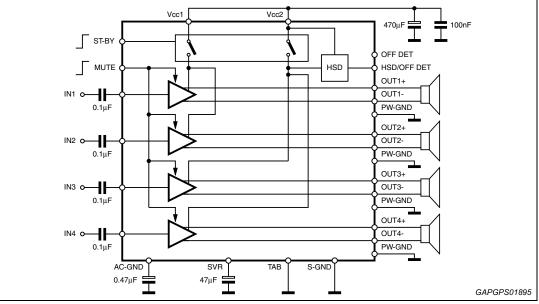
Contents

1	Bloc	k diagram and application circuit
	1.1	Block diagram
	1.2	Standard test and application circuit 5
2	Pino	description6
3	Elec	trical specifications7
	3.1	Absolute maximum ratings 7
	3.2	Thermal data
	3.3	Electrical characteristics
	3.4	Electrical characteristic curves 9
4	App	lication hints
	4.1	SVR
	4.2	Input stage
	4.3	Standby and muting
	4.4	DC offset detector 12
	4.5	Heatsink definition 12
5	Pack	age information
6	Revi	sion history

List of tables

	Device summary
Table 2.	Absolute maximum ratings
Table 3.	Thermal data7
	Electrical characteristics
Table 5.	Document revision history

List of figures


Figure 1.	Block diagram	5
Figure 2.	Standard test and application circuit	
Figure 3.	Pin connections (top view)	6
Figure 4.	Quiescent current vs. supply voltage	9
Figure 5.	Output power vs. supply voltage ($R_L = 4 \Omega$)	9
Figure 6.	Output power vs. supply voltage ($R_L = 2 \Omega$)	
Figure 7.	Distortion vs. output power ($R_L = 4 \Omega$)	9
Figure 8.	Distortion vs. output power ($R_L = 2 \Omega$)	С
Figure 9.	Distortion vs. frequency ($R_L = 4 \Omega$)	С
Figure 10.	Distortion vs. frequency ($R_L = 2 \Omega$)	0
Figure 11.	Crosstalk vs. frequency 10	С
Figure 12.	Supply voltage rejection vs. frequency 10	С
Figure 13.	Output attenuation vs. supply voltage	С
Figure 14.	Power dissipation and efficiency vs. output power ($R_L = 4 \Omega$, SINE)	
Figure 15.	Power dissipation and efficiency vs. output power ($R_L = 2 \Omega$, SINE)	1
Figure 16.	Power dissipation vs. output power ($R_L = 4\Omega$, audio program simulation) 1	1
Figure 17.	Power dissipation vs. output power ($R_L = 2\Omega$, audio program simulation) 1	1
Figure 18.	ITU R-ARM frequency response, weighting filter for transient pop 1	
Figure 19.	Flexiwatt27 (horizontal) mechanical data and package dimensions	3
Figure 20.	Flexiwatt27 (vertical) mechanical data and package dimensions14	4

1 Block diagram and application circuit

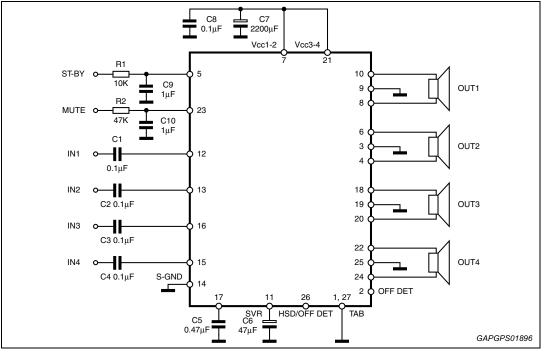
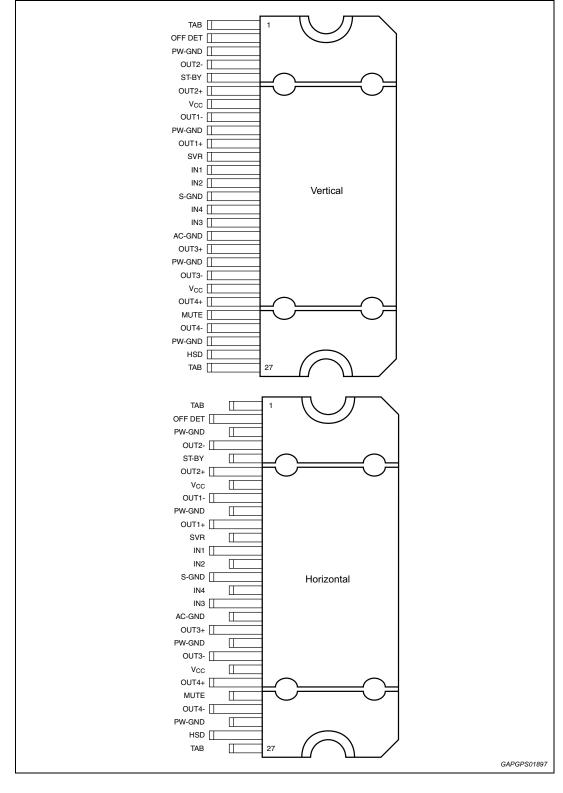

