
ABSOLUTE MAXIMUM RATINGS

(Note 1)

Supply Voltage	±22V
Differential Input Voltage	±30V
Input Voltage	±22V
Output Short Circuit Duration	Indefinite

Operating Temperature Range		
LT1001AM/LT1001M (OBSOLETE)	−55°C t	o 150°C
LT1001AC/LT1001C	0°C t	o 125°C
Storage: All Devices	−65°C t	o 150°C
Lead Temperature (Soldering, 10 sec.)	300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 15V$, unless otherwise noted

					LT1001AM/883 LT1001AC			LT1001M/LT1001C		
SYMBOL	PARAMETER	CONDITI	ONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V	Input Offset Voltage	Note 2	LT1001AM/883		7	15		18	60	μV
V_{0S}	Imput onset voltage	11010 2	LT1001AC		10	25		10	00	μν
ΔV _{OS}	Long Term Input Offset Voltage									
ΔTime	Stability	Notes 3	and 4		0.2	1.0		0.3	1.5	μV/month
I _{0S}	Input Offset Current				0.3	2.0		0.4	3.8	nA
I _b	Input Bias Current				±0.5	±2.0		±0.7	±4.0	nA
e _n	Input Noise Voltage	0.1Hz to	10Hz (Note 3)		0.3	0.6		0.3	0.6	μV _{p-p}
e _n	Input Noise Voltage Density	f ₀ = 10H	z (Note 6)		10.3	18.0		10.5	18.0	nV√Hz
		$f_0 = 100$	OHz (Note 3)		9.6	11.0		9.8	11.0	nV√Hz
A _{VOL}	Large Signal Voltage Gain	$R_L \ge 2k\Omega$	$V_0 = \pm 12V$	450	800		400	800		V/mV
		$R_L \ge 1k\Omega$	$2 V_0 = \pm 10 V$	300	500		250	500		V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = ±	13V	114	126		110	126		dB
PSRR	Power Supply Rejection Ratio	V _S = ±3\	/ to ±18V	110	123		106	123		dB
R _{in}	Input Resistance Differential Mode			30	100		15	80		MΩ
				1						1001fb

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_S = \pm 15V, T_A = 25°C, unless otherwise noted

			LT1001AM/883 LT1001AC		LT1001M/LT1001C				
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
	Input Voltage Range		±13	±14		±13	±14		V
V_{OUT}	Maximum Output Voltage Swing	$R_L \ge 2k\Omega$	±13	±14		±13	±14		V
		$R_L \ge 1k\Omega$	±12	±13.5		±12	± 13.5		V
S _R	Slew Rate	$R_L \ge 2k\Omega$ (Note 5)	0.1	0.25		0.1	0.25		V/µs
GBW	Gain-Bandwidth Product	(Note 5)	0.4	0.8		0.4	0.8		MHz
$\overline{P_d}$	Power Dissipation	No load		46	75		48	80	mW
		No load, $V_S = \pm 3V$		4	6		4	8	mW

$V_S = \pm 15 V$, $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise noted

				LT1	001AM/			LT1001N	-	
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{0S}	Input Offset Voltage		•		30	60		45	160	μV
$\frac{\Delta V_{OS}}{\Delta Temp}$	Average Offset Voltage Drift		•		0.2	0.6		0.3	1.0	μV/°C
I _{OS}	Input Offset Current		•		0.8	4.0		1.2	7.6	nA
I _B	Input Bias Current		•		±1.0	±4.0		±1.5	±8.0	nA
A _{VOL}	Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	•	300	700		200	700		V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13V$	•	110	122		106	120		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 3 \text{ to } \pm 18V$	•	104	117		100	117		dB
	Input Voltage Range		•	±13	±14		±13	±14		V
V_{OUT}	Output Voltage Swing	$R_L \ge 2k\Omega$	•	±12.5	±13.5		±12.0	±13.5		V
$\overline{P_d}$	Power Dissipation	No load	•		55	90		60	100	mW

