UNCLAMPED COLLECTOR-TO-EMITTER AVALANCHE CHARACTERISTICS (-55° ≤ TJ ≤ 175°C)

Characteristic	Symbol	Value	Unit
$ \begin{array}{l} \mbox{Single Pulse Collector-to-Emitter Avalanche Energy} \\ V_{CC} = 50 \mbox{ V, } V_{GE} = 5.0 \mbox{ V, Pk } I_L = 22 \mbox{ A, } R_G = 1000 \ \Omega, \mbox{ L} = 1.8 \mbox{ mH}, \mbox{Starting } T_J = 25^\circ \mbox{C} \\ V_{CC} = 50 \mbox{ V, } V_{GE} = 5.0 \mbox{ V, Pk } I_L = 17 \mbox{ A, } R_G = 1000 \ \Omega, \mbox{ L} = 3.0 \mbox{ mH}, \mbox{Starting } T_J = 25^\circ \mbox{C} \\ V_{CC} = 50 \mbox{ V, } V_{GE} = 5.0 \mbox{ V, Pk } I_L = 19 \mbox{ A, } R_G = 1000 \ \Omega, \mbox{ L} = 1.8 \mbox{ mH}, \mbox{Starting } T_J = 25^\circ \mbox{C} \\ \end{array} $	E _{AS}	435 433 325	mJ
Reverse Avalanche Energy V _{CC} = 100 V, V _{GE} = 20 V, Pk I _L = 25.8 A, L = 6.0 mH, Starting T _J = 25°C	E _{AS(R)}	2000	mJ

THERMAL CHARACTERISTICS

Thermal Resistance, Junction to Case			1.3	°C/W
Thermal Resistance, Junction to Ambient	DPAK (Note 1)	$R_{ hetaJA}$	95	°C/W
Maximum Lead Temperature for Soldering Purposes,	TL	275	°C	

1. When surface mounted to an FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
OFF CHARACTERISTICS			-	-			-
Collector-Emitter Clamp Voltage	BV _{CES}	I _C = 2.0 mA	$T_J = -40^{\circ}C$ to 150°C	380	395	420	V _{DC}
		I _C = 10 mA	$T_J = -40^{\circ}C$ to 150°C	390	405	430]
Zero Gate Voltage Collector Current	I _{CES}		T _J = 25°C	-	1.5	5	μA _{DC}
		V _{CE} = 350 V, V _{GE} = 0 V	T _J = 150°C	-	10	30*	
		VGE - O V	$T_J = -40^{\circ}C$	-	0.5	2.5	
		V _{CE} = 15 V, V _{GE} = 0 V	T _J = 25°C	-	_	2.0]
Reverse Collector-Emitter Leakage Current	I _{ECS}		T _J = 25°C	-	0.7	1.0	mA
		$V_{CE} = -24 V$	T _J = 150°C	-	12	25*	1
			$T_J = -40^{\circ}C$	-	0.1	1.0	
Reverse Collector-Emitter Clamp Voltage	B _{VCES(R)}		$T_J = 25^{\circ}C$	27	33	37	V _{DC}
		$I_{\rm C} = -75 {\rm mA}$	T _J = 150°C	30	36	40	
			$T_J = -40^{\circ}C$	25	32	35	
Gate-Emitter Clamp Voltage	BV _{GES}	l _G = 5.0 mA	$T_J = -40^{\circ}C$ to 150°C	11	13	15	V _{DC}
Gate-Emitter Leakage Current	I _{GES}	V _{GE} = 10 V	$T_J = -40^{\circ}C$ to 150°C	384	640	700	μA _{DC}
Gate Emitter Resistor (Note 3)	R_{GE}	_	T _J = -40°C to 150°C	10	16	26	kΩ

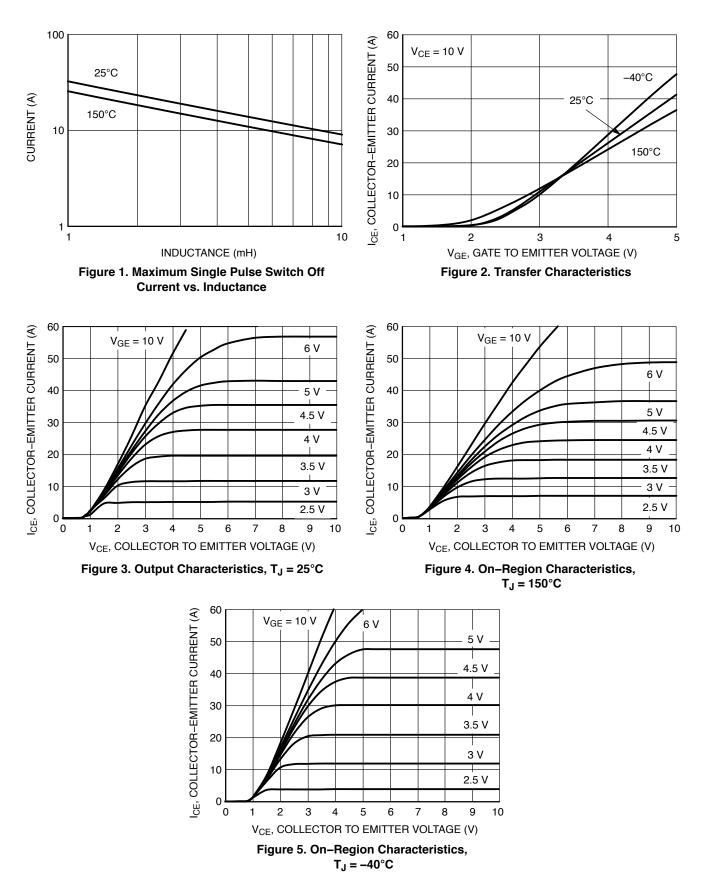
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. *Maximum Value of Characteristic across Temperature Range.

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Мах	Unit
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GE(th)}		$T_J = 25^{\circ}C$	1.2	1.5	1.8	V_{DC}
		I _C = 1.0 mA, V _{GE} = V _{CE}	$T_J = 150^{\circ}C$	0.8	1.0	1.3	
			$T_J = -40^{\circ}C$	1.4	1.7	2.0*	
Threshold Temperature Coefficient (Negative)	-	-	_	-	3.4	-	mV/°C
Collector-to-Emitter On-Voltage	V _{CE(on)}		T _J = 25°C	1.0	1.2	1.5	V _{DC}
		I _C = 6.0 A, V _{GE} = 4.0 V	T _J = 150°C	1.0	1.2	1.5	
		•GE = 1.0 •	$T_J = -40^{\circ}C$	1.0	1.2	1.5*]
			$T_J = 25^{\circ}C$	1.2	1.4	1.6*]
		I _C = 8.0 A, V _{GE} = 4.0 V	T _J = 150°C	1.2	1.4	1.6]
		I _C = 10 A, V _{GE} = 4.0 V	$T_J = -40^{\circ}C$	1.2	1.4	1.6*]
			T _J = 25°C	1.3	1.5	1.8	1
			T _J = 150°C	1.3	1.5	1.9	
			$T_J = -40^{\circ}C$	1.3	1.6	1.8*	
			$T_J = 25^{\circ}C$	1.7	1.9	2.3	
		I _C = 15 A, V _{GE} = 4.0 V	$T_J = 150^{\circ}C$	1.9	2.2	2.5*	
		I _C = 10 A, V _{GE} = 4.5 V	$T_J = -40^{\circ}C$	1.5	1.9	2.3	
			$T_J = 25^{\circ}C$	1.3	1.5	1.8*	
			$T_J = 150^{\circ}C$	1.3	1.5	1.8*	
		UL -	$T_J = -40^{\circ}C$	1.3	1.5	1.8*	
		I _C = 6.5 A, V _{GE} = 3.7 V	T _J = 25°C	-	-	1.65	
Forward Transconductance	gfs	$V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 6.0 \text{ A}$	T _J = −40°C to 150°C	8.0	14	25	Mhos
YNAMIC CHARACTERISTICS (Note	9 3)		-	-	-	-	-
Input Capacitance	C _{ISS}			400	800	1000	pF

Input Capacitance	CISS		T 4000 to	400	800	1000	рг
Output Capacitance	C _{OSS}	V _{CC} = 25 V, V _{GE} = 0 V f = 1.0 MHz	T _J = -40°C to 150°C	50	75	100	
Transfer Capacitance	C _{RSS}			4.0	7.0	10	

SWITCHING CHARACTERISTICS (Note 3)


Turn-Off Delay Time (Resistive)	t _{d(off)}		T _J = 25°C	-	4.0	10	μSec
Fall Time (Resistive)	t _f		T _J = 25°C	-	9.0	15	
Turn-On Delay Time	t _{d(on)}	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 10 \; V, \; I_{C} = 6.5 \; A \\ R_{G} = 1.0 \; k\Omega, \; R_{L} = 1.5 \; \Omega \end{array}$	T _J = 25°C	-	0.7	4.0	μSec
Rise Time	t _r	V_{CC} = 10 V, I _C = 6.5 A R _G = 1.0 kΩ, R _L = 1.5 Ω	T _J = 25°C	-	4.5	7.0	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. *Maximum Value of Characteristic across Temperature Range.

2. Pulse Test: Pulse Width \leq 300 µS, Duty Cycle \leq 2%.

3. Not production tested.

TYPICAL ELECTRICAL CHARACTERISTICS

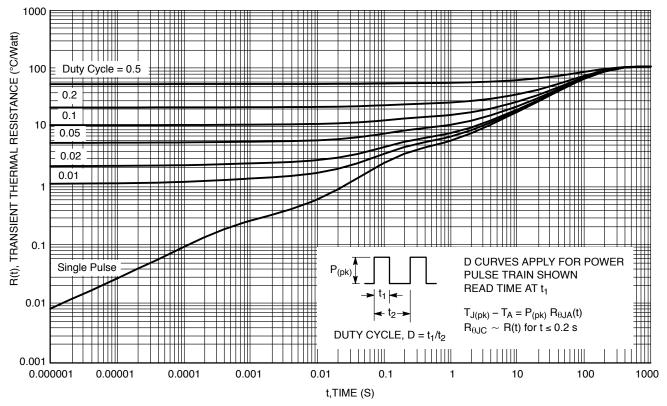
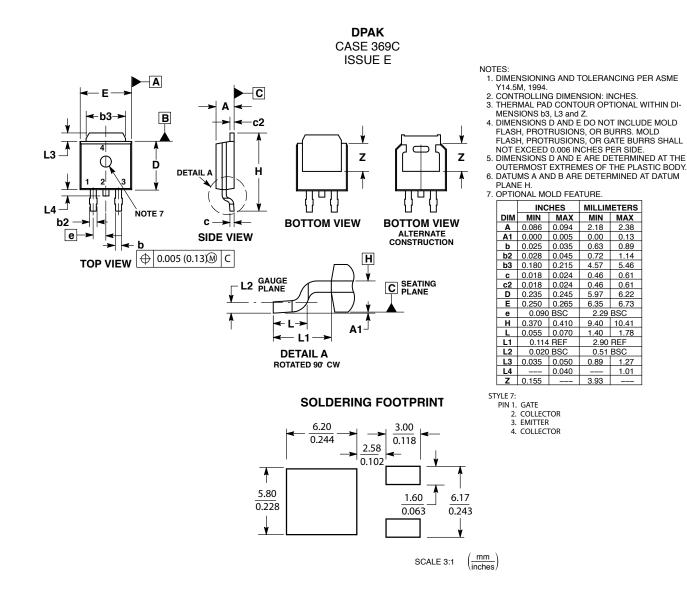



Figure 6. Transient Thermal Resistance (Non-normalized Junction-to-Ambient mounted on minimum pad area)

PACKAGE DIMENSIONS

Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining, nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

Littelfuse.com