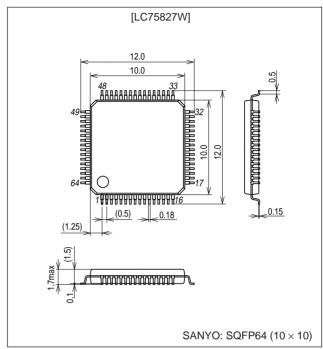
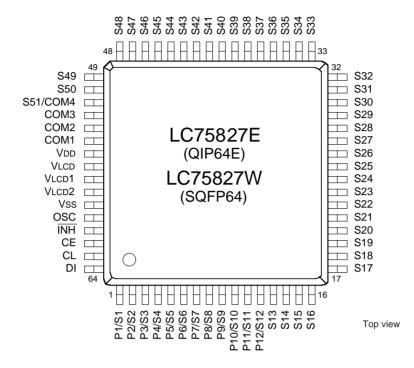

Package Dimensions


unit: mm

3159A-QIP64E

unit: mm

3190A-SQFP64



Specifications

Absolute Maximum Ratings at Ta = 25°C, V_{SS} = 0 V

Parameter	Symbol	Conditions	Ratings	Unit	
	V _{DD} max	V _{DD} max V _{DD}		v	
Maximum supply voltage	V _{LCD} max	V _{LCD}	-0.3 to +7.0		
	V _{IN} 1	CE, CL, DI, INH	-0.3 to +7.0		
Input voltage	V _{IN} 2	OSC	-0.3 to V _{DD} + 0.3	V	
	V _{IN} 3	V _{LCD} 1, V _{LCD} 2	-0.3 to V _{LCD} + 0.3	1	
Output voltage	V _{OUT} 1	V _{OUT} 1 OSC		V	
	V _{OUT} 2	S1 to S51, COM1 to COM4, P1 to P12	-0.3 to V _{LCD} + 0.3		
	I _{OUT} 1	S1 to S51	300	μA	
Output current	I _{OUT} 2	COM1 to COM4	3		
	I _{OUT} 3	P1 to P12	5	mA	
Allowable power dissipation	Pd max	Ta = 85°C	200	mW	
Operating temperature	Topr		-40 to +85	°C	
Storage temperature	Tstg		-55 to +125	°C	

Pin Assignment

Allowable Operating Ranges at Ta = -40 to $+85^{\circ}$ C, V_{SS} = 0 V

Parameter	Symbol	Conditions		Ratings					
Parameter	Symbol			typ	max	- Unit			
Cupply voltoge	V _{DD}	V _{DD}	2.7		6.0	v			
Supply voltage	V _{LCD}	V _{LCD}	2.7		6.0	V			
Innut voltore	V _{LCD} 1	V _{LCD} 1		2/3 V _{LCD}	V _{LCD}	v			
Input voltage	V _{LCD} 2	V _{LCD} 2		1/3 V _{LCD}	V _{LCD}	1 V			
land high land on the se	V _{IH} 1	CE, CL, DI, INH	0.8 V _{DD}		6.0	v			
Input high level voltage	V _{IH} 2	OSC: external clock mode	0.7 V _{DD}		V _{DD}				
1	V _{IL} 1	CE, CL, DI, INH	0		0.2 V _{DD}	v			
Input low level voltage	V _{IL} 2	OSC: external clock mode	0		0.3 V _{DD}				
Recommended external R _{OSC}		OSC: RC oscillation mode		39		kΩ			
Recommended external COSC		OSC: RC oscillation mode		1000		pF			
Guaranteed oscillation range f _{OSC}		OSC: RC oscillation mode	19	38	76	kHz			
External clock frequency f _{CK}		OSC: external clock mode Figure 4	19	38	76	kHz			
External clock duty	D _{CK}	OSC: external clock mode Figure 4	30	50	70	%			
Data setup time	t _{ds}	CL, DI: Figure 2, 3	160			ns			
Data hold time	t _{dh}	CL, DI: Figure 2, 3	160			ns			
CE wait time	t _{cp}	CE, CL: Figure 2, 3	160			ns			
CE setup time	t _{cs}	CE, CL: Figure 2, 3	160			ns			
CE hold time	t _{ch}	CE, CL: Figure 2, 3	160			ns			
High level clock pulse width	t _{øH}	CL: Figure 2, 3	160			ns			
Low level clock pulse width	tøL	CL: Figure 2, 3	160			ns			
Rise time	tr	CE, CL, DI: Figure 2, 3		160		ns			
Fall time	t _f	CE, CL, DI: Figure 2, 3		160		ns			
INH switching time	tc	INH, CE: Figure 5, 6	10			μs			

Parameter	Symbol	Conditions		Ratings				
Parameter	Symbol			typ	max	Unit		
Hysteresis	V _H	CE, CL, DI, INH		0.1 V _{DD}		V		
Innut high lovel ourrest	I _{IH} 1	CE, CL, DI, $\overline{\text{INH}}$: V _I = 6.0 V			5.0			
Input high level current	I _{IH} 2	OSC: V _I = V _{DD} , external clock mode			5.0	μA		
Innut loud ourrant	I _{IL} 1	CE, CL, DI, $\overline{\text{INH}}$: V _I = 0 V	-5.0					
Input low level current	I _{IL} 2	OSC: V _I = 0 V, external clock mode	-5.0			μA		
	V _{OH} 1	S1 to S51: I _O = -20 μA	V _{LCD} - 0.9					
Output high level voltage	V _{OH} 2	COM1 to COM4: $I_0 = -100 \mu A$	V _{LCD} - 0.9			V		
	V _{OH} 3	P1 to P12: I _O = -1 mA	V _{LCD} – 0.9					
	V _{OL} 1	S1 to S51: I _O = 20 μA			0.9			
Output low level voltage	V _{OL} 2	COM1 to COM4: $I_0 = 100 \ \mu A$			0.9	V		
	V _{OL} 3	P1 to P12: I _O = 1 mA			0.9			
	V _{MID} 1	COM1 to COM4: 1/2 bias, $I_0 = \pm 100 \ \mu A$	1/2 V _{LCD} – 0.9		1/2 V _{LCD} + 0.9			
	V _{MID} 2	S1 to S51: 1/3 bias, I _O = ±20 μA	2/3 V _{LCD} – 0.9		2/3 V _{LCD} + 0.9			
Output middle level voltage*1	V _{MID} 3	S1 to S51: 1/3 bias, I _O = ±20 μA	1/3 V _{LCD} – 0.9		1/3 V _{LCD} + 0.9	V		
	V _{MID} 4	COM1 to COM4: 1/3 bias, $I_0 = \pm 100 \ \mu A$	2/3 V _{LCD} – 0.9		2/3 V _{LCD} + 0.9			
	V _{MID} 5	COM1 to COM4: 1/3 bias, $I_0 = \pm 100 \ \mu A$	1/3 V _{LCD} – 0.9		1/3 V _{LCD} + 0.9			
Oscillator frequency	fosc	OSC: $R_{OSC} = 39 \text{ k}\Omega$, $C_{OSC} = 1000 \text{ pF}$	30.4	38	45.6	kHz		
	I _{DD} 1	V _{DD} : Power-saving mode			5			
	I _{DD} 2	V _{DD} : V _{DD} = 6.0 V, outputs open, f _{OSC} = 38 kHz		250	500			
Current drain	I _{LCD} 1	V _{LCD} : Power-saving mode			5			
	I _{LCD} 2	V_{LCD} : V_{LCD} = 6.0 V, outputs open, 1/2 bias, f _{OSC} = 38 kHz		100	200	μA		
	I _{LCD} 3	V_{LCD} : V_{LCD} = 6.0 V, outputs open, 1/3 bias, f _{OSC} = 38 kHz		60	120			