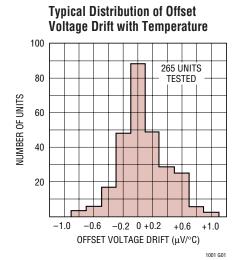
$V_S=\pm 15 V,~0^{\circ}C \leq T_A \leq 70^{\circ}C,~unless~otherwise~noted$

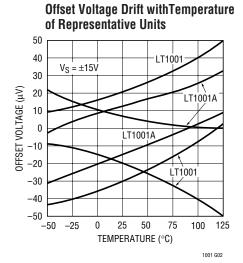
SYMBOL	PARAMETER	CONDITIONS		MIN	T1001A TYP	C Max	MIN	LT10010 TYP	; MAX	UNITS
$\overline{V_{0S}}$	Input Offset Voltage		•		20	60		30	110	μV
$\frac{\Delta V_{OS}}{\Delta Temp}$	Average Offset Voltage Drift		•		0.2	0.6		0.3	1.0	μV/°C
I _{OS}	Input Offset Current		•		0.5	3.5		0.6	5.3	nA
I _B	Input Bias Current		•		±0.7	±3.5		±1.0	±5.5	nA
A _{VOL}	Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	•	350	750		250	750		V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13V$	•	110	124		106	123		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 3V \text{ to } \pm 18V$	•	106	120		103	120		dB
	Input Voltage Range		•	±13	±14		±13	±14		V
V _{OUT}	Output Voltage Swing	$R_L \ge 2k\Omega$	•	±12.5	±13.8		±12.5	±13.8		V
P_d	Power Dissipation	No load	•		50	85		55	90	mW

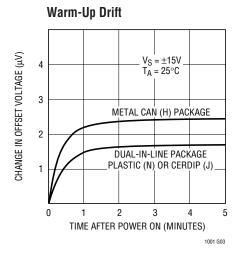
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

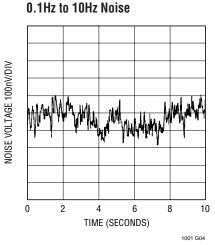
Note 2: Offset voltage for the LT1001AM/883 and LT1001AC are measured after power is applied and the device is fully warmed up. All other grades are measured with high speed test equipment, approximately 1 second after power is applied. The LT1001AM/883 receives 168 hr. burn-in at 125°C. or equivalent.

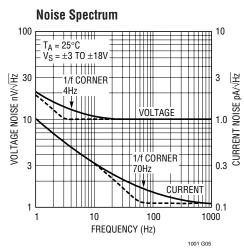
Note 3: This parameter is tested on a sample basis only.

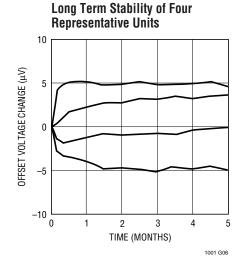

Note 4: Long Term Input Offset Voltage Stability refers to the averaged trend line of V_{OS} versus Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 days are typically $2.5\mu V$.

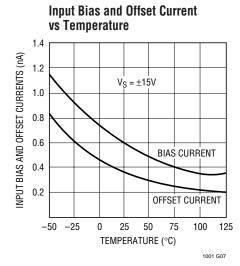

Note 5: Parameter is guaranteed by design.

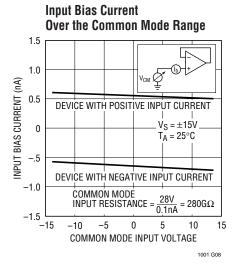

Note 6: 10Hz noise voltage density is sample tested on every lot. Devices 100% tested at 10Hz are available on request.

