LA6245P

Recommended Operating Conditions at $Ta = 25^{\circ}C$

	<i>.</i>			
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		5 to 13	V

Electrical Characteristics at Ta = 25°C, V_{CC}S = V_{CC}P1 = V_{CC}P2 = V_{CC}REG = 8V, V_{REF} = 2.5V, MUTE = 5V

Parameter	Symbol	Symbol Conditions		Ratings		Linit
Faranieter	Symbol			typ	max	Unit
[Overall]						
Quiescent current 1	I _{CC} -ON	I _{CC} -ON All channel outputs on, MUTE pin: high		30	45	mA
Quiescent current 2	I _{CC} -OFF	All channel outputs off, MUTE pin: low		5	10	mA
Muting function on voltage	MUTE-ON		2.5			V
Muting function off voltage	MUTE-OFF				0.5	V
Switch on voltage	SW-ON		2.5			V
Switch off voltage	SW-OFF				0.5	V
REGSW on voltage	REG-ON		2.5			V
REGSW off voltage	REG-OFF				0.5	V
[BTL Amplifier] (Channel 1 to 4) (Our	tput Amplifier Blocl	k)				
Input amplifier offset voltage	VOFF ¹	*	2 –50		50	mV
Output voltage	V _O 1	$R_L = 8\Omega$ *	1 5.7	6.2		V
I/O gain	V _G 1	*	2 5.4	6	6.6	Multiplier
Slew rate	SR1	With the amplifier operating independently, * between outputs	3	2.0		V/µs
[Front End Operational Amplifier]						
OP-AMP_SINK 1	OP_SINK	Input operational amplifier sink current	2			mA
OP-AMP_SOURCE 1	OP_SOURCE	Input operational amplifier source current	300	500		μΑ
Input bias current	IBOP				300	μΑ
Input voltage range	VIN		0.5		5	V
High-level output voltage	V _{OH} OP		7.5	7.8		V
Low-level output voltage	V _{OL} OP			0.2	0.5	V
[VREF-IN Amplifier]						
Input voltage range	V _{REF} _V _{IN}		1.3		4	V
[Independent Operational Amplifier]					-	
Output offset voltage	OP_VOFF		-6		6	mV
OP-AMP_SINK	OP_SINK	Input operational amplifier sink current	2			mA
OP-AMP_SOURCE	OP_SOURCE	Input operational amplifier source current	300	500		μΑ
Input bias current	IBOP				300	μΑ
Input voltage range	OP_V_{IN}		0		V _{CC} -1.5	V
High-level output voltage	V _{OH} OP		7.5	7.8		V
Low-level output voltage	V _{OL} OP			0.2	0.5	V
[Power Supply Block] (uses an external pnp transistor: 2SB632K)						
Power supply output	VOUT	I _O = 200mA	1.2	1.25	1.3	V
REG-IN sink current	REG-IN-SINK	The base current of the external PNP transistor	5.0	10		mA
Line regulation	ΔV _O LN	$6V \le V_{CC}REG \le 12V, I_O = 200mA$		10	50	mV
Load regulation	$\Delta V_O LD$	$5\text{mA} \le I_{O} \le 200\text{mA}$		10	50	mV

Note *1: The channel 1 input operational amplifier has a 0dB gain, i.e. it is a buffer amplifier.

*2: With the output in the saturated state.