Electrical Characteristics for the Allowable Operating Ranges

Note: *1 Excluding the bias voltage generation divider resistors built in the V_{LCD}1 and V_{LCD}2. (See Figure 1.)

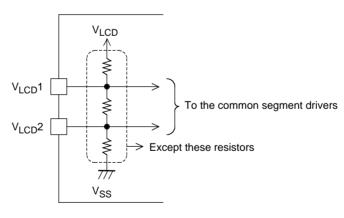
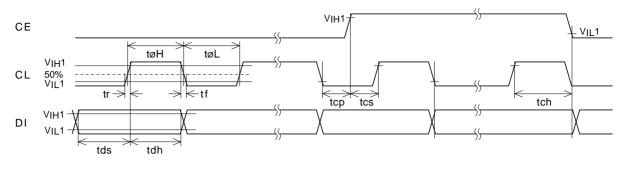



Figure 1

1. When CL is stopped at the low level

2. When CL is stopped at the high level

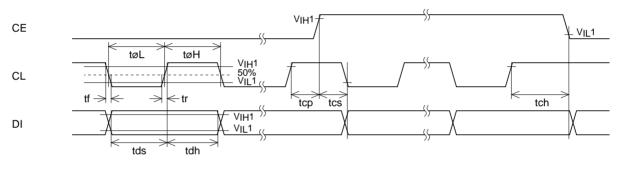


Figure 3

3. OSC Pin Clock Timing in External Clock Mode

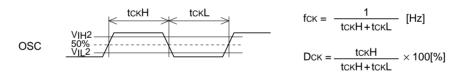
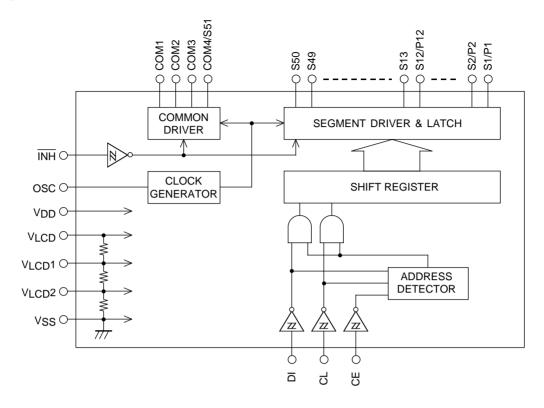
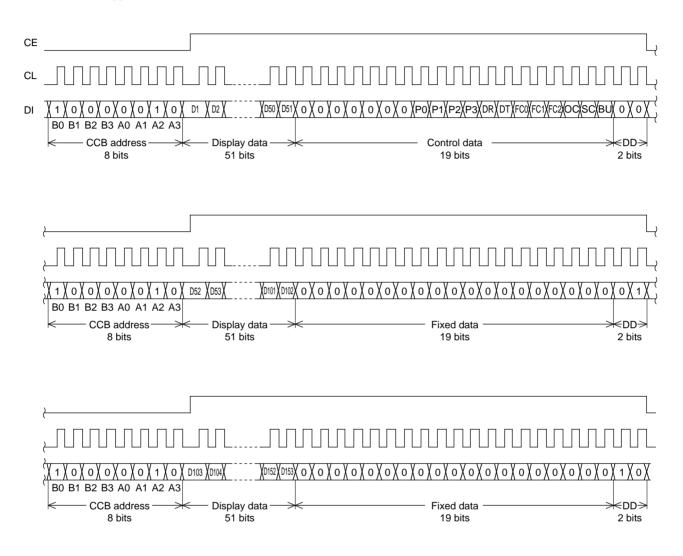
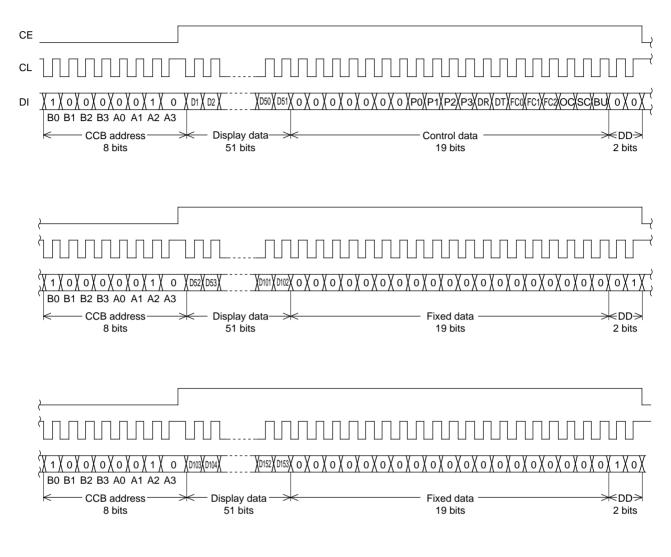