1.1 Block diagram

Figure 1. Block diagram

1.2 Standard test and application circuit

Figure 2. Standard test and application circuit



Doc ID 13998 Rev 5

Downloaded from Arrow.com.

2 Pin description

3 Electrical specifications

3.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _S	Operating supply voltage	18	V
V _{S (DC)}	DC supply voltage	28	V
V _{S (pk)}	Peak supply voltage (for t = 50 ms)	50	V
Ι _Ο	Output peak current repetitive (duty cycle 10 % at f = 10 Hz) non repetitive (t = 100 μ s)	9 10	A A
P _{tot}	Power dissipation $T_{case} = 70 \ ^{\circ}C$	80	W
Тј	Junction temperature	150	°C
T _{stg}	Storage temperature	-55 to 150	°C

3.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal resistance junction-to-case Max.	1	°C/W

3.3 Electrical characteristics

Refer to the test and application diagram, V_S = 14.4 V; R_L = 4 Ω ; R_g = 600 Ω ; f = 1 kHz; T_{amb} = 25 °C; unless otherwise specified.

Table 4. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
l _{q1}	Quiescent current	$R_L = \infty$	100	180	280	mA
V _{OS}	Output offset voltage	Play mode - Mute mode	-	-	±50	mV
dV _{OS}	During mute ON/OFF output offset voltage	ITU R-ARM weighted see <i>Figure 18</i>	-10	-	+10	mV
	During St-By ON/OFF output offset voltage		-10	-	+10	mV
G _v	Voltage gain	-	25	26	27	dB
dG _v	Channel gain unbalance	-	-	-	±1	dB

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Po	Output power	$V_{S} = 13.2 \text{ V}; \text{ THD} = 10 \%$ $V_{S} = 13.2 \text{ V}; \text{ THD} = 1 \%$ $V_{S} = 14.4 \text{ V}; \text{ THD} = 10 \%$ $V_{S} = 14.4 \text{ V}; \text{ THD} = 1 \%$	23 16 28 20	25 19 30 23	-	W
		$V_{\rm S}$ = 14.4 V; THD = 10 %, 2 Ω	50	55		W
P _{o max.}	Max. output power ⁽¹⁾	$V_{S} = 14.4$ V; $R_{L} = 4$ Ω $V_{S} = 14.4$ V; $R_{L} = 2$ Ω	-	50 85	-	W
THD	Distortion	$P_{o} = 4 W$ $P_{o} = 15 W; R_{L} = 2 Ω$	-	0.006 0.015	0.02 0.03	%
e _{No}	Output noise	"A" Weighted Bw = 20 Hz to 20 kHz	-	35 50	50 70	μV
SVR	Supply voltage rejection	f = 100 Hz; V _r = 1 Vrms	50	75	-	dB
f _{ch}	High cut-off frequency	P _O = 0.5 W	100	300	-	KHz
R _i	Input impedance		80	100	120	KΩ
C _T	Cross talk	$f = 1 \text{ kHz}; P_0 = 4 \text{ W}$ $f = 10 \text{ kHz}; P_0 = 4 \text{ W}$	60 -	70 60	-	dB
	Standby current consumption	V _{ST-BY} = 1.5 V	-	-	20	μΑ
I _{SB}		V _{ST-BY} = 0V	-	-	10	
I _{pin5}	Standby pin current	V _{ST-BY} = 1.5V to 3.5V	-	-	±1	μA
V _{SB out}	Standby out threshold voltage	(Amp: ON)	2.75	-	-	V
$V_{\text{SB in}}$	Standby in threshold voltage	(Amp: OFF)	-	-	1.5	V
A _M	Mute attenuation	P _{Oref} = 4W	80	90	-	dB
V _{M out}	Mute out threshold voltage	(Amp: Play)	3.5	-	-	V
V _{M in}	Mute in threshold voltage	(Amp: Mute)	-	-	1.5	V
V _{AM in}	V _S automute threshold	$\begin{array}{l} \mbox{(Amp: Mute)} \\ \mbox{Att} \geq 80 \mbox{ dB; } P_{Oref} = 4 \mbox{ W} \\ \mbox{(Amp: Play)} \end{array}$	6.5	7		V
		Att < 0.1 dB; P _O = 0.5 W		7.5	8	
I _{pin23}	Muting pin current	V _{MUTE} = 1.5 V (Sourced Current)	7	12	18	μA
		V _{MUTE} = 3.5 V	-5	-	18	μA
HSD sect	ion					
V _{dropout}	Dropout voltage	$I_0 = 0.35 \text{ A}; V_S = 9 \text{ to } 16 \text{ V}$	-	0.25	0.6	V
I _{prot}	Current limits	-	400	-	800	mA

