Contents STD/F/I/P/U12N65M5

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data1	0
5	Packaging mechanical data	0
6	Revision history	2

STD/F/I/P/U12N65M5 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

		Value		
Symbol	Parameter	TO-220, IPAK, DPAK, I ² PAK	TO-220FP	Unit
V_{DS}	Drain-source voltage (V _{GS} = 0)	650		V
V _{GS}	Gate-source voltage	25		V
I _D	Drain current (continuous) at T _C = 25 °C	8.5	8.5 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100 °C	5.4 5.4 ⁽¹		Α
I _{DM} ⁽²⁾	Drain current (pulsed)	34	34 ⁽¹⁾	Α
P _{TOT}	Total dissipation at T _C = 25 °C	70	25	W
I _{AR}	Avalanche current, repetitive or not- repetitive (pulse width limited by T _j max)	2.5		Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	150		mJ
dv/dt (3)	Peak diode recovery voltage slope	15		V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; Tc = 25 °C)	2500		V
T _{stg}	Storage temperature	- 55 to 1	50	°C
T _j	Max. operating junction temperature	150		°C

- 1. Limited only by maximum temperature allowed.
- 2. Pulse width limited by safe operating area.
- 3. $I_{SD} \le 8.5 \text{ A}$, di/dt $\le 400 \text{ A/}\mu\text{s}$; $V_{Peak} < V_{(BR)DSS}$, $V_{DD=400 \text{ V}}$

Table 3. Thermal data

Symbol Parameter		Value					Unit
Symbol	Farameter	DPAK	IPAK	I ² PAK	TO-220	TO-220FP	Oill
R _{thj-case}	Thermal resistance junction-case max	1.79			5	°C/W	
R _{thj-amb}	Thermal resistance junction- ambient max		100 62.5				°C/W
R _{thj-pcb} (1)	Thermal resistance junction-pcb max	50					°C/W
T _I	Maximum lead temperature for soldering purpose	300				°C	

^{1.} When mounted on 1inch2 FR-4 board, 2 oz Cu

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	650			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = Max rating V_{DS} = Max rating, T_{C} =125 °C			1 100	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, I_D = 4.3 \text{ A}$		0.39	0.43	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0	-	900 22 2	-	pF pF pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V - 0 to 520 V V - 0	-	64	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$V_{DS} = 0$ to 520 V, $V_{GS} = 0$	-	21	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	2.5	-	Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 520 \text{ V}, I_{D} = 4.25 \text{ A},$ $V_{GS} = 10 \text{ V}$ (see <i>Figure 20</i>)	-	20 4.8 8.3	-	nC nC nC

^{1.} Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

^{2.} Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _d (v)	Voltage delay time	$V_{DD} = 400 \text{ V}, I_{D} = 5 \text{ A},$		22.6		ns
t _r (v)	Voltage rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$		17.6		ns
t _f (i)	Current fall time	(see Figure 21 and	_	15.6	_	ns
t _c (off)	Crossing time	Figure 24)		23.4		ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)				8.5 34	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 8.5 A, V _{GS} = 0			1.5	٧
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 8.5 A, di/dt = 100 A/μs V _{DD} = 100 V (see <i>Figure 24</i>)		230 2.2 19		ns μC Α
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 8.5 \text{ A}, \text{ di/dt} = 100 \text{ A/µs}$ $V_{DD} = 100 \text{ V}, T_j = 150 ^{\circ}\text{C}$ (see <i>Figure 24</i>)		280 2.7 19		ns μC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics STD/F/I/P/U12N65M5

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for TO-220 and Figure 3. Thermal impedance for TO-220 and I²PAK

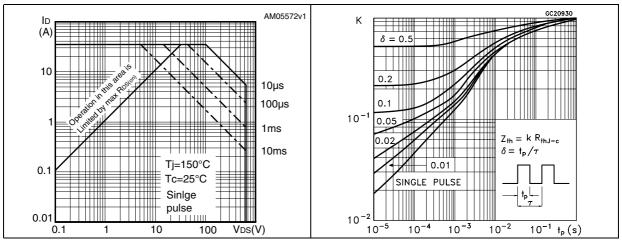


Figure 4. Safe operating area for TO-220FP Figure 5. Thermal impedance for TO-220FP

