TABLE OF CONTENTS

Features 1
Applications1
General Description
Functional Block Diagrams1
Product Highlights1
Revision History
Specifications
Dual Supply7
Absolute Maximum Ratings9
ESD Caution9
Pin Configurations and Function Descriptions

REVISION HISTORY

Changes to	Ordering	Guide	20
Changes to	oracimg	Guide	-0

4/09-Rev. B to Rev. C

Changes to Table 1	3
Changes to Table 2	5
Changes to Table 3	7
Moved Truth Tables Section	11
Changes to Figure 7, Figure 8, and Figure 9	12
Changes to Figure 13 and Figure 14	13
Moved Terminology Section	18
Changes to Ordering Guide	20
5 5	

Truth Tables	11
Typical Performance Characteristics	12
Test Circuits	15
Terminology	18
Applications Information	19
Power Supply Sequencing	19
Outline Dimensions	20
Ordering Guide	20
Automotive Products	20

8/06-Rev. A to Rev. B

Updated Format	Universal
Changes to Absolute Maximum Ratings Section	9
Added Table 7 and Table 8	10
Updated Outline Dimensions	
Changes to Ordering Guide	

4/02—Rev. 0 to Rev. A

Edits to Features and Product Highlights	1
Change to Specifications	
Edits to Absolute Maximum Ratings Notes	5
Edits to TPCs 2, 5, 6-9, 11, and 15	
Edits to Test Circuits 9 and 10	
Addition of Test Circuit 11	

10/00—Revision 0: Initial Version

SPECIFICATIONS

 V_{DD} = 5 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 1.

		B Versio	n		C Version			
		–40°C to	–40°C to		–40°C to	–40°C to		Test Conditions/
Parameter	+25°C	+85°C	+125℃	+25°C	+85°C	+125℃	Unit	Comments
ANALOG SWITCH								
Analog Signal Range		0 V to	0 V to			0 V to	V	
	2	VDD	VDD	_		V _{DD}	<u>.</u>	
On Resistance (Ron)	3			3			Ωtyp	$v_s = 0 v$ to v_{DD} , $I_{DS} = 10 mA$; see Figure 20
	4.5	5	7	4.5	5	7	Ωmax	
On Resistance Match Between Channels (ΔR _{ON})	0.4			0.4			Ωtyp	
		0.8	1.5		0.8	1.5	Ωmax	$V_s = 0 V$ to V_{DD} , $I_{Ds} = 10 \text{ mA}$
On Resistance Flatness	0.75			0.75			Ωtyp	$V_{s} = 0 V$ to V_{DD} , $I_{Ds} = 10 \text{ mA}$
(R _{FLAT (ON)})								
		1.2	1.65		1.2	1.65	Ωmax	
LEAKAGE CURRENTS								$V_{DD} = 5.5 V$
Source Off Leakage, I _s (Off)	±0.01			±0.01			nA typ	$V_D = 4.5 V/1 V$, $V_S = 1 V/4.5 V$; see Figure 21
		±20	±20	±0.1	±0.3	±1	nA max	
Drain Off Leakage, I_D (Off)	±0.01			±0.01			nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
		+20	+20	+0 1	+0.75	+6	nA max	
Channel On Leakage, Ip, Is (On)	±0.01			±0.01	2000	_0	nA typ	$V_{\rm D} = V_{\rm S} = 1 \text{V} \text{ or } 4.5 \text{V}$:
							.71	see Figure 23
		±20	±20	±0.1	±0.75	±б	nA max	
DIGITAL INPUTS								
Input High Voltage, V _{INH}			2.4			2.4	V min	
Input Low Voltage, VINL			0.8			0.8	V max	
Input Current								
I _{INL} or I _{INH}	0.005			0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1			±0.1	µA max	
Digital Input Capacitance, C _{IN}	2			2			pF typ	
DYNAMIC CHARACTERISTICS ¹								
t transition	14			14			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; see Figure 24
		25	25		25	25	ns max	$V_{S1} = 3 V/0 V, V_{S8} = 0 V/3 V$
Break-Before-Make Time Delay, t _{OPEN}	8			8			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
-		1	1		1	1	ns min	Vs = 3 V; see Figure 25
ton (EN)	14			14			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		25	25		25	25	ns max	Vs = 3 V; see Figure 26
t _{off} (EN)	7			7			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		12	12		12	12	ns max	Vs = 3 V; see Figure 26
Charge Injection	±3			±3			pC typ	$V_{s} = 2.5 V, R_{s} = 0 \Omega,$
Officialities	60			60			ما 0 م	$C_L = 1$ nF; See Figure 2/
Off isolation	-60			-60			автур	$K_{L} = 5002, C_{L} = 5 \text{ pF}, T = 10 \text{ MHz}$
	-80			-80			ав тур	f = 1 MHz; see Figure 28