*3: Design guarantee value

Package Dimensions

unit : mm

Pin Assignment

Pin Functions

Pin No.	Symbol	Pin description
1	V _{IN} 3 ⁻	Front end amplifier, channel 3 Input (-)
2	V _{IN} 3	Front end amplifier, channel 3 Output
3	VREF-IN	Reference voltage input
4	MUTE	Muting control
5	TSD	This pin outputs a low level when the thermal shutdown circuit operates.
6	SW	Switches between the loading and sled inputs.
7	GNDREG	Regulator system ground
8	REGSW	Regulator on/off control
9	GNDS	Signal system ground
10	REG-IN	Connection for the voltage divider output used to set the regulator voltage
11	REG-OUT	Base connection of external PNP transistor
12	VCCREG	Regulator power supply
13	OPOUT	Independent operational amplifier output pin
14	OP-	Independent operational amplifier (-)
15	OP+	Independent operational amplifier (+)
16	V _{IN} 2	Front end amplifier, channel 2 Output
17	V _{IN} 2 ⁻	Front end amplifier, channel 2 Input (-)
18	V _{CC} _S	Signal system power supply
19	V _{IN} 1LD	Front end amplifier for the loading system input
20	V _{IN} 1	Front end amplifier, channel 1 Output
21	V _{IN} 1 ⁻	Front end amplifier, channel 1 Input (-)
22	V _{CC} P1	Power stage power supply for channels 1 and 2
23	NC	No connection
24	V _O 1 ⁺	Channel 1 output (+)
25	V ₀ 1 ⁻	Channel 1 output (-)
26	V _O 2 ⁺	Channel 2 output (+)
27	V _O 2 ⁻	Channel 2 output (-)
28	V _O 3+	Channel 3 output (+)
29	V _O 3 ⁻	Channel 3 output (-)
30	V04+	Channel 4 output (+)
31	V _O 4-	Channel 4 output (-)
32	NC	No connection
33	NC	No connection
34	V _{CC} P2	Channels 3 and 4 : power stage power supply
35	V _{IN} 4 ⁻	Front end amplifier, channel 4 Input (1)
36	V _{IN} 4	Front end amplifier, channel 4 Output

Note: • The center frame (FR) is used as the power system ground (GNDP). Along with the signal system ground (GNDS), this level must be the lowest potential in the system.

• The V_{CC} -S (signal system power supply), V_{CC} P1, and V_{CC} P2 (output stage power supplies) must be shorted together externally.

Block Diagram

Pin Functions					
Pin No.	Symbol	Pin description	Equivalent circuit		
21 20 17 16 1 2 35 36	VIN ¹⁻ VIN ² VIN ² VIN ³⁻ VIN ³⁻ VIN ⁴⁻ VIN ⁴⁻	Channel 1 to 4 inputs	$\begin{array}{c c} V_{CC}S & V_{IN}1^{-} & V_{IN}1 \\ \hline \\ 300\Omega \\ \hline \\ GNDS \\ \hline \\ GNDS \\ \hline \\ \end{array}$		
24 25 26 27 28 29 30 31	V _O 1+ V _O 1- V _O 2+ V _O 2- V _O 3+ V _O 3- V _O 4+ V _O 4-	Channel 1 to 4 outputs	$V_{CC}P1$ V_{C		
4 6	MUTE SW	MUTE pin SW pin	$V_{CC}S \bigcirc \\ MUTE \bigcirc \\ SW \\ 40k\Omega \\ \\ 30k\Omega \\ \\ \\ GNDS \bigcirc \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		
3	V _{REF} -IN	Reference voltage	V _{CC} _S V _{REF} -IN SNDS GNDS		

Continued on next page.

LA6245P

Continued fr	om preceding pa	ge.	
Pin No.	Symbol	Pin description	Equivalent circuit
5	TSD	Thermal shutdown detection During normal operation: the transistor will be in the off state When the thermal shutdown circuit operates: the transistor will be in the on state	S0kΩ GNDS GNDS
19	V _{IN} 1LD	Loading system input	V _{CC} _S V _{IN} 1LD 20kΩ 10kΩ GNDS
15 14 13	OP+ OP- OPOUT	Independent operational amplifier Operation is not controlled by the muting function.	V _{CC} _S 300Ω GNDS GNDS
8 12 10 11 7	REGSW V _{CC} REG REG-IN REG-OUT GNDREG	Variable regulator Connect the REG-OUT pin to the base of the external pnp transistor. Connect the output of the external voltage divider to REG-IN.	V _{CC} REG REGSW 40kΩ S0kΩ GNDREG GNDREG

Relationship between the MUTE pin and SW

MUTE	SW	ch1	ch2 to ch4	
н	н	LD ON	MUTE = OFF	
н	L	SLED ON	MUTE = OFF	
L	н	LD ON	MUTE = ON	
L	L	MUTE = ON	MUTE = ON	

The MUTE = off state is the operating state (play), and the MUTE = on state is the stopped state.

Internal reference voltage are external reference voltage

Overview of the input/output relationship

The resistors R1 and R2 in the $V_{\mbox{IN}}\mbox{1LD}$ input block are internal to the IC.

REGSW Pin Operation

REGSW	REG
Н	REG = ON
L	REG = OFF

Sample Application Circuit

MSB06022

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of March, 2006. Specifications and information herein are subject to change without notice.