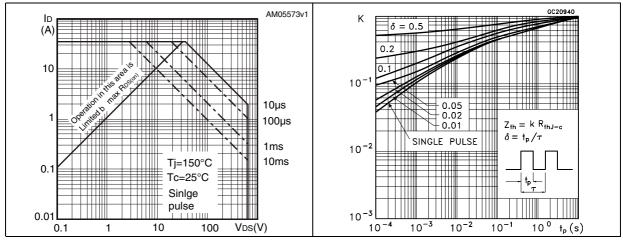


Figure 6. Safe operating area for DPAK, IPAK Figure 7. Thermal impedance for DPAK, IPAK

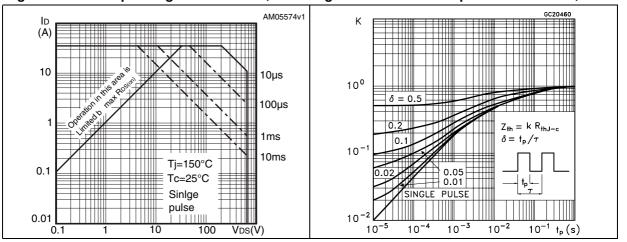


Figure 8. Output characteristics

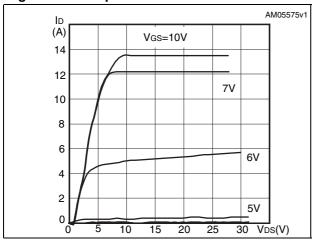


Figure 9. Transfer characteristics

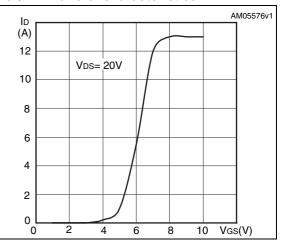
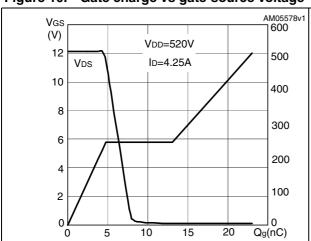



Figure 10. Gate charge vs gate-source voltage Figure 11. Static drain-source on resistance

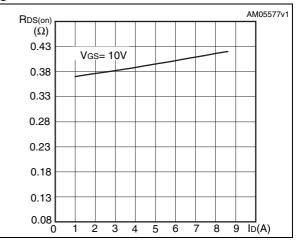


Figure 12. Capacitance variations

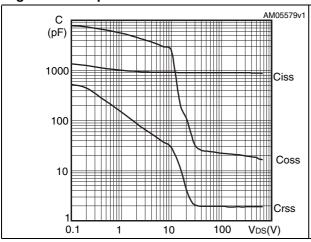


Figure 13. Output capacitance stored energy

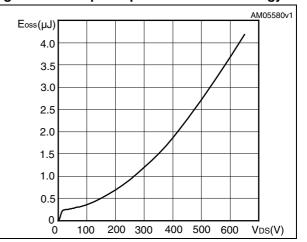
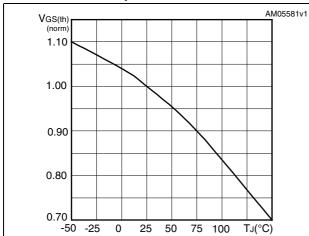



Figure 14. Normalized gate threshold voltage Figure 15. Normalized on resistance vs vs temperature temperature

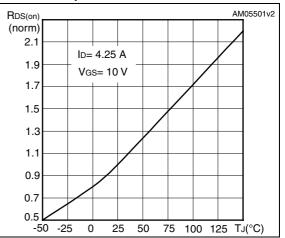
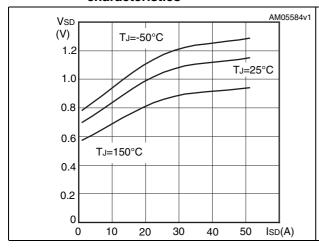



Figure 16. Source-drain diode forward characteristics

Normalized B_{VDSS} @ 1 mA vs Figure 17. temperature

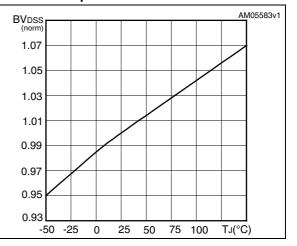
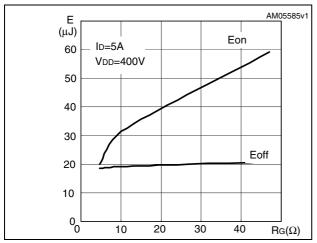



Figure 18. Switching losses vs gate resistance

1. Eon including reverse recovery of a SiC diode

Downloaded from Arrow.com.

STD/F/I/P/U12N65M5 Test circuits

3 Test circuits

Figure 19. Switching times test circuit for resistive load

Figure 20. Gate charge test circuit

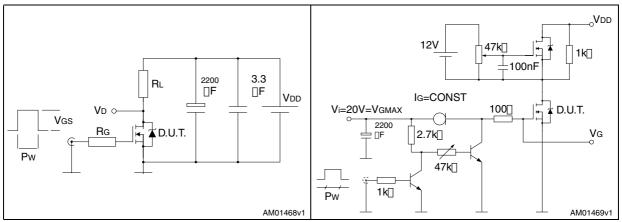


Figure 21. Test circuit for inductive load switching and diode recovery times

Figure 22. Unclamped inductive load test circuit

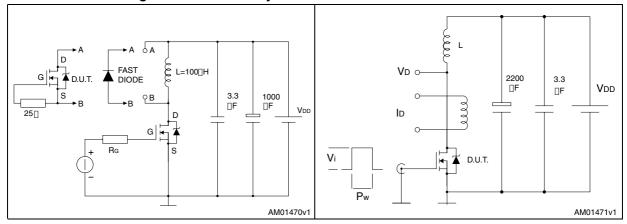
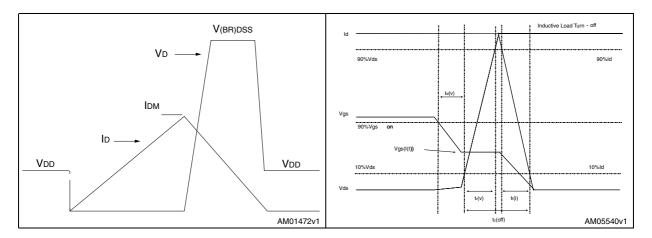



Figure 23. Unclamped inductive waveform

Figure 24. Switching time waveform

Doc ID 15428 Rev 5

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 8. DPAK (TO-252) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
E	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1		1.50
L1		2.80	
L2		0.80	
L4	0.60		1
R		0.20	
V2	0°		8°

Figure 25. DPAK (TO-252) drawing

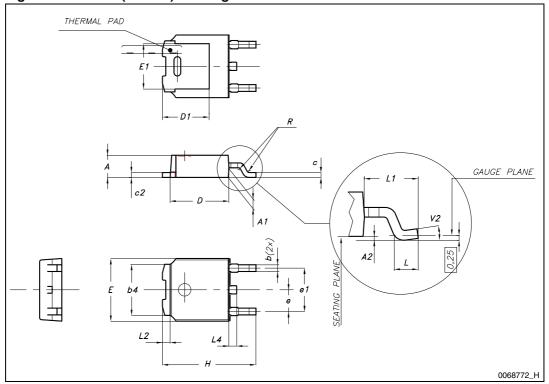
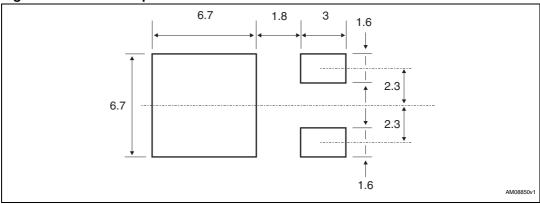



Figure 26. DPAK footprint^(a)

a. All dimension are in millimeters

Table 9. IPAK (TO-251) mechanical data

DIM		mm.	
DIM.	min.	typ	max.
Α	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
B5		0.3	
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
Е	6.40		6.60
е		2.28	
e1	4.40		4.60
Н		16.10	
L	9.00		9.40
L1	0.80		1.20
L2		0.80	1.00
V1		10 °	

Figure 27. IPAK (TO-251) drawing

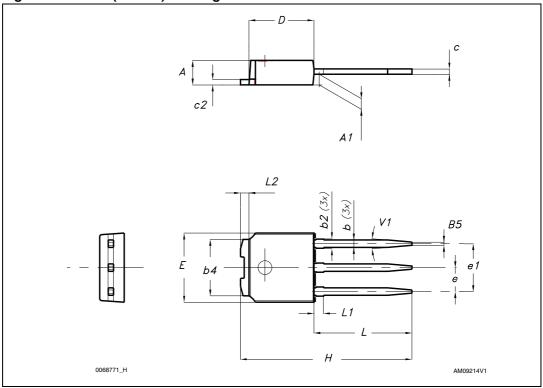


Table 10. I²PAK (TO-262) mechanical data

DIM		mm.	
DIM.	min.	typ	max.
Α	4.40		4.60
A1	2.40		2.72
b	0.61		0.88
b1	1.14		1.70
С	0.49		0.70
c2	1.23		1.32
D	8.95		9.35
е	2.40		2.70
e1	4.95		5.15
Е	10		10.40
L	13		14
L1	3.50		3.93
L2	1.27		1.40

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

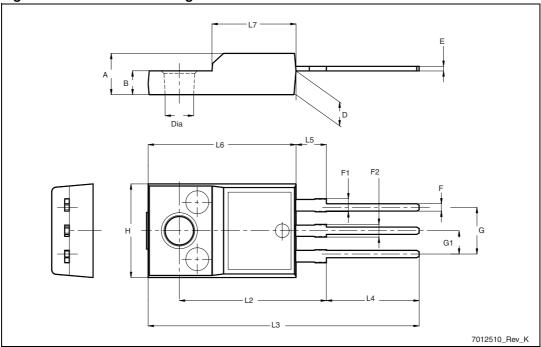
Figure 28. I²PAK (TO-262) drawing

0015988_typeA_Rev_S

Table 11. TO-220 type A mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

D D1 L30 D1 L30


Figure 29. TO-220 type A drawing

0015988_typeA_Rev_S

Table 12. TO-220FP mechanical data

Di		mm	
Dim.	Min.	Тур.	Max.
Α	4.4		4.6
В	2.5		2.7
D	2.5		2.75
Е	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Figure 30. TO-220FP drawing

Doc ID 15428 Rev 5

5 Packaging mechanical data

Table 13. DPAK (TO-252) tape and reel mechanical data

	Таре			Reel		
Dim.	mm		Dim.	mm		
	Min.	Max.		Min.	Max.	
A0	6.8	7	А		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1				
R	40					
Ţ	0.25	0.35				
W	15.7	16.3				

Figure 31. Tape

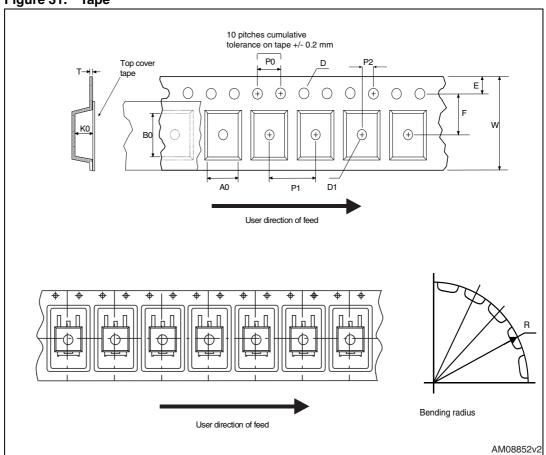
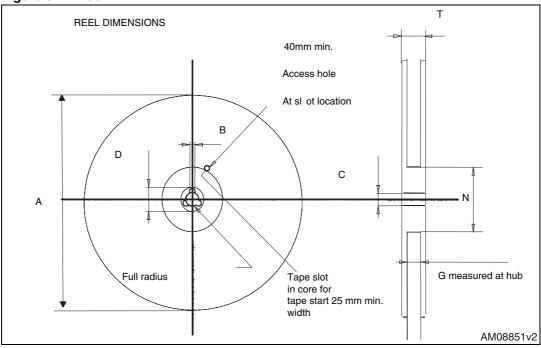



Figure 32. Reel

Doc ID 15428 Rev 5

Revision history STD/F/I/P/U12N65M5

6 Revision history

Table 14. Document revision history

Date	Revision	Changes	
24-Feb-2009	1	First release	
27-Feb-2009	2	Corrected package information on first page	
21-Jan-2010	3	Document status promoted from preliminary data to datasheet	
29-Jun-2010	4	 Figure 15: Normalized on resistance vs temperature has been updated V_{GS} vale in <i>Table 4</i> has been corrected 	
22-Jun-2011 5		Updated Figure 18 and Figure 20. Updated gate charge in Table 5 and switching time in Table 6.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577

Doc ID 15428 Rev 5