Figure 4

Block Diagram

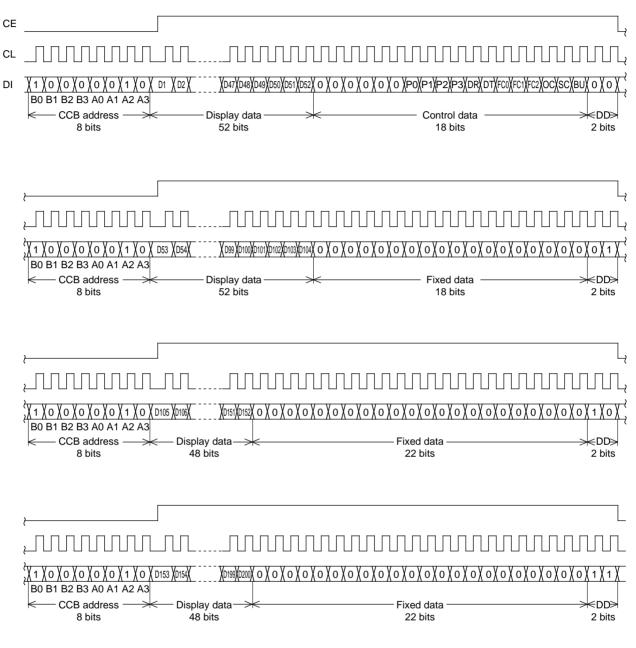

Pin Functions

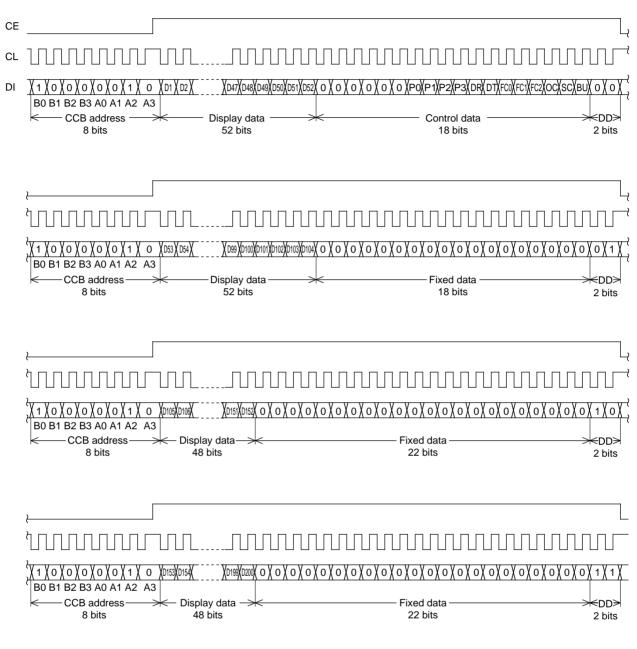
Pin	Pin No.	Function	Active	I/O	Handling when unused
S1/P1 to S12/P12 S13 to S50	1 to 12 13 to 50	Segment outputs for displaying the display data transferred by serial data input. The pins S1/P1 to S12/P12 can be used as general-purpose output ports when so set up by the control data.		0	Open
COM1 to COM3 COM4/S51	54 to 52 51	Common driver outputs. The frame frequency is f _O Hz. The COM4/S51 can be used for segment output in 1/3 duty.	_	0	Open
OSC	60	Oscillator connection. An oscillator circuit is formed by connecting an external resistor and capacitor to this pin. This pin can be used as the external clock input pin if external clock mode is selected with the control data.	_	I/O	V _{DD}
CE	62	Serial data transfer inputs. These pins are connected to the control	н	I	
CL	63	microprocessor. CE: Chip enable CL: Synchronization clock		I	GND
DI	64	DI: Transfer data	_	I	
ĪNH	61	$\label{eq:state} \begin{array}{ c c c c } \hline Display off control input \\ \bullet \ \overline{INH} = low (V_{SS})Off \\ & S1/P1 to S12/P12 = low (V_{SS}) \\ & (These pins are forcibly set to the segment output port function and fixed at the V_{SS} level.) \\ & S13 to S50 = low (V_{SS}) \\ & COM1 to COM3 = low (V_{SS}) \\ & COM4/S51 = low (V_{SS}) \\ & OSC = Z (High impedance) \\ \hline \ \overline{INH} = high (V_{DD})On \\ Note that serial data transfers can be performed when the display is forced off by this pin. \end{array}$	L	I	GND
V _{LCD} 1	57	Used to apply the LCD drive 2/3 bias voltage externally. This pin must be connected to $V_{LCD}2$ when 1/2 bias drive is used.	_	I	Open
V _{LCD} 2	58	Used to apply the LCD drive $1/3$ bias voltage externally. This pin must be connected to V _{LCD} 1 when $1/2$ bias drive is used.	_	I	Open
V _{DD}	55	Logic block power supply. Provide a voltage in the range 2.7 to 6.0 V.	_	_	
V _{LCD}	56	LCD driver block power supply. Provide a voltage in the range 2.7 to 6.0 V.	_	_	_
V _{SS}	59	Ground pin. Connect to ground.	_	_	_


Serial Data Transfer Format

1. 1/3 duty

① When CL is stopped at the low level


⁽²⁾ When CL is stopped at the high level


- CCB address......41H
- D1 to D153.....Display data
- P0 to P3Segment output port/general-purpose output port switching control data
- DR1/2 bias drive or 1/3 bias drive switching control data
- DT1/3 duty drive or 1/4 duty drive switching control data
- FC0 to FC2.....Common and segment output waveforms frame frequency setting control data
- OC.....Switches between RC oscillation mode and external clock mode
- SC.....Segments on/off control data
- BUNormal mode/power-saving mode control data

2. 1/4 duty

① When CL is stopped at the low level

⁽²⁾ When CL is stopped at the high level

- CCB address......41H
- D1 to D200.....Display data
- P0 to P3Segment output port/general-purpose output port switching control data
- DR1/2 bias drive or 1/3 bias drive switching control data
- DT1/3 duty drive or 1/4 duty drive switching control data
- FC0 to FC2.....Common and segment output waveforms frame frequency setting control data
- OCSwitches between RC oscillation mode and external clock mode
- SC.....Segments on/off control data
- BUNormal mode/power-saving mode control data

Serial Data Transfer Example

1. 1/3 duty

1 When 103 or more segments are used

All 216 bits of serial data must be sent.

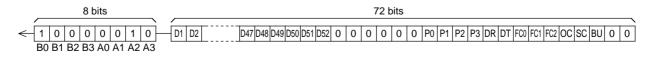
8 bits	72 bits
1 0 0 0 0 1 0 D1 D2 B0 B1 B2 B3 A0 A1 A2 A3	
1 0 0 0 1 0 D52 D53 B0 B1 B2 B3 A0 A1 A2 A3	
1 0 0 0 0 0	D149 D150 D151 D152 D153 O O O O O O O O O O O O O O O O O O O

⁽²⁾ When fewer than 103 segments are used


Either 72 or 144 bits of serial data may be sent, depending on the number of segments used. However, the serial data shown below (the D1 to D51 display data and the control data) must be sent.

8 bits	72 bits	
← 1 0 0 0 0 0 1 0 B0 B1 B2 B3 A0 A1 A2 A3	2 D47 D48 D49 D50 D51 0 0 0 0 0 0 0 P0 P1 P2 P3 DR DT FC0 FC1 FC2 OC SC BU 0	0

2. 1/4 duty


① When 153 or more segments are used

All 288 bits of serial data must be sent.

⁽²⁾ When fewer than 153 segments are used

Either 72, 144, or 216 bits of serial data may be sent, depending on the number of segments used. However, the serial data shown below (the D1 to D52 display data and the control data) must be sent.

Control Data Functions

 P0 to P3: Segment output port/general-purpose output port switching control data These control data bits switch the S1/P1 to S12/P12 output pins between their segment output port and generalpurpose output port functions.

	Contro	ol data							Output p	oin state					
P0	P1	P2	P3	S1/P1	S2/P2	S3/P3	S4/P4	S5/P5	S6/P6	S7/P7	S8/P8	S9/P9	S10/P10	S11/P11	S12/P12
0	0	0	0	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12
0	0	0	1	P1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12
0	0	1	0	P1	P2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12
0	0	1	1	P1	P2	P3	S4	S5	S6	S7	S8	S9	S10	S11	S12
0	1	0	0	P1	P2	P3	P4	S5	S6	S7	S8	S9	S10	S11	S12
0	1	0	1	P1	P2	P3	P4	P5	S6	S7	S8	S9	S10	S11	S12
0	1	1	0	P1	P2	P3	P4	P5	P6	S7	S8	S9	S10	S11	S12
0	1	1	1	P1	P2	P3	P4	P5	P6	P7	S8	S9	S10	S11	S12
1	0	0	0	P1	P2	P3	P4	P5	P6	P7	P8	S9	S10	S11	S12
1	0	0	1	P1	P2	P3	P4	P5	P6	P7	P8	P9	S10	S11	S12
1	0	1	0	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	S11	S12
1	0	1	1	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	S12
1	1	0	0	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12

Note: Sn (n = 1 to 12): Segment output ports

Pn (n = 1 to 12): General-purpose output ports

Also note that when the general-purpose output port function is selected, the output pins and the display data will have the correspondences listed in the tables below.

Output pip	Correspondin	g display data
Output pin	1/3 duty	1/4 duty
S1/P1	D1	D1
S2/P2	D4	D5
S3/P3	D7	D9
S4/P4	D10	D13
S5/P5	D13	D17
S6/P6	D16	D21
S7/P7	D19	D25
S8/P8	D22	D29
S9/P9	D25	D33
S10/P10	D28	D37
S11/P11	D31	D41
S12/P12	D34	D45

For example, when 1/4 duty drive scheme is used, if the general-purpose output port function is selected for the S4/P4 output pin, that output pin will output a high level (V_{LCD}) when the display data D13 is 1, and a low level (V_{SS}) when D13 is 0.

2. DR: 1/2 bias drive or 1/3 bias drive switching control data This control data bit selects either 1/2 bias drive or 1/3 bias drive.

DR	Bias drive scheme
0	1/3 bias drive
1	1/2 bias drive

3. DT: 1/3 duty drive or 1/4 duty drive switching control data This control data bit selects either 1/3 duty drive or 1/4 duty drive.

DT	Duty drive scheme	Output pin (COM4/S51) state
0	1/4 duty drive	COM4
1	1/3 duty drive	S51

Note: COM4: Common output S51: Segment output

4. FC0 to FC2: Common and segment output waveforms frame frequency setting control data These control data bits set the frame frequency for common and segment output waveforms.

	Control data	Frame frequency fo [Hz]	
FC0	FC1	FC2	
0	0	0	fosc/768, f _{CK} /768
0	0	1	fosc/576, f _{CK} /576
0	1	0	fosc/384, f _{CK} /384
0	1	1	fosc/288, f _{CK} /288
1	0	0	fosc/192, f _{CK} /192

5. OC: Switches between RC oscillation mode and external clock mode.

This control data bit selects the OSC pin function (RC oscillation mode or external clock mode).

OC	OSC pin function			
0	RC oscillation mode			
1 External clock mode				

Note: An external resistor, Rosc, and an external capacitor, Cosc, must be connected to the OSC pin if RC oscillation mode is selected.

6. SC: Segments on/off control data

This control data bit controls the on/off state of the segments.

SC	Display state			
0	On			
1	Off			

However, note that when the segments are turned off by setting SC to 1, the segments are turned off by outputting segment off waveforms from the segment output pins.

7. BU: Normal mode/power-saving mode control data

This control data bit selects either normal mode or power-saving mode.

BU	Mode
0	Normal mode
1	Power-saving mode [In RC oscillation mode (OC = 0), the OSC pin oscillator is stopped, and in external clock mode (OC = 1), acceptance of the external clock signal is stopped. In this mode the common and segment output pins go to the V_{SS} levels. However, the S1/P1 to S12/P12 output pins that are set to be general-purpose output ports by the control data P0 to P3 can be used as general-purpose output ports.]

Display Data to Segment Output Pin Correspondence

1. 1/3 duty

Segment output pin			СОМЗ
S1/P1	D1	D2	D3
S2/P2	D4	D5	D6
S3/P3	D7	D8	D9
S4/P4	D10	D11	D12
S5/P5	D13	D14	D15
S6/P6	D16	D17	D18
S7/P7	D19	D20	D21
S8/P8	D22	D23	D24
S9/P9	D25	D26	D27
S10/P10	D28	D29	D30
S11/P11	D31	D32	D33
S12/P12	D34	D35	D36
S13	D37	D38	D39
S14	D40	D41	D42
S15	D43	D44	D45
S16	D46	D47	D48
S17	D49	D50	D51
S18	D52	D53	D54
S19	D55	D56	D57
S20	D58	D59	D60
S21	D61	D62	D63
S22	D64	D65	D66
S23	D67	D68	D69
S24	D70	D71	D72
S25	D73	D74	D75
S26	D76	D77	D78

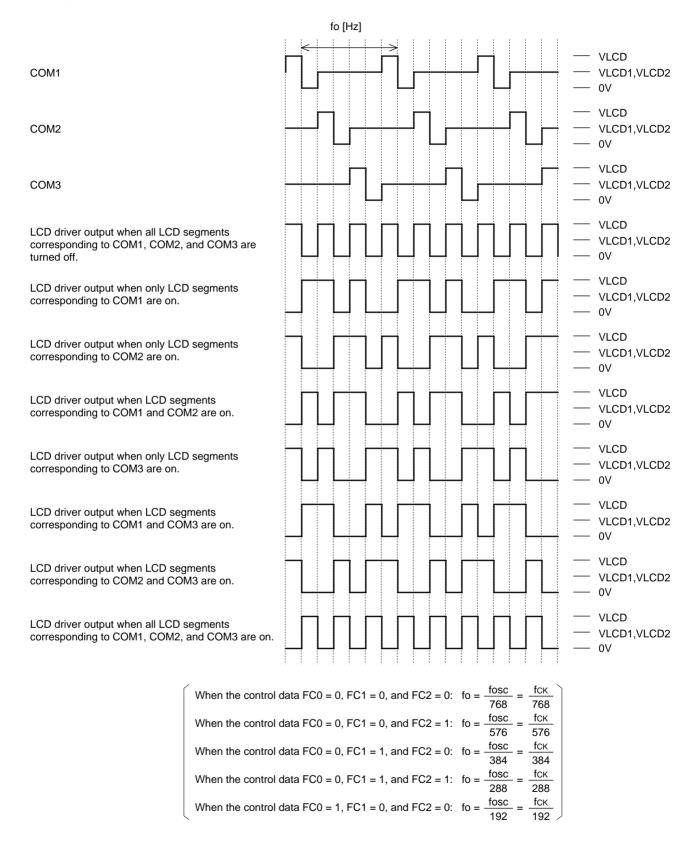
Segment output pin	COM1	COM2	СОМЗ	
S27	D79	D80	D81	
S28	D82	D83	D84	
S29	D85	D86	D87	
S30	D88	D89	D90	
S31	D91	D92	D93	
S32	D94	D95	D96	
S33	D97	D98	D99	
S34	D100	D101	D102	
S35	D103	D104	D105	
S36	D106	D107	D108	
S37	D109	D110	D111	
S38	D112	D113	D114	
S39	D115	D116	D117	
S40	D118	D119	D120	
S41	D121	D122	D123	
S42	D124	D125	D126	
S43	D127	D128	D129	
S44	D130	D131	D132	
S45	D133	D134	D135	
S46	D136	D137	D138	
S47	D139	D140	D141	
S48	D142	D143	D144	
S49	D145	D146	D147	
S50	D148	D149	D150	
COM4/S51	D151	D152	D153	

Note: This applies to the case where the S1/P1 to S12/P12, and COM4/S51 output pins are set to be segment output ports.

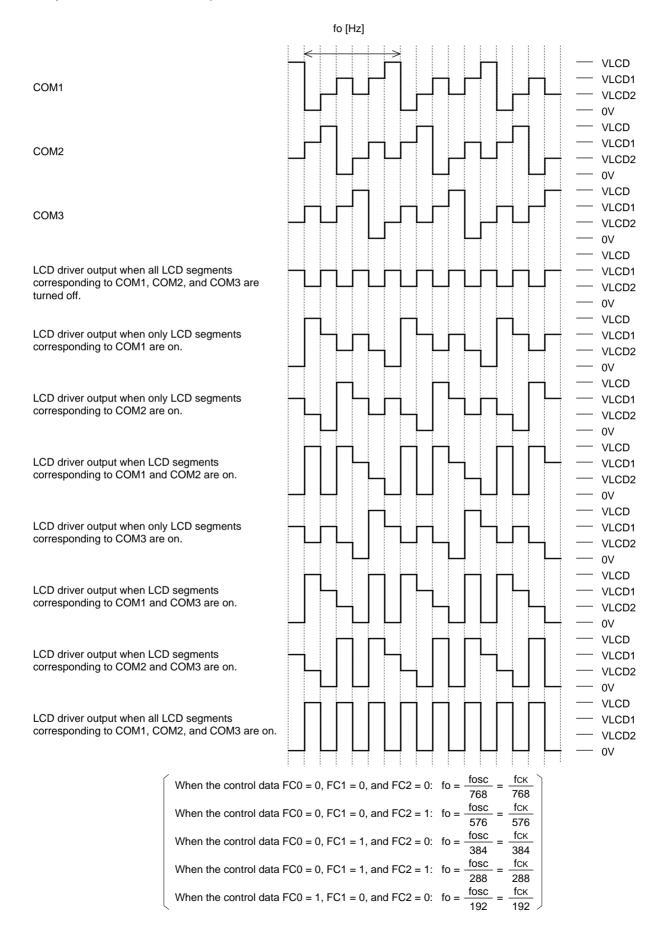
For example, the table below lists the segment output states for the S21 output pin.

Display data			Segment output pin (S21) state
D61	D62	D63	Segment output pin (S21) state
0	0	0	The LCD segments corresponding to COM1, COM2, and COM3 are off.
0	0	1	The LCD segment corresponding to COM3 is on.
0	1	0	The LCD segment corresponding to COM2 is on.
0	1	1	The LCD segments corresponding to COM2 and COM3 are on.
1	0	0	The LCD segment corresponding to COM1 is on.
1	0	1	The LCD segments corresponding to COM1 and COM3 are on.
1	1	0	The LCD segments corresponding to COM1 and COM2 are on.
1	1	1	The LCD segments corresponding to COM1, COM2, and COM3 are on.

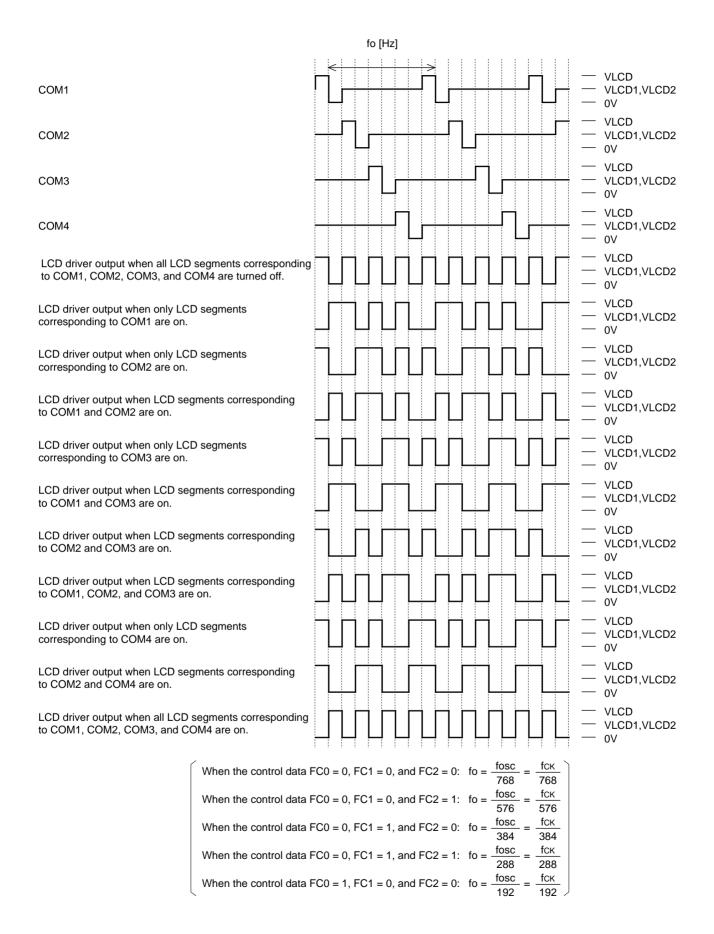
2. 1/4 duty

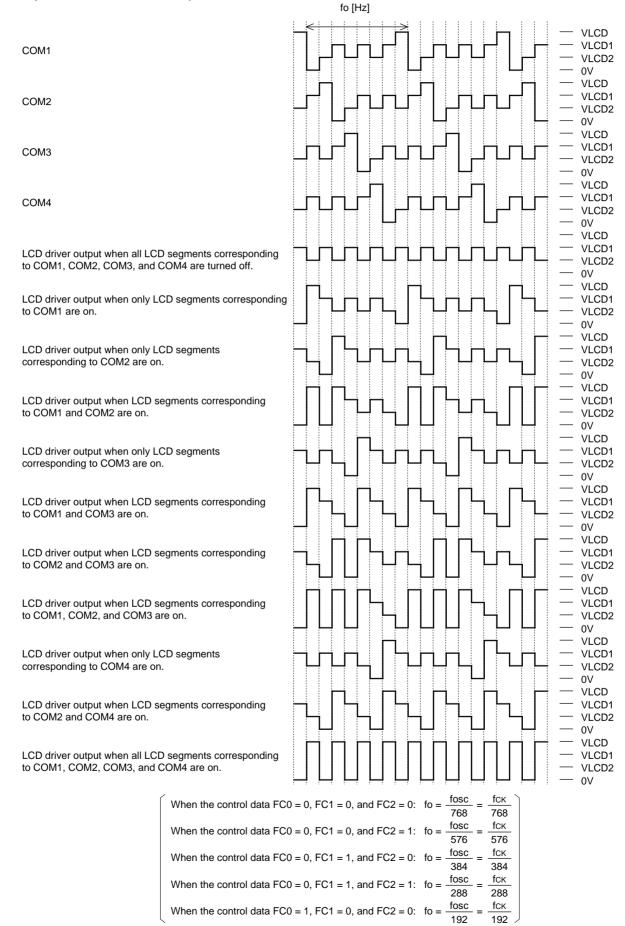

Segment output pin	COM1	COM2	COM3	COM4	Segment output pin	COM1	COM2	COM3	COM4
S1/P1	D1	D2	D3	D4	S26	D101	D102	D103	D104
S2/P2	D5	D6	D7	D8	S27	D105	D106	D107	D108
S3/P3	D9	D10	D11	D12	S28	D109	D110	D111	D112
S4/P4	D13	D14	D15	D16	S29	D113	D114	D115	D116
S5/P5	D17	D18	D19	D20	S30	D117	D118	D119	D120
S6/P6	D21	D22	D23	D24	S31	D121	D122	D123	D124
S7/P7	D25	D26	D27	D28	S32	D125	D126	D127	D128
S8/P8	D29	D30	D31	D32	S33	D129	D130	D131	D132
S9/P9	D33	D34	D35	D36	S34	D133	D134	D135	D136
S10/P10	D37	D38	D39	D40	S35	D137	D138	D139	D140
S11/P11	D41	D42	D43	D44	S36	D141	D142	D143	D144
S12/P12	D45	D46	D47	D48	\$37	D145	D146	D147	D148
S13	D49	D50	D51	D52	S38	D149	D150	D151	D152
S14	D53	D54	D55	D56	S39	D153	D154	D155	D156
S15	D57	D58	D59	D60	S40	D157	D158	D159	D160
S16	D61	D62	D63	D64	S41	D161	D162	D163	D164
S17	D65	D66	D67	D68	S42	D165	D166	D167	D168
S18	D69	D70	D71	D72	S43	D169	D170	D171	D172
S19	D73	D74	D75	D76	S44	D173	D174	D175	D176
S20	D77	D78	D79	D80	S45	D177	D178	D179	D180
S21	D81	D82	D83	D84	S46	D181	D182	D183	D184
S22	D85	D86	D87	D88	S47	D185	D186	D187	D188
S23	D89	D90	D91	D92	S48	D189	D190	D191	D192
S24	D93	D94	D95	D96	S49	D193	D194	D195	D196
S25	D97	D98	D99	D100	S50	D197	D198	D199	D200

Note: This applies to the case where the S1/P1 to S12/P12 output pins are set to be segment output ports.


For example, the table below lists the segment output states for the S21 output pin.

Display data			Comment output his (C21) state	
D81	D82	D83	D84	Segment output pin (S21) state
0	0	0	0	The LCD segments corresponding to COM1, COM2, COM3, and COM4 are off.
0	0	0	1	The LCD segment corresponding to COM4 is on.
0	0	1	0	The LCD segment corresponding to COM3 is on.
0	0	1	1	The LCD segments corresponding to COM3 and COM4 are on.
0	1	0	0	The LCD segment corresponding to COM2 is on.
0	1	0	1	The LCD segments corresponding to COM2 and COM4 are on.
0	1	1	0	The LCD segments corresponding to COM2 and COM3 are on.
0	1	1	1	The LCD segments corresponding to COM2, COM3, and COM4 are on.
1	0	0	0	The LCD segment corresponding to COM1 is on.
1	0	0	1	The LCD segments corresponding to COM1 and COM4 are on.
1	0	1	0	The LCD segments corresponding to COM1 and COM3 are on.
1	0	1	1	The LCD segments corresponding to COM1, COM3, and COM4 are on.
1	1	0	0	The LCD segments corresponding to COM1 and COM2 are on.
1	1	0	1	The LCD segments corresponding to COM1, COM2, and COM4 are on.
1	1	1	0	The LCD segments corresponding to COM1, COM2, and COM3 are on.
1	1	1	1	The LCD segments corresponding to COM1, COM2, COM3, and COM4 are on.


1/3 Duty, 1/2 Bias Drive Technique


1/3 Duty, 1/3 Bias Drive Technique

1/4 Duty, 1/2 Bias Drive Technique

1/4 Duty, 1/3 Bias Drive Technique

The INH pin and Display Control

Since the IC internal data (1/3 duty: the display data D1 to D153 and the control data, 1/4 duty: the display data D1 to D200 and the control data) is undefined when power is first applied, applications should set the \overline{INH} pin low at the same time as power is applied to turn off the display (This sets the S1/P1 to S12/P12, S13 to S50, COM1 to COM3, and COM4/S51 to the V_{SS} level.) and during this period send serial data from the controller. The controller should then set the \overline{INH} pin high after the data transfer has completed. This procedure prevents meaningless displays at power on. (See Figures 5and 6.)

Notes on the Power On/Off Sequences

Applications should observe the following sequences when turning the LC75827E and LC75827W power on and off.

- At power on: Logic block power supply (V_{DD}) on \rightarrow LCD driver block power supply (V_{LCD}) on
- At power off: LCD driver block power supply (V_{LCD}) off \rightarrow Logic block power supply (V_{DD}) off

However, if the logic and LCD driver block use a shared power supply, then the power supplies can be turned on and off at the same time.

1. 1/3 duty

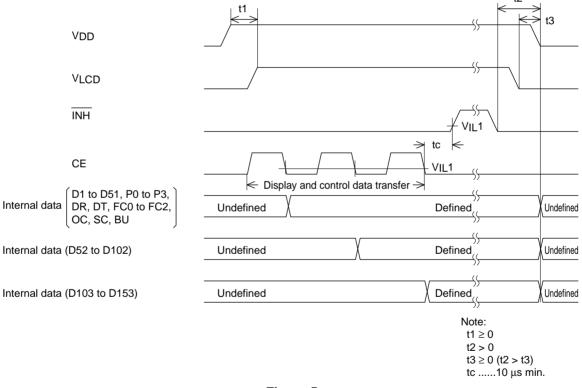
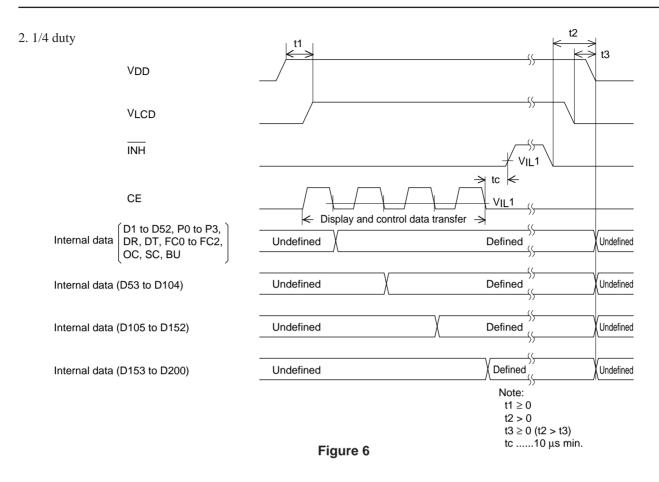
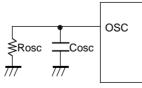
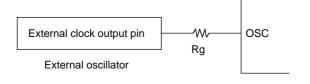



Figure 5

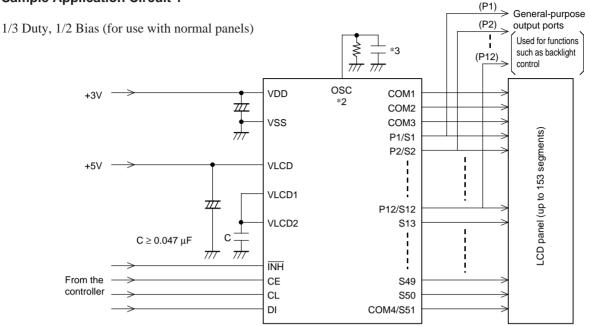

Notes on Controller Transfer of Display Data

Since the LC75827E and LC75827W accept the display data (D1 to D153) divided into three separate transfer operations when using 1/3 duty drive scheme and the data (D1 to D200) divided into four separate transfer operations when 1/4 duty drive, we recommend that applications transfer all of the display data within a period of less than 30 ms to prevent observable degradation of display quality.

OSC Pin Peripheral Circuit

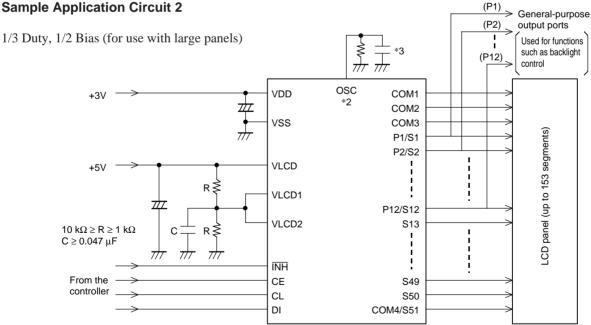

1. RC oscillation mode (control data OC = 0)

When RC oscillation mode is selected, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground.

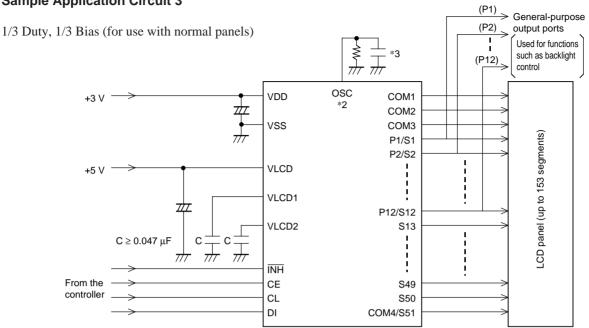


2. External clock mode (control data OC = 1)

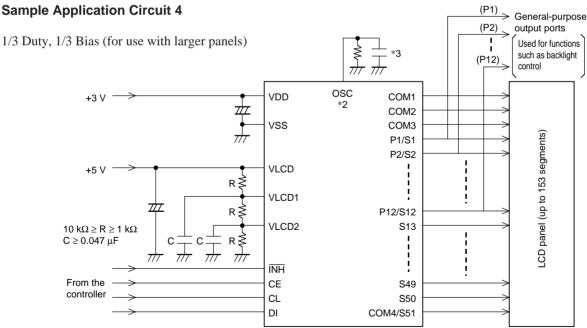
When external clock mode is selected, a current protection resistor, Rg (4.7 to 47 k Ω) must be inserted between the external clock output pin (on the external oscillator) and the OSC pin. The value of this resistor is determined by the allowable current capacity of the external clock output pin. Note that the value must also be chosen so that the external clock waveform is not deformed significantly.



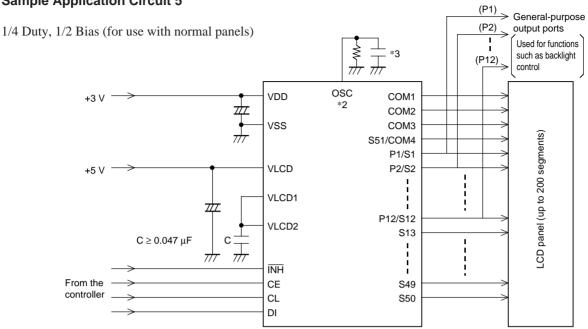
Note: The allowable current rating of the external clock output pin must be greater than VDD/Rg.


*2 In RC oscillation mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. In external clock mode is selected, a current protection resistor, Rg (4.7 to 47 kΩ) must be inserted between the external clock output pin (on the external oscillator) and the OSC pin. (See the "OSC Pin Peripheral Circuit" section.)

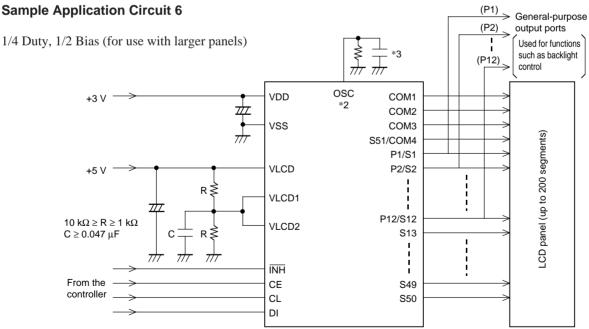
*3 When a capacitor except the recommended external capacitance (Cosc = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200 pF.


- *2 In RC oscillation mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. In external clock mode is selected, a current protection resistor, Rg (4.7 to 47 kΩ) must be inserted between the external clock output pin (on the external oscillator) and the OSC pin. (See the "OSC Pin Peripheral Circuit" section.)
- *3 When a capacitor except the recommended external capacitance (Cosc = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200 pF.

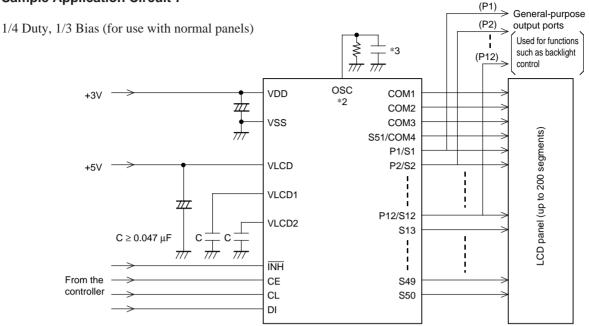
Sample Application Circuit 2


*2 In RC oscillation mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. In external clock mode is selected, a current protection resistor, Rg (4.7 to 47 kΩ) must be inserted between the external clock output pin (on the external oscillator) and the OSC pin. (See the "OSC Pin Peripheral Circuit" section.)

*3 When a capacitor except the recommended external capacitance (Cosc = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200 pF.

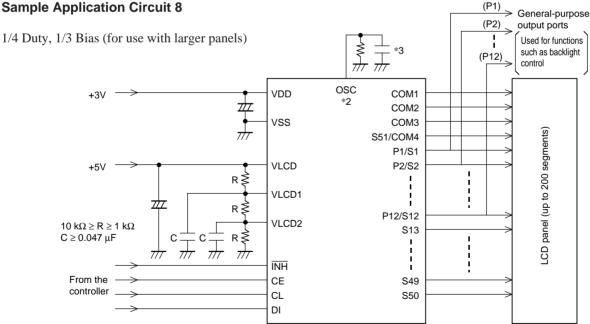

- *2 In RC oscillation mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. In external clock mode is selected, a current protection resistor, Rg (4.7 to 47 kΩ) must be inserted between the external clock output pin (on the external oscillator) and the OSC pin. (See the "OSC Pin Peripheral Circuit" section.)
- *3 When a capacitor except the recommended external capacitance (Cosc = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200 pF.

Sample Application Circuit 4



*2 In RC oscillation mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. In external clock mode is selected, a current protection resistor, Rg (4.7 to 47 kΩ) must be inserted between the external clock output pin (on the external oscillator) and the OSC pin. (See the "OSC Pin Peripheral Circuit" section.)

*3 When a capacitor except the recommended external capacitance (Cosc = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200 pF.



- *2 In RC oscillation mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. In external clock mode is selected, a current protection resistor, Rg (4.7 to 47 kΩ) must be inserted between the external clock output pin (on the external oscillator) and the OSC pin. (See the "OSC Pin Peripheral Circuit" section.)
- *3 When a capacitor except the recommended external capacitance (Cosc = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200 pF.

*2 In RC oscillation mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. In external clock mode is selected, a current protection resistor, Rg (4.7 to 47 kΩ) must be inserted between the external clock output pin (on the external oscillator) and the OSC pin. (See the "OSC Pin Peripheral Circuit" section.)

*3 When a capacitor except the recommended external capacitance (Cosc = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200 pF.

- *2 In RC oscillation mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. In external clock mode is selected, a current protection resistor, Rg (4.7 to 47 kΩ) must be inserted between the external clock output pin (on the external oscillator) and the OSC pin. (See the "OSC Pin Peripheral Circuit" section.)
- *3 When a capacitor except the recommended external capacitance (Cosc = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200 pF.

Sample Application Circuit 8

Downloaded from Arrow.com.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any and all SANYO products described or contained herein fall under strategic products (including services) controlled under the Foreign Exchange and Foreign Trade Control Law of Japan, such products must not be exported without obtaining export license from the Ministry of International Trade and Industry in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of August, 2004. Specifications and information herein are subject to change without notice.