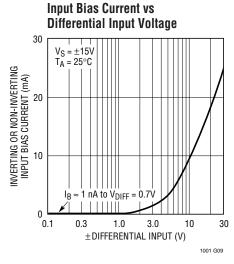


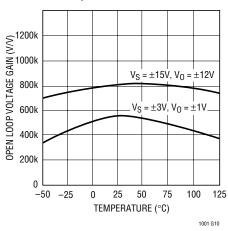

TYPICAL PERFORMANCE CHARACTERISTICS

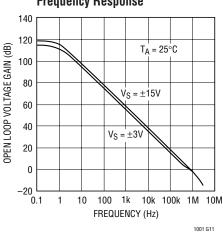


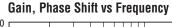


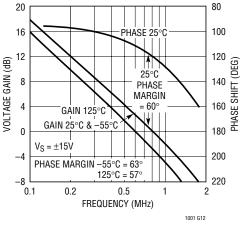


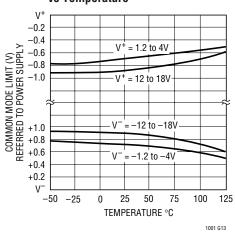


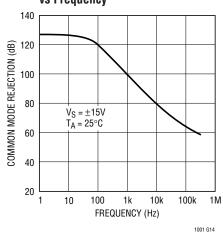


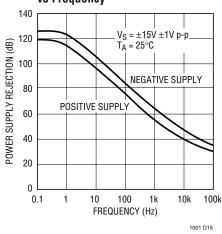


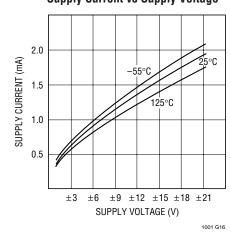

TYPICAL PERFORMANCE CHARACTERISTICS

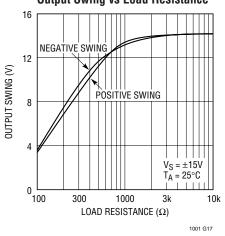


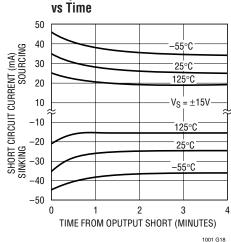

Open Loop Voltage Gain Frequency Response



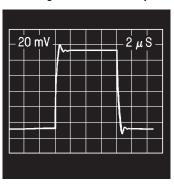

Common Mode Limit vs Temperature


Common Mode Rejection Ratio vs Frequency

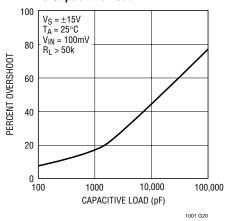

Power Supply Rejection Ratio vs Frequency


Supply Current vs Supply Voltage

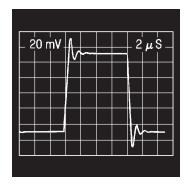
Output Swing vs Load Resistance



Output Short-Circuit Current

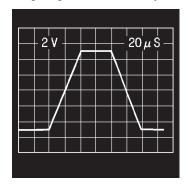

TYPICAL PERFORMANCE CHARACTERISTICS

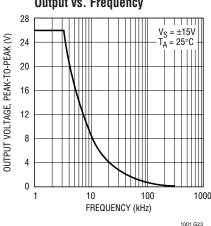
Small Signal Transient Response



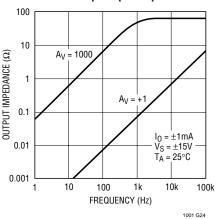
 $A_V = +1, C_L = 50pF$

Voltage Follower Overshoot vs Capacitive Load


Small Signal Transient Response


 $A_V = +1, C_L = 1000pF$

1, GL = 1000pr

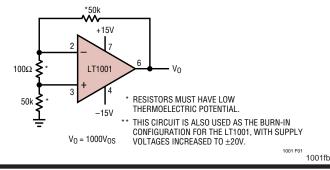

Large Signal Transient Response

Maximum Undistorted Output vs. Frequency

Closed Loop Output Impedance

APPLICATIONS INFORMATION

Application Notes and Test Circuits

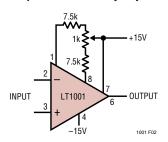

The LT1001 series units may be inserted directly into OP-07, OP-05, 725, 108A or 101A sockets with or without removal of external frequency compensation or nulling components. The LT1001 can also be used in 741, LF156 or OP-15 applications provided that the nulling circuitry is removed.

