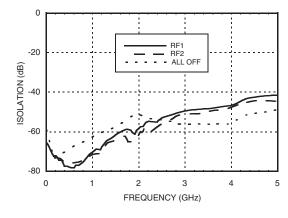
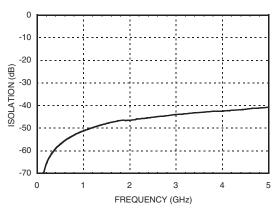


HIGH ISOLATION SPDT NON-REFLECTIVE SWITCH, DC - 4 GHz

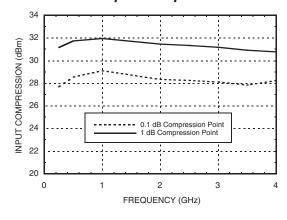
Insertion Loss



Return Loss



Note: RFC is reflective in "all off" state.


Isolation Between Ports RFC and RF1 / RF2

Isolation Between Ports RF1 and RF2

0.1 and 1 dB Input Compression Point

Input Third Order Intercept Point

HIGH ISOLATION SPDT NON-REFLECTIVE SWITCH, DC - 4 GHz

Absolute Maximum Ratings

RF Input Power (VctI = 0V/+5V) (0.25 - 4 GHz)	+30 dBm (T = +85 °C)
Supply Voltage Range (Vdd)	+7 Vdc
Control Voltage Range (Vctl)	-1V to Vdd +1V
Hot Switch Power Level (Vdd = +5V)	+30 dBm
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 12 mW/°C above 85 °C)	0.75 W
Thermal Resistance	87 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Note: DC blocking capacitors are required at ports RFC, RF1 and RF2. Their value will determine the lowest transmission frequency.

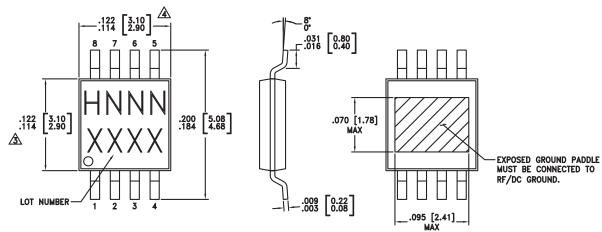
Bias Voltage & Current

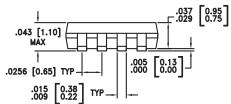
Vdd Range = +5.0 Vdc ± 10%		
Vdd (Vdc)	Idd (Typ.) (mA)	ldd (Max.) (mA)
+5.0	2.3	5.0

TTL/CMOS Control Voltages

State Bias Condition	
Low	0 to +0.8 Vdc @ <1 μA Typical
High	+2.0 to +5.0 Vdc @ 30 μA Typical

Truth Table


Control Input		Signal Path State		
Vctl	EN	RFC - RF1	RFC - RF2	
Low	Low	OFF	ON	
High	Low	ON	OFF	
Low	High	OFF	OFF	
High	High	OFF	OFF	



HIGH ISOLATION SPDT NON-REFLECTIVE SWITCH, DC - 4 GHz

Outline Drawing

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

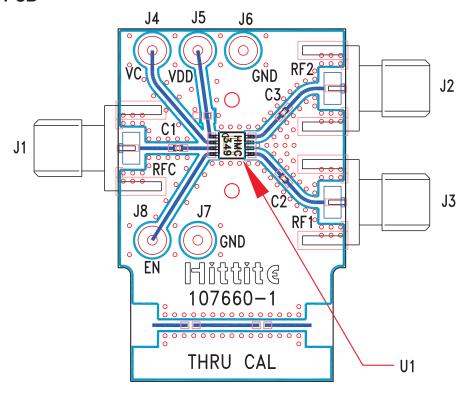
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC349MS8G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H349 XXXX
HMC349MS8GE RoHS-compliant Low Stress Injection Molded Plastic		100% matte Sn	MSL1 [2]	H349 XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

HIGH ISOLATION SPDT **NON-REFLECTIVE SWITCH, DC - 4 GHz**

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	Vdd	Supply Voltage.	
2	Vctl	Control input. See truth and control voltage tables.	Vctl 134K
3, 5, 8	RFC, RF1, RF2	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
4	EN	Enable. See truth and control voltage tables.	Vetl 134K
6, 7	GND	Package bottom must also be connected to PCB RF ground.	GND =


10

HIGH ISOLATION SPDT NON-REFLECTIVE SWITCH, DC - 4 GHz

Evaluation PCB

List of Materials for Evaluation PCB 107662 [1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4 - J8	DC Pin
C1 - C3	100 pF Capacitor, 0402 Pkg.
U1	HMC349MS8G / HMC349MS8GE SPDT Switch
PCB [2]	107660 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

^[2] Circuit Board Material: Rogers 4350