 Table 4.
 Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
Offset de	Offset detector (Pin 26)						
V _{M_ON}	Mute voltage for DC offset	V _{ST-BY} = 5 V	8	-	-	V	
V _{M_OFF}	detection enabled		-	-	6	V	
V _{OFF}	Detected differential output offset	V _{ST-BY} = 5 V; V _{mute} = 8 V	±2	±3	±4	V	
V _{26_T}	Pin 26 voltage for detection = TRUE	$V_{ST-BY} = 5 V; V_{mute} = 8 V$ $V_{OFF} > \pm 4 V$	0	-	1.5	V	
V _{26_F}	Pin 26 voltage for detection = FALSE	$V_{ST-BY} = 5 V; V_{mute} = 8 V$ $V_{OFF} > \pm 2 V$	12	-	-	V	

Table 4. Electrical characteristics (continued)

1. Saturated square wave output.

3.4 Electrical characteristic curves

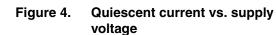
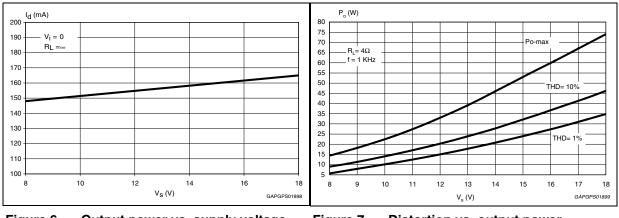
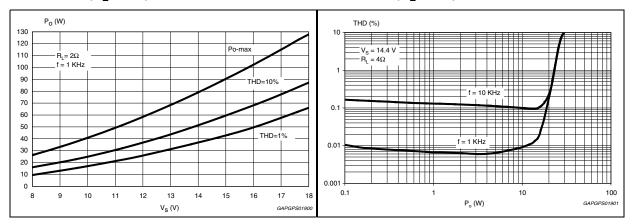
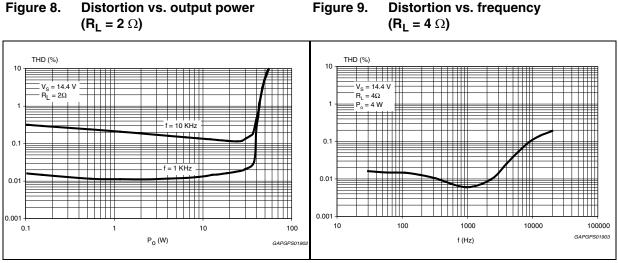


Figure 5. Output power vs. supply voltage $(R_L = 4 \Omega)$

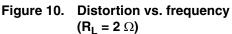

Figure 6. Output power vs. supply voltage $(R_L = 2 \Omega)$

Figure 7. Distortion vs. output power ($R_L = 4 \Omega$)