1001 G22

The LT1001 is specified over a wide range of power supply voltages from $\pm 3V$ to $\pm 18V$. Operation with lower supplies is possible down to $\pm 1.2V$ (two Ni-Cad batteries). However, with $\pm 1.2V$ supplies, the device is stable only in closed loop gains of +2 or higher (or inverting gain of one or higher).

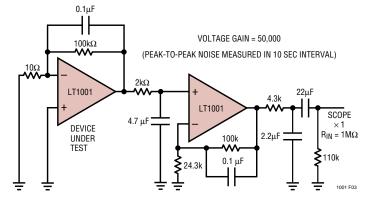
Unless proper care is exercised, thermocouple effects caused by temperature gradients across dissimilar metals at the contacts to the input terminals, can exceed the inherent drift of the amplifier. Air currents over device leads should be minimized, package leads should be short, and the two input leads should be as close together as possible and maintained at the same temperature.

Test Circuit for Offset Voltage and its Drift with Temperature

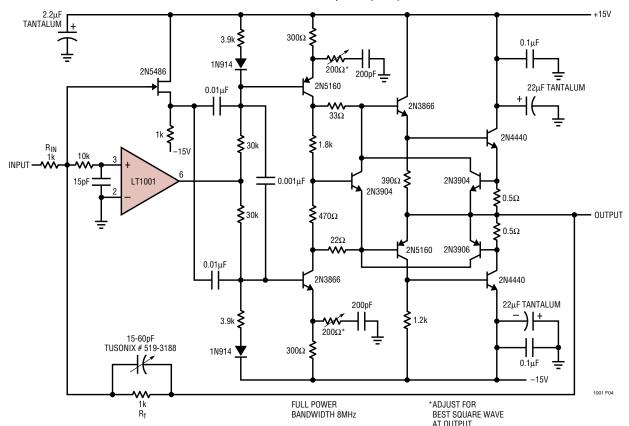


APPLICATIONS INFORMATION

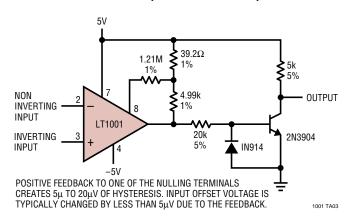
Offset Voltage Adjustment


The input offset voltage of the LT1001, and its drift with temperature, are permanently trimmed at wafer test to a low level. However, if further adjustment of Vos is necessary, nulling with a 10k or 20k potentiometer will not degrade drift with temperature. Trimming to a value other than zero creates a drift of $(Vos/300)\mu V/^{\circ}C$, e.g., if Vos is

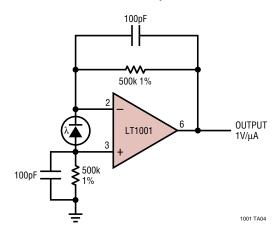
Improved Sensitivity Adjustment

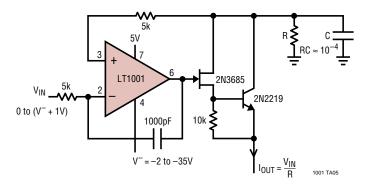

adjusted to 300 μ V, the change in drift will be 1 μ V/°C. The adjustment range with a 10k or 20k pot is approximately ± 2.5 mV. If less adjustment range is needed, the sensitivity and resolution of the nulling can be improved by using a smaller pot in conjunction with fixed resistors. The example below has an approximate null range of $\pm 100~\mu$ V.

