IPS021(S) International Intern

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are referenced to SOURCE lead. ($T_{Ambient} = 25^{\circ}C$ unless otherwise specified). PCB mounting uses the standard footprint with 70 μ m copper thickness.

Symbol	Parameter	Min.	Max.	Units	Test Conditions
V _{ds}	Maximum drain to source voltage	_	47		
Vin	Maximum input voltage	-0.3	7	V	
lin, max	Maximum IN current	-10	+10	mA	
Isd cont.	Diode max. continous current (1)				
	(rth=62°C/W) IPS021	_	2.8		
	(rth=10°C/W) IPS021	_	8	Α	
	(rth=80°C/W) IPS021S		2.2		
Isd pulsed	Diode max. pulsed current (1)	_	10A		
Pd	Maximum power dissipation ⁽¹⁾				
	(rth=62°C/W) IPS021	_	2	w	
	(rth=80°C/W) IPS021S	_	1.56		
ESD1	Electrostatic discharge voltage (Human Body)	_	4		C=100pF, R=1500Ω,
ESD2	Electrostatic discharge voltage (Machine Model)	_	0.5	kV	C=200pF, R=0Ω, L=10μH
T stor.	Max. storage temperature	-55	150		
T _j max.	Max. junction temperature.	-40	150	°C	
T _{lead}	Lead temperature (soldering, 10 seconds)	_	300		

Thermal Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rth 1	Thermal resistance free air	-	60	_		TO-220
Rth 2	Thermal resistance junction to case	I	5	_	°C/W	10-220
Rth 1	Thermal resistance with standard footprint	l	80	_		D ² PAK (SMD220)
Rth 2	Thermal resistance with 1" square footprint	-	50	_		
Rth 3	Thermal resistance junction to case	_	5	-		

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
V _{ds} (max)	Continuous drain to source voltage	_	35	
VIH	High level input voltage	4	6	V
VIL	Low level input voltage	0	0.5	
Ids	Continuous drain current	_	1.8	Α
Tamb=85°C	$(TAmbient = 85^{\circ}C, IN = 5V, rth = 60^{\circ}C/W, Tj = 125^{\circ}C)$			
Rin	Recommended resistor in series with IN pin	0.5	5	$k\Omega$
Tr-in (max)	Max recommended rise time for IN signal (see fig. 2)	_	1	μS
Fr-Isc (2)	Max. frequency in short circuit condition (Vcc = 14V)	0	1	kHz

(1) Limited by junction temperature (pulsed current limited also by internal wiring)

(2) Operations at higher switching frequencies is possible. See Appl. Notes.

Static Electrical Characteristics

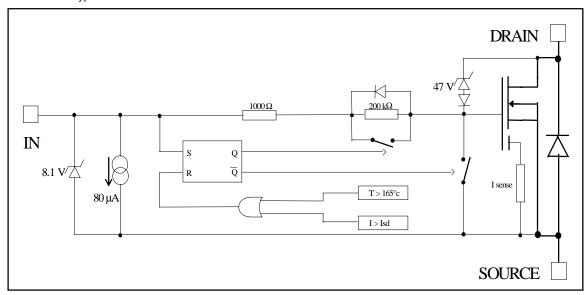
Standard footprint 70 μm copper thickness. $T_j = 25^{\circ}C$ (unless otherwise specified.)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
R _{ds} (on)	ON state resistance T _j = 25°C	100	130	150	mΩ	Vin = 5V, Ids = 1A
	$T_j = 150^{\circ}C$	_	220	280	11152	VIN - 5V, Ids - 1A
I _{dss} 1	Drain to source leakage current	0	0.01	25	μΑ	$V_{CC} = 14V, T_j = 25^{\circ}C$
I _{dss 2}	Drain to source leakage current	0	0.1	50	μΑ	$V_{CC} = 40V, T_j = 25^{\circ}C$
V clamp 1	Drain to source clamp voltage 1	48	54	56	V	I _d = 20mA (see Fig.3 & 4)
V clamp 2	Drain to source clamp voltage 2	50	56	60		Id=Ishutdown (see Fig.3 & 4)
Vin clamp	IN to source clamp voltage	7	8	9.5]	I _{in} = 1 mA
Vth	IN threshold voltage	1	1.5	2		$I_{d} = 50 \text{mA}, V_{dS} = 14 \text{V}$
lin, -on	ON state IN positive current	25	90	200		V _{in} = 5V
lin, -off	ON state IN positive current	50	130	250	μΑ	V _{in} = 5V
						over-current triggered

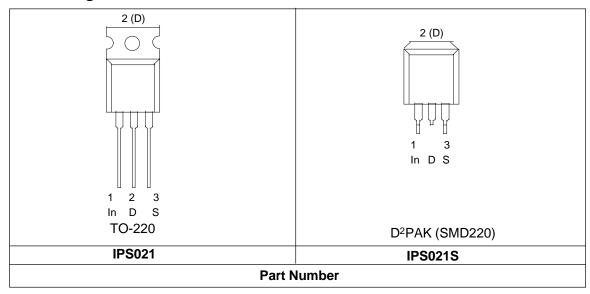
Switching Electrical Characteristics

 V_{CC} = 14V, Resistive Load = 10 Ω , Rinput = 50 Ω , 100 μ s pulse, T_j = 25°C, (unless otherwise specified).

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Ton	Turn-on delay time	0.15	0.5	1		
Tr	Rise time	0.4	0.9	2		See figure 2
Trf	Time to (final Rds(on) 1.3)	2	6	12	แร	
Toff	Turn-off delay time	0.8	2	3.5	, ,,,	See figure 2
Tf	Fall time	0.5	1.3	2.5		
Qin	Total gate charge	_	3.3	_	nC	V _{in} = 5V


Protection Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
T _{sd}	Over temperature threshold	_	165	_	°C	See fig. 1
I _{sd}	Over current threshold	4	5.5	7	Α	See fig. 1
V_{reset}	IN protection reset threshold	1.5	2.3	3	V	
Treset	Time to reset protection	2	10	40	μs	$V_{in} = 0V, T_j = 25^{\circ}C$
EOI_OT	Short circuit energy (see application note)	_	400	_	μJ	V _{CC} = 14V


IPS021(S) International IPR Rectifier

Functional Block Diagram

All values are typical

Lead Assignments

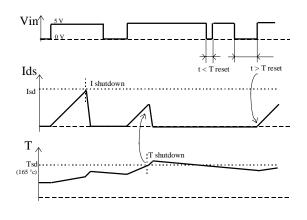
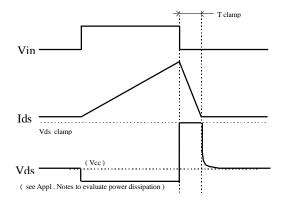



Figure 1 - Timing diagram

Figure 2 - IN rise time & switching time definitions

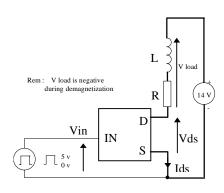


Figure 3 - Active clamp waveforms

Figure 4 - Active clamp test circuit

All curves are typical values with standard footprints. Operating in the shaded area is not recommended.

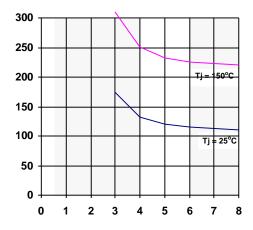


Figure 5 - Rds ON (m Ω) Vs Input Voltage (V)

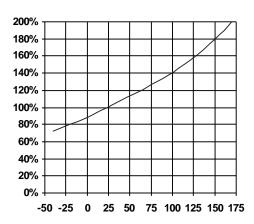


Figure 6 - Normalized Rds(on) (%) Vs Tj (°C)

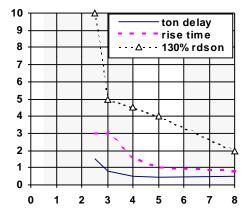


Figure 7 - Turn-ON Delay Time, Rise Time & Time to 130% final Rds(on) (us) Vs Input Voltage (V)

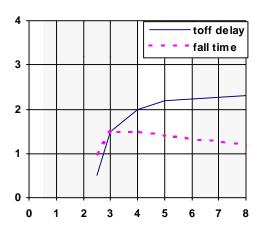


Figure 8 - Turn-OFF Delay Time & Fall Time (us)
Vs Input Voltage (V)

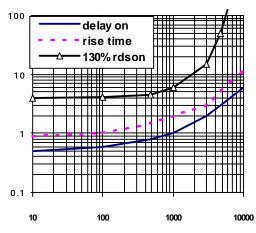


Figure 9 - Turn-ON Delay Time, Rise Time & Time to 130% final Rds(on) (us) Vs IN Resistor (Ω)

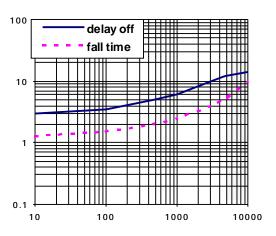


Figure 10 - Turn-OFF Delay Time & Fall Time (us) Vs. IN Resistor (Ω)

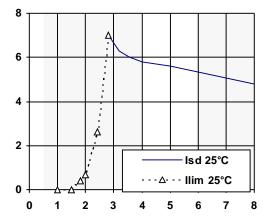


Figure 11 - Current lim. & I shutdown (A) Vs Vin (V)

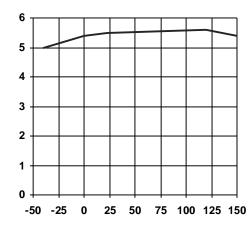


Figure 12 - I shutdown (A) Vs Temperature (°C)

International

Rectifier

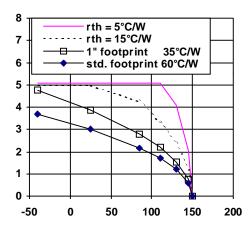


Figure 13 - Max.Cont. Ids (A)
Vs Amb. Temperature (°C) IPS021/IPS021S

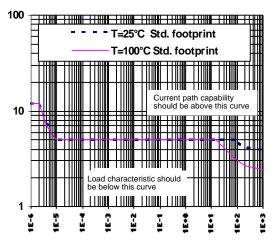


Figure 14 - Ids (A) Vs Protection Resp. Time (s) IPS021 & IPS021S

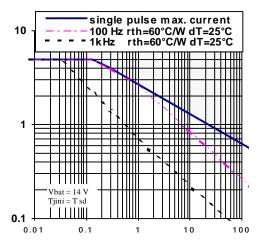


Figure 15a - Iclamp (A) Vs Inductive Load (mH) IPS021

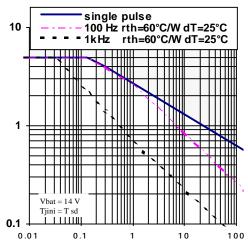


Figure 15b - Max. Iclamp (A) Vs Inductive Load (mH) IPS021S

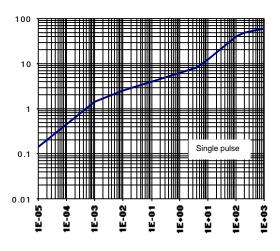


Figure 16 - Transient Thermal Imped. (°C/W) Vs Time (s)

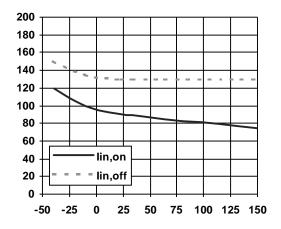


Figure 17 - Input Current (uA) Vs Junction Temperature (°C)

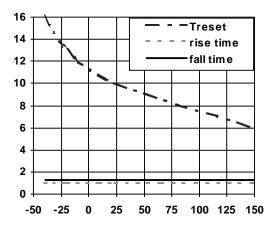
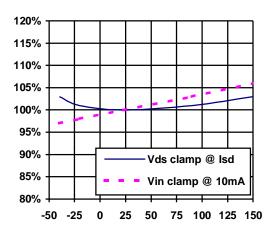
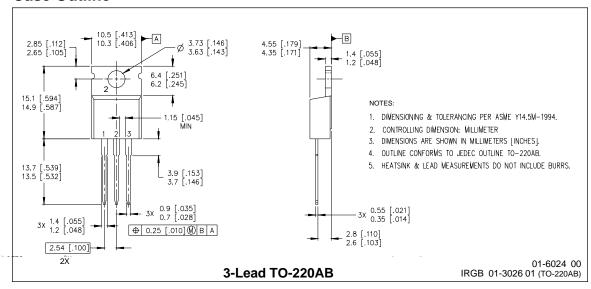
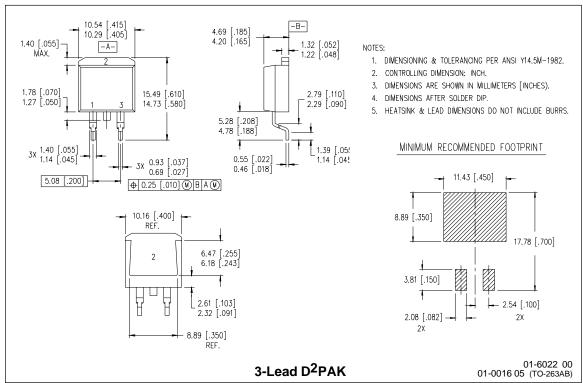
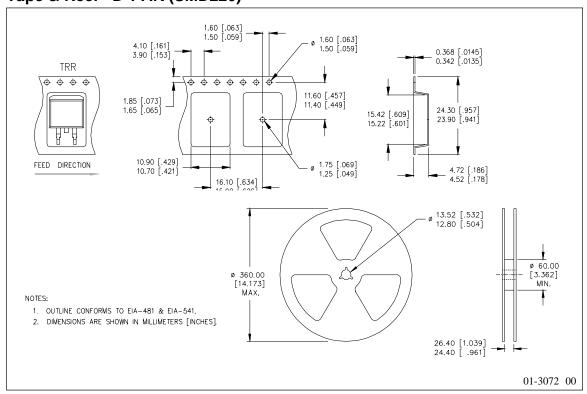


Figure 18 - Rise Time, Fall Time and Treset (μ s) Vs Tj (°C)


Figure 19 -Vin clamp and Vds clamp (%) Vs $${\rm Tj}\:({\rm ^{\circ}C})$$

International


TOR Rectifier

Case Outline

Tape & Reel - D²PAK (SMD220)

International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 6/11/2001

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/