		B Versior	1		C Version	1		
Parameter	+25°C	–40°C to +85°C	-40°C to +125°C	+22°C	–40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/ Comments
Channel-to-Channel Crosstalk	-60	105 C	1125 C	-60	105 C	1125 C	dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, f = 10 MHz
	-80			-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
–3 dB Bandwidth	55			55			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 30
C _s (Off)	13			13			pF typ	f = 1 MHz
C _D (Off)								
ADG708	85			85			pF typ	f = 1 MHz
ADG709	42			42			pF typ	f = 1 MHz
C _D , C _s (On)								
ADG708	96			96			pF typ	f = 1 MHz
ADG709	48			48			pF typ	f = 1 MHz
POWER REQUIREMENTS								$V_{DD} = 5.5 V$
I _{DD}	0.001			0.001			μA typ	Digital inputs = 0 V or 5.5 V
		1.0	1.0		1.0	1.0	µA max	

¹ Guaranteed by design, not subject to production test.

 V_{DD} = 3 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

		B Version	1		C Version	า		
Parameter	+25°C	-40°C to +85°C	–40°C to +125°C	+25℃	-40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/ Comments
ANALOG SWITCH								
Analog Signal Range			0 V to V _{DD}			0 V to V _{DD}	V	
On Resistance (R _{ON})	8			8			Ωtyp	$V_{s} = 0 V$ to V_{DD} , $I_{DS} = 10 mA$; see Figure 20
	11	12	14	11	12	14	Ωmax	-
On Resistance Match Between Channels (ΔR _{ON})	0.4			0.4			Ωtyp	$ V_{\text{S}} = 0 \text{ V to } V_{\text{DD}}, \\ I_{\text{DS}} = 10 \text{ mA} $
		1.2	2		1.2	2	Ωmax	
LEAKAGE CURRENTS Source Off Leakage, Is (Off)	±0.01			±0.01			nA typ	$V_{DD} = 3.3 V$ $V_{S} = 3 V/1 V, V_{D} = 1 V/3 V;$
-								see Figure 21
		±20	±20	±0.1	±0.3	±1	nA max	
Drain Off Leakage, I _D (Off)	±0.01			±0.01			nA typ	$V_{s} = 3 V/1 V, V_{D} = 1 V/3 V;$ see Figure 22
		±20	±20	±0.1	±0.75	±б	nA max	
Channel On Leakage, I_D , I_s (On)	±0.01			±0.01			nA typ	$V_s = V_D = 1 V \text{ or } 3 V;$ see Figure 23
		±20	±20	±0.1	±0.75	±6	nA max	
DIGITAL INPUTS								
Input High Voltage, V _{INH}			2.0			2.0	V min	
Input Low Voltage, V _{INL}			0.8			0.8	V max	
Input Current								
linl or linh	0.005			0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1			±0.1	μA max	
Digital Input Capacitance, C _{IN}	2			2			pF typ	
DYNAMIC CHARACTERISTICS ¹								
t _{transition}	18			18			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; see Figure 24
		30	30		30	30	ns max	$V_{S1} = 2 V/0 V, V_{S2} = 0 V/2 V$
Break-Before-Make Time Delay, t _{OPEN}	8			8			ns typ	$R_L = 300 \ \Omega$, $C_L = 35 \ pF$
		1	1		1	1	ns min	Vs = 2 V; see Figure 25
t _{on} (EN)	18			18			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		30	30		30	30	ns max	Vs = 2 V; see Figure 26
t _{off} (EN)	8			8			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		15	15		15	15	ns max	V _s = 2 V; see Figure 26
Charge Injection	±3			±3			pC typ	$V_s = 1.5 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 27
Off Isolation	-60			-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, f = 10 MHz
	-80			-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, f = 1 MHz; see Figure 28
Channel-to-Channel Crosstalk	-60			-60			dB typ	$R_L = 50 \Omega, C_L = 5 pF,$ f = 10 MHz
	-80			-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, f = 1 MHz; see Figure 29
–3 dB Bandwidth	55			55			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 30

	B Version				C Versior	۱		
Parameter	+25°C	-40°C to +85°C	–40°C to +125°C	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/ Comments
C _s (Off)	13			13			pF typ	f = 1 MHz
C _D (Off)								
ADG708	85			85			pF typ	f = 1 MHz
ADG709	42			42			pF typ	f = 1 MHz
C _D , C _s (On)								
ADG708	96			96			pF typ	f = 1 MHz
ADG709	48			48			pF typ	f = 1 MHz
POWER REQUIREMENTS								$V_{DD} = 3.3 V$
I _{DD}	0.001			0.001			μA typ	Digital inputs = 0 V or 3.3 V
		1.0	1.0		1.0	1.0	μA max	

¹ Guaranteed by design, not subject to production test.

DUAL SUPPLY

 V_{DD} = 2.5 V \pm 10%, V_{SS} = –2.5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 3.

		B Versio	n	C Version				
		–40°C to	–40°C to		–40°C to	–40°C to		Test Conditions/
Parameter	+25℃	+85°C	+125℃	+25℃	+85°C	+125℃	Unit	Comments
ANALOG SWITCH								
Analog Signal Range			Vss to VDD			Vss to VDD	V	
On Resistance (R _{ON})	2.5			2.5			Ωtyp	$V_s = V_{ss}$ to V_{DD} , $I_{Ds} = 10$ mA;
	45	F	7	4.5	F	7	0 may	see Figure 20
On Resistance Match Between	4.5	J	/	4.5	5	/	0 typ	
Channels (ΔR_{ON})	0.4			0.4			32 typ	
		0.8	1.5		0.8	1.5	Ωmax	$V_s = V_{ss}$ to V_{DD} , $I_{Ds} = 10$ mA
On Resistance Flatness (R _{FLAT (ON)})	0.6			0.6			Ωtyp	$V_s = V_{ss}$ to V_{DD} , $I_{DS} = 10$ mA
		1.0	1.65		1.0	1.65	Ωmax	
LEAKAGE CURRENTS								$V_{DD} = +2.75 V, V_{SS} = -2.75 V$
Source Off Leakage, Is (Off)	±0.01			±0.01			nA typ	$V_s = +2.25 V/-1.25 V$,
								$V_D = -1.25 V/+2.25 V;$
								see Figure 21
	10.01	±20	±20	±0.1	±0.3	±1	nA max	
Drain Off Leakage, I_D (Off)	±0.01			±0.01			nA typ	$V_{\rm S} = +2.25 \text{ V}/-1.25 \text{ V},$ $V_{\rm D} = -1.25 \text{ V}/+2.25 \text{ V}.$
								see Figure 22
		±20	±20	±0.1	±0.75	±б	nA max	5
Channel On Leakage, I _D , I _S (On)	±0.01			±0.01			nA typ	$V_{\rm S} = V_{\rm D} = +2.25 \text{ V/}-1.25 \text{ V};$
-								see Figure 23
		±20	±20	±0.1	±0.75	±б	nA max	
DIGITAL INPUTS								
Input High Voltage, V _{INH}			1.7			1.7	V min	
Input Low Voltage, V _{INL}			0.7			0.7	V max	
Input Current								
linl or linh	0.005		. 0.1	0.005		. 0.1	µA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
Divital Insut Carecitor of C	2		±0.1	2		±0.1	μA max	
	2			2			рғ тур	
	14			14			ns typ	$P_{1} = 300 \cap C_{2} = 35 \text{ pE}$
LTRANSITION	14			14			ns typ	see Figure 24
		25	25		25	25	ns max	$V_s = 1.5 V/0 V$; see Figure 24
Break-Before-Make Time Delay,	8			8			ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
topen								
		1	1		1	1	ns min	Vs = 1.5 V; see Figure 25
t _{on} (EN)	14			14			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		25	25		25	25	ns max	$V_s = 1.5 V$; see Figure 26
t _{off} (EN)	8			8			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	_	15	15		15	15	ns max	$V_s = 1.5 V$; see Figure 26
Charge Injection	±3			±3			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 27
Off Isolation	-60			-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, f = 10 MHz
	-80			-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, f = 1 MHz; see Figure 28