10

0.1

0.01

0.001

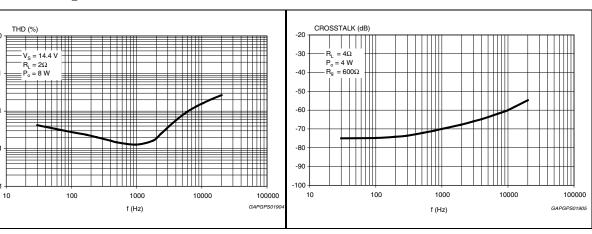
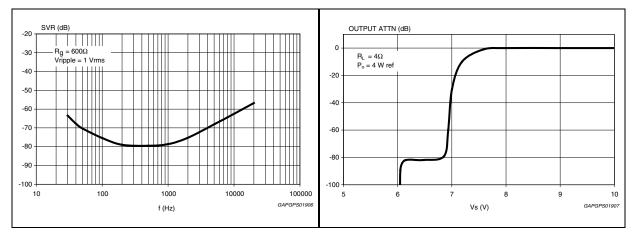
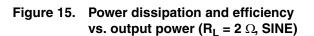



Figure 12. Supply voltage rejection vs. frequency


Figure 13. Output attenuation vs. supply voltage

10/16

Figure 14. Power dissipation and efficiency vs. output power (R_L = 4 Ω , SINE)

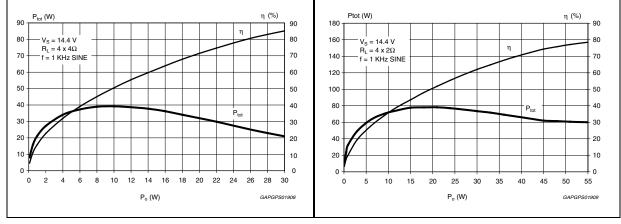


Figure 16. Power dissipation vs. output power Figure 17. Power dissipation vs. output power $(R_L = 4\Omega, audio program simulation)$ $(R_L = 2\Omega, audio program simulation)$

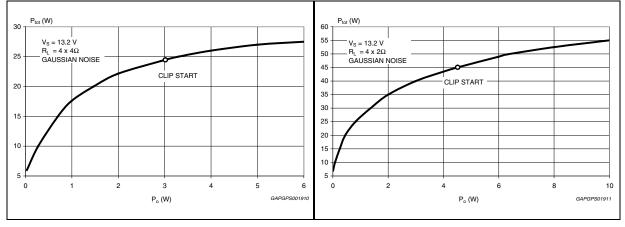
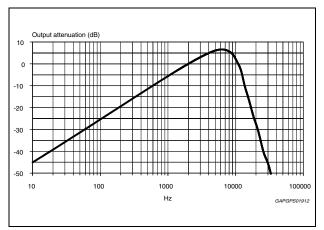



Figure 18. ITU R-ARM frequency response, weighting filter for transient pop

4 Application hints

Ref. to the circuit of *Figure 2*.

4.1 SVR

Besides its contribution to the ripple rejection, the SVR capacitor governs the turn ON/OFF time sequence and, consequently, plays an essential role in the pop optimization during ON/OFF transients. To conveniently serve both needs, **Its minimum recommended value is 10µF**.

4.2 Input stage

The TDA7850A's inputs are ground-compatible and can stand very high input signals $(\pm 8Vpk)$ without any performance degradation.

If the standard value for the input capacitors (0.1 μ F) is adopted, the low frequency cut-off will amount to 16 Hz.

4.3 Standby and muting

STANDBY and MUTING facilities are both CMOS compatible. In absence of true CMOS ports or microprocessors, a direct connection to Vs of these two pins is admissible but a 470k Ω equivalent resistance should be present between the power supply and the muting and stand-by pins.

R-C cells have always to be used in order to smooth down the transitions for preventing any audible transient noises.

About the stand-by, the time constant to be assigned in order to obtain a virtually pop-free transition has to be slower than 2.5V/ms.