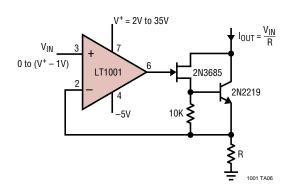
0.1Hz to 10Hz Noise Test Circuit

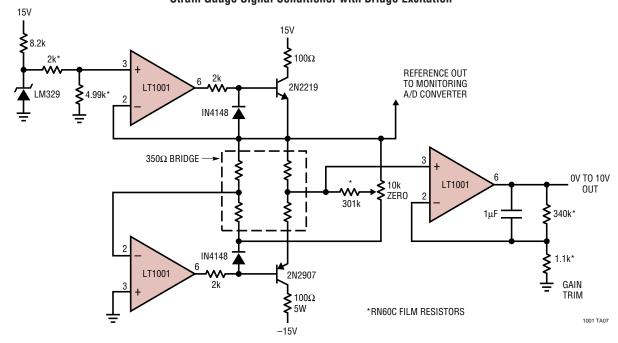

The device under test should be warmed up for three minutes and shielded from air currents.

DC Stabilized 1000v/µsec Op Amp

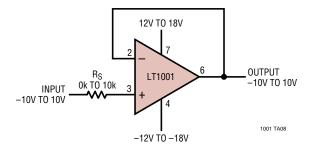



Microvolt Comparator with TTL Output

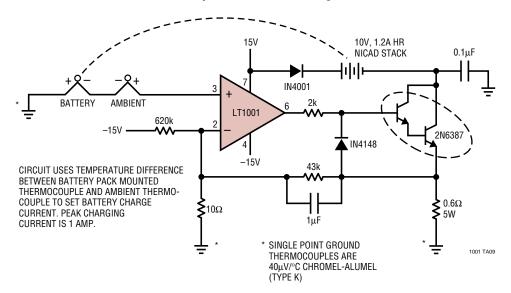

Photodiode Amplifier

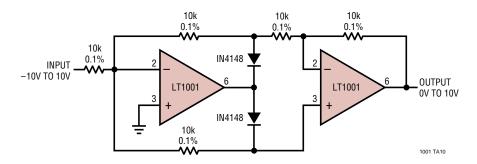

Precision Current Source

Precision Current Sink

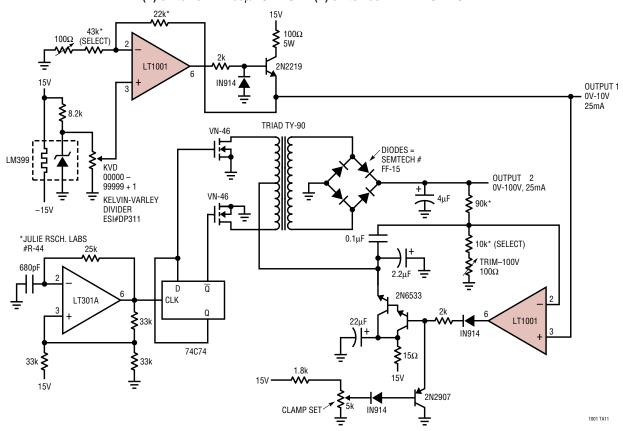


Strain Gauge Signal Conditioner with Bridge Excitation

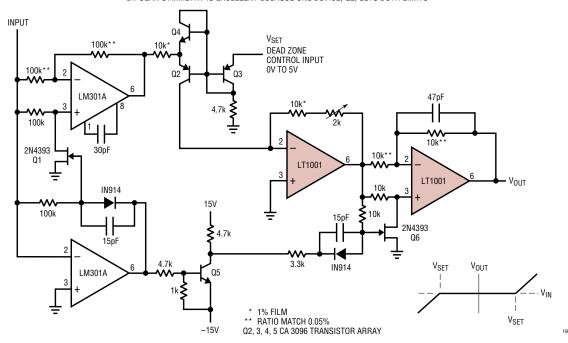

Large Signal Voltage Follower With 0.001% Worst Case Accuracy


The voltage follower is an ideal example illustrating the overall excellence of the LT1001. The contributing error terms are due to offset voltage, input bias current, voltage gain, common mode and power-supply rejections. Worst-case summation of guaranteed specifications is tabulated below.

