BASE METAL ONLY.
 - 5. CONTROLLING DIMENSION: INCH.
 - 6. LEADS & DRAIN CONTACT ARE PLATED : 100% Sn


Tape & Reel - D²Pak (SMD220)

Case Outline - D-Pak - Automotive Q100 PbF MSL1 qualified

Tape & Reel - D-Pak

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice.

This product is designed and qualified for the Automotive [Q100] market.

TO220, D2Pak and Dpak is MSL1 qualified.

06/15/2006