		B Versior	า		C Version			
Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/ Comments
Channel-to-Channel Crosstalk	-60			-60			dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz$
	-80			-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, f = 1 MHz; see Figure 29
–3 dB Bandwidth	55			55			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 30
Cs (Off)	13			13			pF typ	f = 1 MHz
C _D (Off)								
ADG708	85			85			pF typ	f = 1 MHz
ADG709	42			42			pF typ	f = 1 MHz
C _D , C _s (On)								
ADG708	96			96			pF typ	f = 1 MHz
ADG709	48			48			pF typ	f = 1 MHz
POWER REQUIREMENTS								$V_{DD} = 2.75 V$
I _{DD}	0.001			0.001			μA typ	Digital inputs = 0 V or 2.75 V
		1.0	1.0		1.0	1.0	μA max	
lss	0.001			0.001			µA typ	$V_{SS} = -2.75 V$
		1.0	1.0		1.0	1.0	µA max	Digital inputs = 0 V or 2.75 V

¹ Guaranteed by design not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 4.

Parameter	Rating
V _{DD} to V _{SS}	7 V
V _{DD} to GND	–0.3 V to +7 V
V _{ss} to GND	+0.3 V to -3.5 V
Analog Inputs ¹	$\label{eq:Vss} \begin{array}{l} V_{\text{SS}} - 0.3 V to V_{\text{DD}} + 0.3 V \\ \text{or 30 mA, whichever} \\ \text{occurs first} \end{array}$
Digital Inputs ¹	-0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Maximum)	100 mA
Continuous Current, S or D	30 mA
Operating Temperature	
Industrial Temperature Range	-40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
TSSOP Package, Power Dissipation	432 mW
θ _{JA} Thermal Impedance	150.4°C/W
θ _{JC} Thermal Impedance	27.6°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C

¹ Overvoltages at A, EN, S, or D are clamped by internal codes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 4. ADG709 Pin Configuration

Table 5. ADG708 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	A0	Digital Input. Controls the configuration of the switch, as shown in the truth table (see Table 7).
2	EN	Digital Input. Controls the configuration of the switch, as shown in the truth table (see Table 7).
3	Vss	Most Negative Power Supply Pin in Dual-Supply Applications. For single-supply applications, it should be tied to GND.
4	S1	Source Terminal. Can be an input or output.
5	S2	Source Terminal. Can be an input or output.
6	S3	Source Terminal. Can be an input or output.
7	S4	Source Terminal. Can be an input or output.
8	D	Drain Terminal. Can be an input or output.
9	S8	Source Terminal. Can be an input or output.
10	S7	Source Terminal. Can be an input or output.
11	S6	Source Terminal. Can be an input or output.
12	S5	Source Terminal. Can be an input or output.
13	V _{DD}	Most Positive Power Supply Pin.
14	GND	Ground (0 V) Reference.
15	A2	Digital Input. Controls the configuration of the switch, as shown in the truth table (see Table 7).
16	A1	Digital Input. Controls the configuration of the switch, as shown in the truth table (see Table 7).

Table 6. ADG709 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	A0	Digital Input. Controls the configuration of the switch, as shown in the truth table (see Table 8).
2	EN	Digital Input. Controls the configuration of the switch, as shown in the truth table (see Table 8).
3	Vss	Most Negative Power Supply Pin in Dual-Supply Applications. For single-supply applications, it should be tied to GND.
4	S1A	Source Terminal. Can be an input or output.
5	S2A	Source Terminal. Can be an input or output.
6	S3A	Source Terminal. Can be an input or output.
7	S4A	Source Terminal. Can be an input or output.
8	DA	Drain Terminal. Can be an input or output.
9	DB	Drain Terminal. Can be an input or output.
10	S4B	Source Terminal. Can be an input or output.
11	S3B	Source Terminal. Can be an input or output.
12	S2B	Source Terminal. Can be an input or output.
13	S1B	Source Terminal. Can be an input or output.
14	V _{DD}	Most Positive Power Supply Pin.
15	GND	Ground (0 V) Reference.
16	A1	Digital Input. Controls the configuration of the switch, as shown in the truth table (see Table 8).

TRUTH TABLES

Table 7. ADG708 Truth Table

A2	A1	A0	EN	Switch Condition
X ¹	X ¹	X ¹	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

 1 X = Don't care.

Table 8. ADG709 Truth Table

A1	A0	EN	On Switch Pair
X ¹	X ¹	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

 1 X = Don't care.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance as a Function of V_D (V_s) for Single Supply

Figure 6. On Resistance as a Function of V_D (V_S) for Dual Supply

Figure 7. On Resistance as a Function of V_D (Vs) for Different Temperatures, Single Supply

Figure 8. On Resistance as a Function of $V_{\rm D}\,(V_{\rm S})$ for Different Temperatures, Single Supply

Figure 9. On Resistance as a Function of $V_{\rm D}$ (Vs) for Different Temperatures, Dual Supply

Figure 10. Leakage Currents as a Function of V_D (V_S)

Data Sheet

0.12 $V_{DD} = 3V$ $V_{SS} = 0V$ $T_A = 25^{\circ}C$ 0.08 ID (ON) 0.04 CURRENT (nA) 0 ٦ I_S (OFF) I_D (OFF) -0.04 -0.08 -0.12 0.5 00041-011 0 1.0 1.5 2.0 2.5 3.0 V_D , ($V_S = V_{DD}$ -- V_D) (V)

Figure 11. Leakage Currents as a Function of V_D (Vs)

Figure 13. Leakage Currents as a Function of Temperature

ADG708/ADG709

Figure 14. Leakage Currents as a Function of Temperature

Rev. E | Page 13 of 20

Figure 19. Charge Injection vs. Source Voltage

TEST CIRCUITS

Figure 28. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK = 20 log $\frac{V_{OUT}}{V_S}$

Figure 29. Channel-to-Channel Crosstalk

TERMINOLOGY

VDD

Most positive power supply potential.

Vss

Most negative power supply in a dual-supply application. In single-supply applications, tie V_{SS} to ground at the device.

GND

Ground (0 V) reference.

S

Source terminal. Can be an input or output.

D Drain terminal. Can be an input or output.

Ax Logic control input.

EN Active high enable.

Ron

Ohmic resistance between D and S.

RFLAT (ON)

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (Off) Source leakage current with the switch off.

 $I_{\text{D}}\left(Off\right)$ Drain leakage current with the switch off.

I_D, I_s (On) Channel leakage current with the switch on.

V_D (V_S) Analog voltage on Terminal D and Terminal S.

Cs (Off) Off switch source capacitance. Measured with reference to ground.

 $C_{\text{D}}\left(\text{Off}\right)$ Off switch drain capacitance. Measured with reference to ground.

 C_D , C_S (On) On switch capacitance. Measured with reference to ground.

C_{IN} Digital input capacitance.

tTRANSITION

Delay time measured between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

$t_{\rm ON}$ (EN)

Delay time between the 50% and 90% points of the EN digital input and the switch on condition.

 t_{OFF} (EN) Delay time between the 50% and 90% points of the EN digital input and the switch off condition.

t_{OPEN} Off time measured between the 80% points of both switches when switching from one address state to another.

Off Isolation A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Charge

A measure of the glitch impulse transferred from injection of the digital input to the analog output during switching.

Bandwidth The frequency at which the output is attenuated by 3 dB.

On Response The frequency response of the on switch.

On Loss The loss due to the on resistance of the switch.

V_{INL} Maximum input voltage for Logic 0.

 \mathbf{V}_{INH} Minimum input voltage for Logic 1.

I_{INL} (I_{INH}) Input current of the digital input.

IDD Positive supply current.

Iss Negative supply current.

APPLICATIONS INFORMATION POWER SUPPLY SEQUENCING

When using CMOS devices, take care to ensure correct power supply sequencing. Incorrect power supply sequencing can result in the device being subjected to stresses beyond the maximum ratings listed in Figure 4.

Always apply digital and analog inputs after power supplies and ground. For single-supply operation, tie V_{SS} to GND as close to the device as possible.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 31. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Package Option
ADG708BRU	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708BRU-REEL	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708BRU-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708BRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708BRUZ-REEL	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708BRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708CRU	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708CRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708CRUZ-REEL	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708CRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADW54008-0REEL7	-40°C to +105°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG709BRU	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG709BRU-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG709BRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG709BRUZ-REEL	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG709BRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG709CRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG709CRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

¹ Z = RoHS Compliant Part.

 2 W = Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The ADW54008 models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

©2000-2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00041-0-9/14(E)

Rev. E | Page 20 of 20

www.analog.com