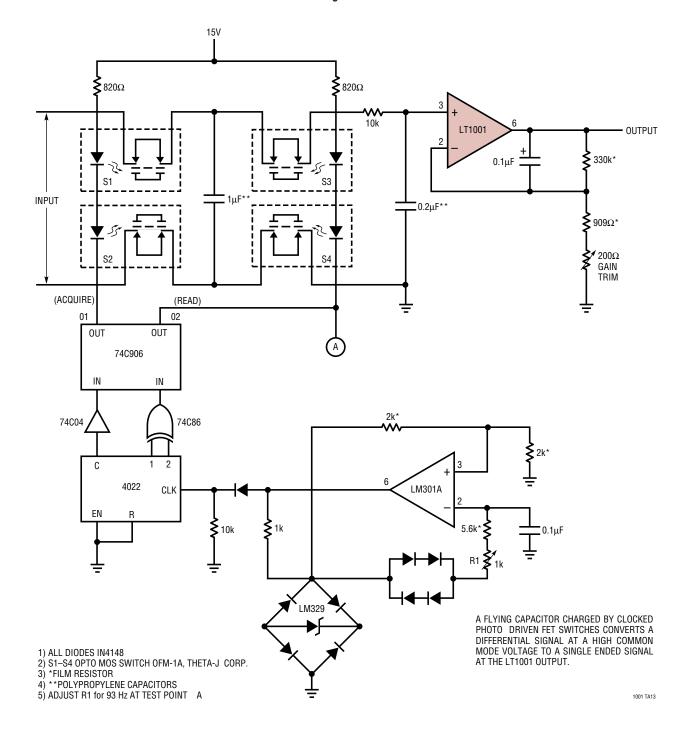
	OUTPUT ACCURACY								
	LT1001AM /883	LT1001C	LT1001AM /883	LT1001C					
Error	25°C Max.	25°C Max.	–55 to 125°C Max.	0 to 70°C Max.					
Offset Voltage	15μV	60μV	60μV	110μV					
Bias Current	20μV	40μV	40μV	55μV					
Common Mode Rejection	20μV	30μV	30μV	50μV					
Power Supply Rejection	18μV	30μV	36μV	42μV					
Voltage Gain	22μV	25μV	33μV	40μV					
Worst-case Sum	95μV	185μV	199μV	297μV					
Percent of Full Scale									
(=20V)	0.0005%	0.0009%	0.0010%	0.0015%					