4.4 DC offset detector

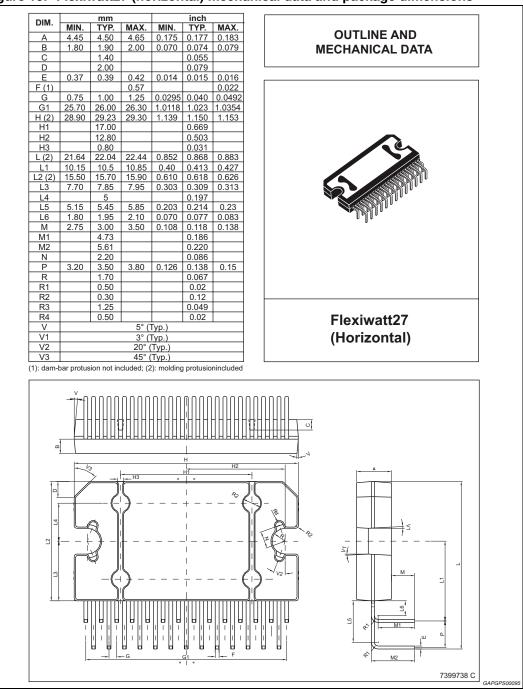
The TDA7850A integrates a DC offset detector to avoid that an anomalous DC offset on the inputs of the amplifier may be multiplied by the gain and result in a dangerous large offset on the outputs which may lead to speakers damage for overheating.

The feature works with the amplifier unmuted and no signal at the inputs.

The DC offset detection can be available at 2 different pins:

- Pin 2 (always enabled)
- Pin 26. Only enabled if Vmute (pin23) is set higher than 8V. If not (Vmute < 6 V) pin 26 will revert to the original HSD function.

4.5 Heatsink definition


Under normal usage (4 Ohm speakers) the heatsink's thermal requirements have to be deduced from *Figure 16*, which reports the simulated power dissipation when real music/speech programmes are played out. Noise with gaussian-distributed amplitude was employed for this simulation. Based on that, frequent clipping occurrence (worst-case) will cause $P_{diss} = 26W$. Assuming $T_{amb} = 70^{\circ}C$ and $T_{CHIP} = 150^{\circ}C$ as boundary conditions, the heatsink's thermal resistance should be approximately $2^{\circ}C/W$. This would avoid any thermal shutdown occurrence even after long-term and full-volume operation.

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*.

 $ECOPACK^{\mathbb{R}}$ is an ST trademark.

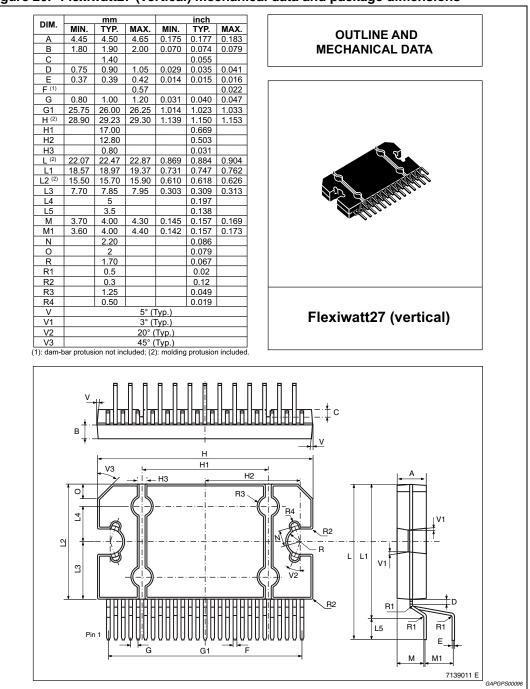


Figure 20. Flexiwatt27 (vertical) mechanical data and package dimensions

6 Revision history

Table 5.Document revision history

Date	Revision	Changes
09-Oct-2007	1	Initial release.
12-Sep-2008	2	Updated the values of V _{OS} and THD parameters on the <i>Table 4</i> .
07-Nov-2008	3	Modified max. values of the THD distortion in <i>Table 4: Electrical characteristics</i> on page 8.
14-Aug-2012	4	Updated Section 5: Package information.
17-Sep-2013	5	Updated Disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16

