# $\textbf{AD8014--SPECIFICATIONS} \ (@\ \textbf{T}_A = +25^{\circ}\textbf{C},\ \textbf{V}_S = \pm 5\ \textbf{V},\ \textbf{R}_L = 150\ \Omega,\ \textbf{R}_F = 1\ \textbf{k}\Omega,\ \textbf{Gain} = +2,\ \textbf{unless otherwise noted})$

|                                                                |                                                                                | AD8014AR/RT |             | RT        |                    |
|----------------------------------------------------------------|--------------------------------------------------------------------------------|-------------|-------------|-----------|--------------------|
| Parameter                                                      | Conditions                                                                     | Min         | Typ         | Max       | Units              |
| DYNAMIC PERFORMANCE                                            |                                                                                |             |             |           |                    |
| -3 dB Bandwidth Small Signal                                   | $G = +1, V_{\Omega} = 0.2 \text{ V p-p}, R_{L} = 1 \text{ k}\Omega$            | 400         | 480         |           | MHz                |
|                                                                | $G = -1$ , $V_{\Omega} = 0.2 \text{ V p-p}$ , $R_{L} = 1 \text{ k}\Omega$      | 120         | 160         |           | MHz                |
| -3 dB Bandwidth Large Signal                                   | $V_0 = 2 \text{ V p-p}$                                                        | 140         | 180         |           | MHz                |
| 3 ab banawaan barge orginar                                    | $V_{O} = 2 \text{ V p-p}, R_{F} = 500 \Omega$                                  | 170         | 210         |           | MHz                |
|                                                                | $V_0 = 2 \text{ V p-p, } R_F = 500 \Omega, R_L = 50 \Omega$                    | 1.0         | 130         |           | MHz                |
| 0.1 dB Small Signal Bandwidth                                  | $V_O = 0.2 \text{ V p-p, } R_L = 1 \text{ k}\Omega$                            |             | 12          |           | MHz                |
| 0.1 dB Large Signal Bandwidth                                  | $V_0 = 2 \text{ V p-p, } R_L = 1 \text{ k}\Omega$                              |             | 20          |           | MHz                |
| Slew Rate, 25% to 75%, $V_0 = 4$ V Step                        | $R_L = 1 \text{ k}\Omega, R_F = 500 \Omega$                                    |             | 4600        |           | V/µs               |
| Siew rate, 2570 to 7570, 10 1 1 Step                           | $R_{\rm L} = 1 \text{ k}\Omega$                                                |             | 2800        |           | V/μs               |
|                                                                | $G = -1$ , $R_L = 1 \text{ k}\Omega$ , $R_F = 500 \Omega$                      |             | 4000        |           | V/µs               |
|                                                                | $G = -1, R_L = 1 \text{ k}\Omega$                                              |             | 2500        |           | V/µs               |
| Settling Time to 0.1%                                          | $G = 1$ , $R_L = 1$ $R_2$<br>$G = +1$ , $V_O = 2$ V Step, $R_L = 1$ k $\Omega$ |             | 24          |           | ns                 |
| Rise and Fall Time 10% to 90%                                  | 2  V Step                                                                      |             | 1.6         |           | ns                 |
| rase and I an Time 1070 to 3070                                | G = -1, 2  V Step                                                              |             | 2.8         |           | ns                 |
| Overload Recovery to Within 100 mV                             | 0 V to ±4 V Step at Input                                                      |             | 60          |           | ns                 |
| ·                                                              | 0 v to 14 v Step at Input                                                      |             |             |           | 115                |
| NOISE/HARMONIC PERFORMANCE                                     |                                                                                |             |             |           | 150                |
| Total Harmonic Distortion                                      | $f_C = 5 \text{ MHz}, V_O = 2 \text{ V p-p}, R_L = 1 \text{ k}\Omega$          |             | -68         |           | dB                 |
|                                                                | $f_C = 5 \text{ MHz}, V_O = 2 \text{ V p-p}$                                   |             | -51         |           | dB                 |
|                                                                | $f_C = 20 \text{ MHz}, V_O = 2 \text{ V p-p}$                                  |             | -45         |           | dB                 |
| SFDR                                                           | $f_C = 20 \text{ MHz}, V_O = 2 \text{ V p-p}$                                  |             | -48         |           | dB                 |
| Input Voltage Noise                                            | f = 10  kHz                                                                    |             | 3.5         |           | $nV/\sqrt{Hz}$     |
| Input Current Noise                                            | f = 10  kHz                                                                    |             | 5           |           | pA/√ <del>Hz</del> |
| Differential Gain Error                                        | NTSC, G = +2, $R_F$ = 500 $\Omega$                                             |             | 0.05        |           | %                  |
|                                                                | NTSC, G = +2, $R_F$ = 500 $\Omega$ , $R_L$ = 50 $\Omega$                       |             | 0.46        |           | %                  |
| Differential Phase Error                                       | NTSC, G = +2, $R_F$ = 500 $\Omega$                                             |             | 0.30        |           | Degree             |
|                                                                | NTSC, G = +2, $R_F$ = 500 $\Omega$ , $R_L$ = 50 $\Omega$                       |             | 0.60        |           | Degree             |
| Third Order Intercept                                          | f = 10 MHz                                                                     |             | 22          |           | dBm                |
| DC PERFORMANCE                                                 |                                                                                |             |             |           |                    |
| Input Offset Voltage                                           |                                                                                |             | 2           | 5         | mV                 |
|                                                                | $T_{MIN}$ – $T_{MAX}$                                                          |             | 2           | 6         | mV                 |
| Input Offset Voltage Drift                                     |                                                                                |             | 10          |           | μV/°C              |
| Input Bias Current                                             | +Input or –Input                                                               |             | 5           | 15        | μA                 |
| Input Bias Current Drift                                       | •                                                                              |             | 50          |           | nA/°C              |
| Input Offset Current                                           |                                                                                |             | 5           |           | ±μΑ                |
| Open Loop Transresistance                                      |                                                                                | 800         | 1300        |           | kΩ                 |
| INPUT CHARACTERISTICS                                          |                                                                                |             |             |           |                    |
| Input Resistance                                               | +Input                                                                         |             | 450         |           | kΩ                 |
| Input Capacitance                                              | +Input                                                                         |             | 2.3         |           | pF                 |
| Input Capacitance Input Common-Mode Voltage Range              | - mput                                                                         | ±3.8        | $\pm 4.1$   |           | V                  |
| Common-Mode Rejection Ratio                                    | $V_{CM}$ = $\pm 2.5 \text{ V}$                                                 | ±5.6<br>−52 | -57         |           | dB                 |
| <u> </u>                                                       | Givi ———                                                                       |             |             |           |                    |
| OUTPUT CHARACTERISTICS                                         | P = 150 O                                                                      | 124         | <b></b> 0   |           | 17                 |
| Output Voltage Swing                                           | $R_L = 150 \Omega$                                                             | ±3.4        | ±3.8        |           | V                  |
| Ontrod Comment                                                 | $R_L = 1 k\Omega$                                                              | ±3.6        | $\pm 4.0$   |           | V                  |
| Output Current Short Circuit Current                           | $V_0 = \pm 2.0 \text{ V}$                                                      | 40          | 50<br>70    |           | mA                 |
|                                                                | 2 V = P = 1 lo P = 500 O                                                       |             | 70<br>40    |           | mA                 |
| Capacitive Load Drive for 30% Overshoot                        | 2 V p-p, $R_L$ = 1 kΩ, $R_F$ = 500 Ω                                           |             | 40          |           | pF                 |
| POWER SUPPLY                                                   |                                                                                |             |             |           |                    |
|                                                                |                                                                                | ±2.25       | ±5          | $\pm 6.0$ | l V                |
| Operating Range                                                |                                                                                | -2.23       |             |           | '                  |
| Operating Range Quiescent Current Power Supply Rejection Ratio | ±4 V to ±6 V                                                                   | _55         | 1.15<br>-58 | 1.3       | mA<br>dB           |

Specifications subject to change without notice.

# $\label{eq:continuous} \textbf{SPECIFICATIONS} \ \ (@\ T_A = +25^{\circ}C,\ V_S = +5\ V,\ R_L = 150\ \Omega,\ R_F = 1\ k\Omega,\ Gain = +2,\ unless\ otherwise\ noted)$

|                                                                                                                      |                                                                                                                                                                                                                                                                                         | AD8014AR/RT      |                                         |            |                                           |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|------------|-------------------------------------------|
| Parameter                                                                                                            | Conditions                                                                                                                                                                                                                                                                              | Min              | Typ                                     | Max        | Units                                     |
| DYNAMIC PERFORMANCE  -3 dB Bandwidth Small Signal                                                                    | $G = +1, V_O = 0.2 \text{ V p-p}, R_L = 1 \text{ k}\Omega$                                                                                                                                                                                                                              | 345              | 430                                     |            | MHz                                       |
| -3 dB Bandwidth Large Signal                                                                                         | $G = -1$ , $V_O = 0.2 \text{ V p-p}$ , $R_L = 1 \text{ k}\Omega$                                                                                                                                                                                                                        | 100<br>75        | 135<br>100                              |            | MHz<br>MHz                                |
| -5 db bandwidin Large Signai                                                                                         | $V_{O} = 2 \text{ V p-p}$<br>$V_{O} = 2 \text{ V p-p}, R_{F} = 500 \Omega$                                                                                                                                                                                                              | 90               | 115                                     |            | MHz                                       |
| 0.1 dB Small Signal Bandwidth 0.1 dB Large Signal Bandwidth Slew Rate, 25% to 75%, $V_{\rm O}$ = 2 V Step            | $V_{O} = 2 \text{ V p-p, } R_{F} = 500 \Omega, R_{L} = 75 \Omega$ $V_{O} = 0.2 \text{ V p-p, } R_{L} = 1 \text{ k}\Omega$ $V_{O} = 2 \text{ V p-p}$ $R_{L} = 1 \text{ k}\Omega, R_{F} = 500 \Omega$ $R_{L} = 1 \text{ k}\Omega$ $G = -1, R_{L} = 1 \text{ k}\Omega, R_{F} = 500 \Omega$ |                  | 100<br>10<br>20<br>3900<br>1100<br>1800 |            | MHz<br>MHz<br>MHz<br>V/μs<br>V/μs<br>V/μs |
| Settling Time to 0.1%<br>Rise and Fall Time 10% to 90%                                                               | $G = -1$ , $R_L = 1 \text{ k}\Omega$<br>$G = +1$ , $V_O = 2 \text{ V Step}$ , $R_F = 1 \text{ k}\Omega$<br>2 V Step<br>G = -1, 2 V Step                                                                                                                                                 |                  | 1100<br>24<br>1.9<br>2.8                |            | V/µs<br>ns<br>ns<br>ns                    |
| Overload Recovery to Within 100 mV                                                                                   | 0 V to ±2 V Step at Input                                                                                                                                                                                                                                                               |                  | 60                                      |            | ns                                        |
| NOISE/HARMONIC PERFORMANCE<br>Total Harmonic Distortion                                                              | $f_C = 5 \text{ MHz}, V_O = 2 \text{ V p-p}, R_L = 1 \text{ k}\Omega$<br>$f_C = 5 \text{ MHz}, V_O = 2 \text{ V p-p}$<br>$f_C = 20 \text{ MHz}, V_O = 2 \text{ V p-p}$                                                                                                                  |                  | -70<br>-51<br>-45                       |            | dB<br>dB<br>dB                            |
| SFDR                                                                                                                 | $f_C = 20 \text{ MHz}, V_O = 2 \text{ V p-p}$                                                                                                                                                                                                                                           |                  | -47                                     |            | dB                                        |
| Input Voltage Noise                                                                                                  | f = 10  kHz                                                                                                                                                                                                                                                                             |                  | 3.5                                     |            | $nV/\sqrt{Hz}$                            |
| Input Current Noise Differential Gain Error                                                                          | f = 10 kHz<br>NTSC, G = +2, $R_F$ = 500 Ω                                                                                                                                                                                                                                               |                  | 5<br>0.06                               |            | pA/√ <del>Hz</del><br>%                   |
| Differential Gain Error                                                                                              | NTSC, $G = +2$ , $R_F = 500 \Omega$<br>NTSC, $G = +2$ , $R_F = 500 \Omega$ , $R_L = 50 \Omega$                                                                                                                                                                                          |                  | 0.05                                    |            | %                                         |
| Differential Phase Error                                                                                             | NTSC, $G = +2$ , $R_F = 500 \Omega$<br>NTSC, $G = +2$ , $R_F = 500 \Omega$ , $R_L = 50 \Omega$                                                                                                                                                                                          |                  | 0.03<br>0.30                            |            | Degree<br>Degree                          |
| Third Order Intercept                                                                                                | f = 10  MHz                                                                                                                                                                                                                                                                             |                  | 22                                      |            | dBm                                       |
| DC PERFORMANCE Input Offset Voltage                                                                                  |                                                                                                                                                                                                                                                                                         |                  | 2                                       | 5          | mV                                        |
| Input Offset Voltage Drift<br>Input Bias Current<br>Input Bias Current Drift                                         | $T_{MIN}$ - $T_{MAX}$ +Input or -Input                                                                                                                                                                                                                                                  |                  | 2<br>10<br>5<br>50                      | 6<br>15    | mV<br>μV/°C<br>μΑ<br>nA/°C                |
| Input Offset Current Open Loop Transresistance                                                                       |                                                                                                                                                                                                                                                                                         | 750              | 5<br>1300                               |            | ±μΑ<br>kΩ                                 |
| INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio | +Input<br>+Input<br>V <sub>CM</sub> = 1.5 V to 3.5 V                                                                                                                                                                                                                                    | 1.2<br>-52       | 450<br>2.3<br>1.1 to 3.9<br>-57         | 3.8        | kΩ<br>pF<br>V<br>dB                       |
| OUTPUT CHARACTERISTICS                                                                                               | - Gra                                                                                                                                                                                                                                                                                   | † - <del>-</del> | <del></del>                             |            |                                           |
| Output Voltage Swing Output Current                                                                                  | $R_{L} = 150 \Omega \text{ to } 2.5 \text{ V}$<br>$R_{L} = 1 \text{ k}\Omega \text{ to } 2.5 \text{ V}$<br>$V_{O} = 1.5 \text{ V to } 3.5 \text{ V}$                                                                                                                                    | 1.4<br>1.2<br>30 | 1.1 to 3.9<br>0.9 to 4.1<br>50          | 3.6<br>3.8 | V<br>V<br>mA                              |
| Short Circuit Current Capacitive Load Drive for 30% Overshoot                                                        | $v_0 = 1.3 \text{ V } 10.3.3 \text{ V}$<br>2 V p-p, $R_L = 1 \text{ k}\Omega$ , $R_F = 500 \Omega$                                                                                                                                                                                      | J0               | 70<br>55                                |            | mA<br>mA<br>pF                            |
| POWER SUPPLY Operating Range                                                                                         |                                                                                                                                                                                                                                                                                         | 4.5              | 5                                       | 12         | V                                         |
| Quiescent Current<br>Power Supply Rejection Ratio                                                                    | 4 V to 5.5 V                                                                                                                                                                                                                                                                            | -55              | 1.0<br>-58                              | 1.15       | mA<br>dB                                  |

Specifications subject to change without notice.

Rev. C –3–

#### ABSOLUTE MAXIMUM RATINGS1

| Supply Voltage                            |
|-------------------------------------------|
| Internal Power Dissipation <sup>2</sup>   |
| Small Outline Package (R)                 |
| SOT-23-5 Package (RT)                     |
| Input Voltage Common Mode $\pm V_S$       |
| Differential Input Voltage ±2.5 V         |
| Output Short Circuit Duration             |
| Observe Power Derating Curves             |
| Storage Temperature Range65°C to +150°C   |
| Operating Temperature Range40°C to +85°C  |
| Lead Temperature (Soldering 10 sec)+300°C |
| ESD (Human Body Model) +1500 V            |

#### NOTES

#### MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by the AD8014 is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the

plastic. This is approximately +150°C. Even temporarily exceeding this limit may cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of +175°C may result in device failure.

The output stage of the AD8014 is designed for large load current capability. As a result, shorting the output to ground or to power supply sources may result in a very large power dissipation. To ensure proper operation it is necessary to observe the maximum power derating tables.

Table I. Maximum Power Dissipation vs. Temperature

| Ambient Temp<br>°C | Power Watts<br>SOT-23-5 | Power Watts<br>SOIC |
|--------------------|-------------------------|---------------------|
| <del>-4</del> 0    | 0.79                    | 1.19                |
| -20                | 0.71                    | 1.06                |
| 0                  | 0.63                    | 0.94                |
| +20                | 0.54                    | 0.81                |
| +40                | 0.46                    | 0.69                |
| +60                | 0.38                    | 0.56                |
| +80                | 0.29                    | 0.44                |
| +100               | 0.21                    | 0.31                |

#### CAUTION\_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8014 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



<sup>&</sup>lt;sup>1</sup> Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only, functional operation of the device at these or any other conditions above listed in the operational section of this specification is not implied. Exposure to Absolute Maximum Ratings for any extended periods may affect device reliability.

<sup>&</sup>lt;sup>2</sup> Specification is for device in free air at 25°C. 8-Lead SOIC Package  $\theta_{JA}$  = 155°C/W. 5-Lead SOT-23 Package  $\theta_{JA}$  = 240°C/W.

# **Typical Performance Characteristics—AD8014**

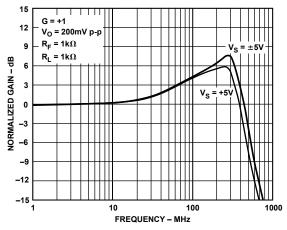



Figure 1. Frequency Response, G = +1,  $V_S = \pm 5$  V and +5 V

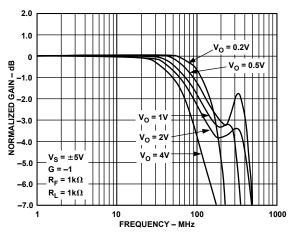



Figure 4. Bandwidth vs. Output Level—Gain of –1, Dual Supply

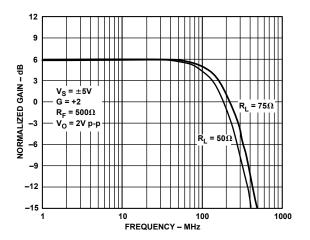



Figure 2. Frequency Response, G = +2,  $V_O = 2 V p-p$ 

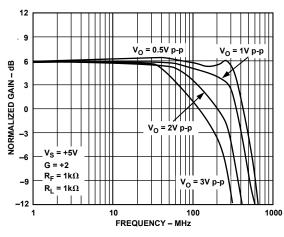



Figure 5. Bandwidth vs. Output Level—Single Supply, G = +2

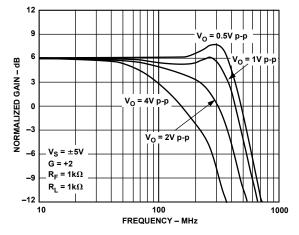



Figure 3. Bandwidth vs. Output Voltage Level— Dual Supply, G = +2

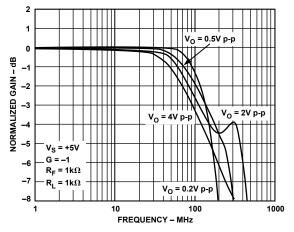



Figure 6. Bandwidth vs. Output Level—Single Supply, Gain of –1

Rev. C –5–

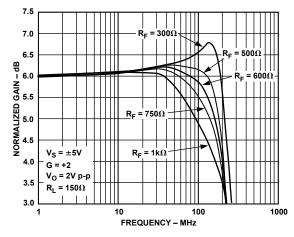



Figure 7. Bandwidth vs. Feedback Resistor—Dual Supply

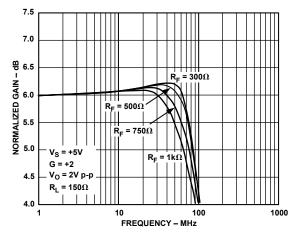



Figure 8. Bandwidth vs. Feedback Resistor—Single Supply

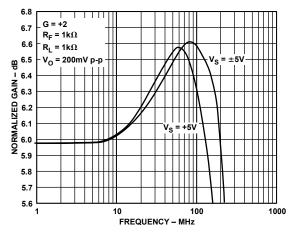



Figure 9. Gain Flatness—Small Signal

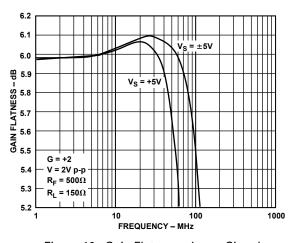



Figure 10. Gain Flatness—Large Signal

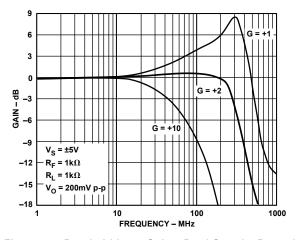



Figure 11. Bandwidth vs. Gain—Dual Supply,  $R_F = 1 \text{ k}\Omega$ 

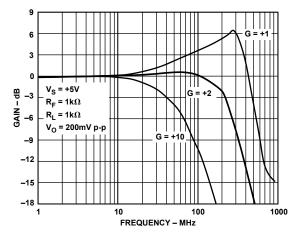



Figure 12. Bandwidth vs. Gain—Single Supply

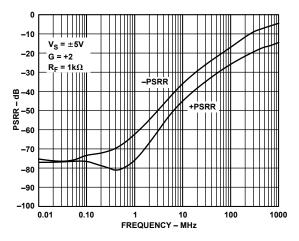



Figure 13. PSRR vs. Frequency

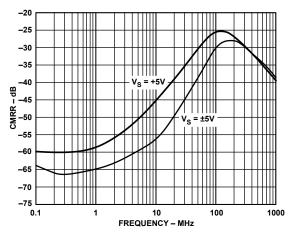



Figure 14. CMRR vs. Frequency

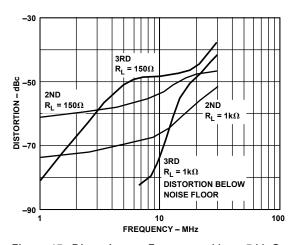



Figure 15. Distortion vs. Frequency;  $V_S = \pm 5 \text{ V}$ , G = +2

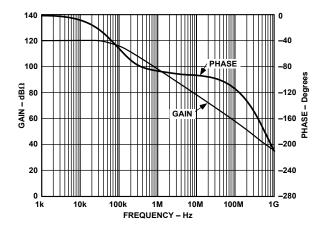



Figure 16. Transimpedance Gain and Phase vs. Frequency

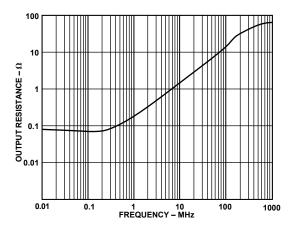



Figure 17. Output Resistance vs. Frequency,  $V_S = \pm 5~V$  and +5~V

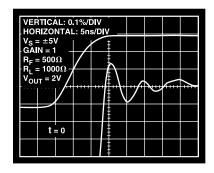



Figure 18. Settling Time

Rev. C –7–

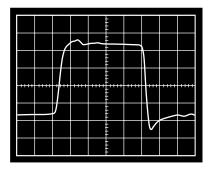



Figure 19. Large Signal Step Response;  $V_S = \pm 5 V$ ,  $V_O = 4 V$  Step

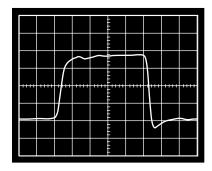



Figure 20. Large Signal Step Response;  $V_S = +5 V$ ,  $V_O = 2 V Step$ 

Note: On Figures 19 and 20  $R_F$  = 500  $\Omega$ ,  $R_S$  = 50  $\Omega$  and  $C_L$  = 20 pF.

#### **APPLICATIONS**

#### CD ROM and DVD Photodiode Preamp

High speed Multi-X CD ROM and DVD drives require high frequency photodiode preamps for their read channels. To minimize the effects of the photodiode capacitance, the low impedance of the inverting input of a current feedback amplifier is advantageous. Good group delay characteristics will preserve the pulse response of these pulses. The AD8014, having many advantages, can make an excellent low cost, low noise, low power, and high bandwidth photodiode preamp for these applications.

Figure 21 shows the circuit that was used to imitate a photodiode preamp. A photodiode for this application is basically a high impedance current source that is shunted by a small capacitance. In this case, a high voltage pulse from a Picosecond Pulse Labs Generator that is ac-coupled through a 20 k $\Omega$  resistor is used to simulate the high impedance current source of a photodiode. This circuit will convert the input voltage pulse into a small charge package that is converted back to a voltage by the AD8014 and the feedback resistor.

In this case the feedback resistor chosen was  $1.74~\text{k}\Omega$ , which is a compromise between maintaining bandwidth and providing sufficient gain in the preamp stage. The circuit preserves the pulse shape very well with very fast rise time and a minimum of overshoot as shown in Figure 22.

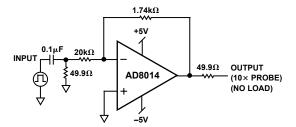



Figure 21. AD8014 as a Photodiode Preamp



Figure 22. Pulse Response

#### Video Drivers

The AD8014 easily drives series terminated cables with video signals. Because the AD8014 has such good output drive you can parallel two or three cables driven from the same AD8014. Figure 23 shows the differential gain and phase driving one video cable. Figure 24 shows the differential gain and phase driving two video cables. Figure 25 shows the differential gain and phase driving three video cables.

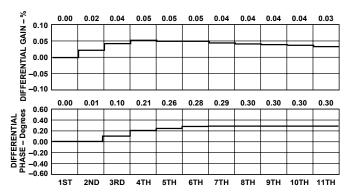



Figure 23. Differential Gain and Phase  $R_F$  = 500,  $\pm$ 5 V,  $R_L$  = 150  $\Omega$ , Driving One Cable, G = +2

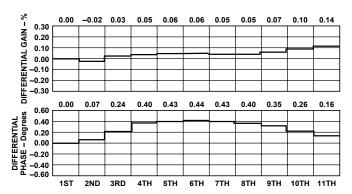



Figure 24. Differential Gain and Phase  $R_F$  = 500,  $\pm$ 5 V,  $R_L$  = 75  $\Omega$ , Driving Two Cables, G = +2

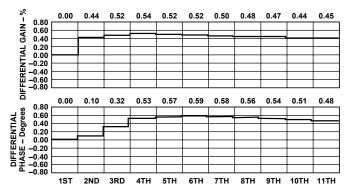



Figure 25. Differential Gain and Phase  $R_F$  = 500,  $\pm 5$  V,  $R_L$  = 50  $\Omega$ , Driving Three Cables, G = +2

#### **DRIVING CAPACITIVE LOADS**

The AD8014 was designed primarily to drive nonreactive loads. If driving loads with a capacitive component is desired, best settling response is obtained by the addition of a small series resistance as shown in Figure 26. The accompanying graph shows the optimum value for  $R_{\rm SERIES}$  vs. Capacitive Load. It is worth noting that the frequency response of the circuit when driving large capacitive loads will be dominated by the passive roll-off of  $R_{\rm SERIES}$  and  $C_{\rm L}$ .

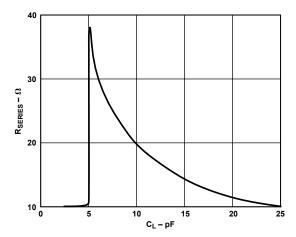
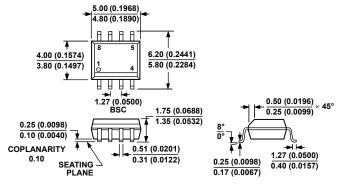



Figure 26. Driving Capacitive Load

#### **Choosing Feedback Resistors**

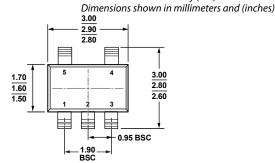
Changing the feedback resistor can change the performance of the AD8014 like any current feedback op amp. The table below illustrates common values of the feedback resistor and the performance which results.

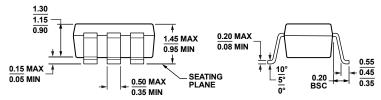

Table II.

| Gain | $R_{\mathrm{F}}$ | $R_G$        | $-3 dB BW$ $V_O = \pm 0.2 V$ $R_L = 1 k\Omega$ | $-3 dB BW$ $V_O = \pm 0.2 V$ $R_L = 150 \Omega$ |
|------|------------------|--------------|------------------------------------------------|-------------------------------------------------|
| +1   | 1 kΩ             | Open         | 480                                            | 430                                             |
| +2   | 1 kΩ             | 1 kΩ         | 280                                            | 260                                             |
| +10  | 1 kΩ             | 111 Ω        | 50                                             | 45                                              |
| -1   | 1 kΩ             | 1 kΩ         | 160                                            | 150                                             |
| -2   | 1 kΩ             | $499~\Omega$ | 140                                            | 130                                             |
| -10  | 1 kΩ             | 100 Ω        | 45                                             | 40                                              |
| +2   | 2 kΩ             | 2 kΩ         | 200*                                           | 180*                                            |
| +2   | 750 Ω            | 750 Ω        | 260*                                           | 210*                                            |
| +2   | 499 Ω            | $499~\Omega$ | 280*                                           | 230*                                            |

 $<sup>*</sup>V_{O} = \pm 1 \text{ V}.$ 

Rev. C –9–


### **OUTLINE DIMENSIONS**




#### COMPLIANT TO JEDEC STANDARDS MS-012-AA

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 27. 8-Lead Standard Small Outline Package [SOIC\_N] Narrow Body (R-8)





COMPLIANT TO JEDEC STANDARDS MO-178-AA

Figure 28. 5-Lead Small Outline Transistor Package [SOT-23] (RJ-5)

Dimensions shown in millimeters

#### **ORDERING GUIDE**

| Model <sup>1</sup> | Temperature Range | Package Description | Package Option | Branding |
|--------------------|-------------------|---------------------|----------------|----------|
| AD8014AR           | −40°C to +85°C    | 8-Lead SOIC_N       | R-8            |          |
| AD8014AR -REEL7    | −40°C to +85°C    | 8-Lead SOIC_N       | R-8            |          |
| AD8014ARZ          | −40°C to +85°C    | 8-Lead SOIC_N       | R-8            |          |
| AD8014ARZ-REEL     | −40°C to +85°C    | 8-Lead SOIC_N       | R-8            |          |
| AD8014ARZ-REEL7    | −40°C to +85°C    | 8-Lead SOIC_N       | R-8            |          |
| AD8014ART-R2       | −40°C to +85°C    | 5-Lead SOT-23       | RJ-5           | HAA      |
| AD8014ART-REEL7    | −40°C to +85°C    | 5-Lead SOT-23       | RJ-5           | HAA      |
| AD8014ARTZ-R2      | -40°C to +85°C    | 5-Lead SOT-23       | RJ-5           | H09      |
| AD8014ARTZ-REEL    | −40°C to +85°C    | 5-Lead SOT-23       | RJ-5           | H09      |
| AD8014ARTZ-REEL7   | −40°C to +85°C    | 5-Lead SOT-23       | RJ-5           | H09      |

<sup>1</sup> Z = RoHS Compliant Part.

### **REVISION HISTORY**

| Changes to Figure 22       | 8 |
|----------------------------|---|
| Updated Outline Dimensions |   |
| Changes to Ordering Guide  |   |

Rev. C