Thermally Controlled NiCad Charger

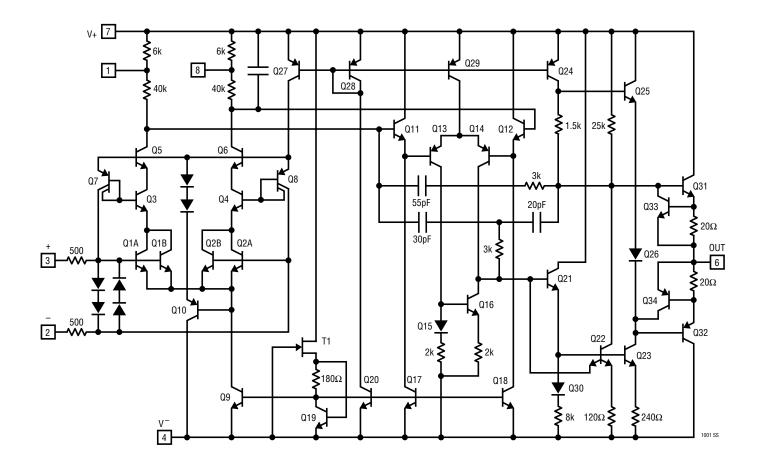
Precision Absolute Value Circuit

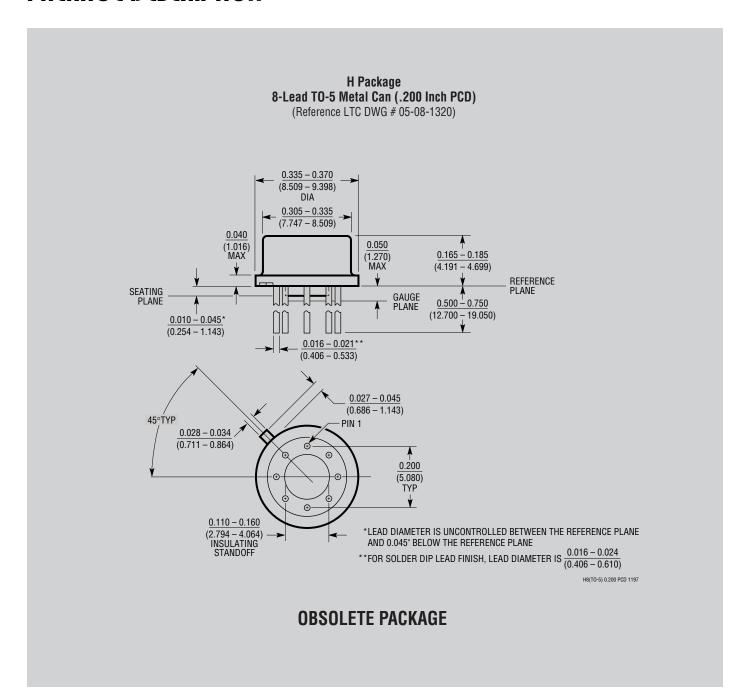


Precision Power Supply with Two Outputs (1) 0V to 10V in $100\mu V$ STEPS (2) 0V to 100V in 1mV STEPS

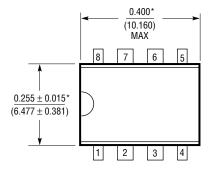

Dead Zone Generator

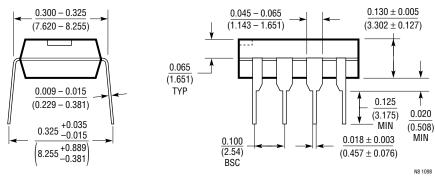
BIPOLAR SYMMETRY IS EXCELLENT BECAUSE ONE DEVICE, Q2, SETS BOTH LIMITS


LINEAR


Instrumentation Amplifier with $\pm 300V$ Common Mode Range and CMRR > 150dB

SCHEMATIC DIAGRAM

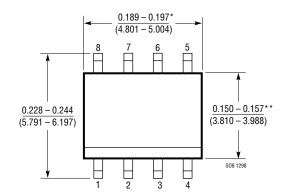


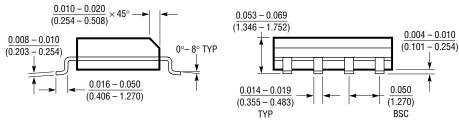


J8 Package 8-Lead CERDIP (Narrow .300 Inch, Hermetic) (Reference LTC DWG # 05-08-1110) 0.405 **CORNER LEADS OPTION** (4 PLCS) $\overline{(10.287)}$ 0.005 MAX (0.127)MIN 8 7 6 0.023 - 0.045(0.584 – 1.143) HALF LEAD OPTION 0.025 $0.220 - 0.310 \\ (5.588 - 7.874)$ 0.045 - 0.068(0.635) RAD TYP (1.143 – 1.727) FULL LEAD OPTION 2 3 0.200 0.300 BSC (5.080) MAX (0.762 BSC) $\frac{0.015 - 0.060}{(0.381 - 1.524)}$ 0.008 - 0.018 $0^{\circ} - 15^{\circ}$ (0.203 - 0.457)0.045 - 0.0650.125 NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE $(\overline{1.143 - 1.651})$ 3.175 OR TIN PLATE LEADS MIN 0.014 - 0.0260.100 (2.54) BSC $(\overline{0.360 - 0.660})$ J8 1298 **OBSOLETE PACKAGE**

N8 Package 8-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)





*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)

- *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
- **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE