Vitesse Corporate Headquarters 741 Calle Plano Camarillo, California 93012 United States

www.vitesse.com

Copyright© 2011 by Vitesse Semiconductor Corporation

Vitesse Semiconductor Corporation ("Vitesse") retains the right to make changes to its products or specifications to improve performance, reliability or manufacturability. All information in this document, including descriptions of features, functions, performance, technical specifications and availability, is subject to change without notice at any time. While the information furnished herein is held to be accurate and reliable, no responsibility will be assumed by Vitesse for its use. Furthermore, the information contained herein does not convey to the purchaser of microelectronic devices any license under the patent right of any manufacturer.

Vitesse products are not intended for use in products or applications, including, but not limited to, medical devices (including life support and implantable medical devices), nuclear products, or other safety-critical uses where failure of a Vitesse product could reasonably be expected to result in personal injury or death. Anyone using a Vitesse product in such an application without express written consent of an officer of Vitesse does so at their own risk, and agrees to fully indemnify Vitesse for any damages that may result from such use or sale.

Safety of Laser Products, IEC 60825. While Vitesse products support IEC 60825, use of Vitesse products does not ensure compliance to IEC 60825. Buyers are responsible for ensuring compliance to IEC 60825. Buyers must fully indemnify Vitesse for any damages resulting from non-compliance to IEC 60825.

Vitesse Semiconductor Corporation is a registered trademark. All other products or service names used in this publication are for identification purposes only, and may be trademarks or registered trademarks of their respective companies. All other trademarks or registered trademarks mentioned herein are the property of their respective holders.

Contents

Rev	ision	History	9
1	Pro	oduct Overview	10
•	1.1	Features and Benefits	
	1.1	Applications	
2	Fun	nctional Descriptions	
_	2.1	Reset	
	2.2	Initialization	
	2.3	Page-Based Programming	
	2.4	Two-Wire Serial Interface (Slave Mode)	
		2.4.1 Serial Write	
		2.4.2 Serial Read	
		2.4.3 Serial Addressing	
	2.5	Two-Wire Serial Interface (Master Mode)	
	2.6	Four-Wire (SPI) Serial Interface	
	2.7	Parallel Programming Interface	
	2.8	Crosspoint Connections	
		2.8.1 Program a Connection through the Switch Core	
		2.8.2 Configure the Selected Input	
	2.9	Simultaneous Connections using the Config Pins	
	2.10	Protection Mode Switching	
	2.11	I Input Configuration	
		2.11.1 Input Signal Equalization (ISE)	
		2.11.2 Standard Input Port Termination	
		2.11.3 Input Port Disable	
		2.11.4 Input LOS	
	2.12	2 Output Configuration	
		2.12.1 Output Pre-Emphasis	
		2.12.2 Output Power Level	
		2.12.3 Output Signal Suppression	
		2.12.4 Out of Band Signal Forwarding	
	0.40	2.12.5 PCI-Express Receive Detect	
	2.13	3 Core Configuration	
		2.13.1 Core Bandwidth	
	0.14	2.13.2 Core Equalization	
		Status Pins Channel Status	
		6 Pin Status	
		7 Global Programming	
		9 Green Mode	
	2.17		
3	Reg	gisters	28
	3.1	Individual Register Map	
	3.2	Global Register Map	
	3.3	Individual Registers	30
		3.3.1 Connection	
		3.3.2 Input ISE 1	
		3.3.3 Input ISE 2	
		3.3.4 Input Gain	

	0 0 F		~~
	3.3.5	Input State	
	3.3.6	Input LOS	
	3.3.7	Output PE 1	
	3.3.8	Output PE 2	
	3.3.9	Output Level	
	3.3.10	Output Mode	
	3.3.11	Core Control 1	
	3.3.12	Core Control 2	
	3.3.13	Status Pin Configuration	
	3.3.14	Unused	
		Protection Connect	
	3.3.16	Channel Status	38
3.4	Global I	Registers	39
	3.4.1	Global Connection	39
	3.4.2	Global Input ISE 1	39
	3.4.3	Global Input ISE 2	
	3.4.4	Global Input Gain	
	3.4.5	Global Input State	
	3.4.6	Global Input LOS	
	3.4.7	Global Output PE 1	
	3.4.8	Global Output PE 2	
	3.4.9	Global Output Level	
	3.4.10	Global Output Mode	
	3.4.11	Global Core Control 1	
	3.4.12	Global Core Control 2	
	3.4.13	Global Status Pin Configuration	
	3.4.14	Unused	
	3.4.14	Global Protection Connect	
	3.4.15	Global Status Pin State	
		Test1	
	3.4.17	Test2	
	3.4.10	Test3	
	3.4.19	Test4	
	3.4.20	Test5	
		Test6	
		Core Configuration	
	3.4.24	Rx Detect Delay0	
	3.4.25	Rx Detect Delay1	
	3.4.26	Serial Address	
		Interface Mode	
	3.4.28		
		Test8	
	3.4.30	Test9	
	3.4.31	Test10	
		RevID	
	3.4.33	Current Page	56
Elec		Specifications	
4.1	DC Cha	racteristics	
	4.1.1	High-Speed Data Inputs	57
	4.1.2	High-Speed Data Outputs	58
	4.1.3	LVTTL Inputs and Outputs	
	4.1.4	Power Supply Requirements	
4.2	AC Cha	racteristics	61
	4.2.1	High-Speed Data Inputs	61

Revision 4.0 January 2011

4

		4.2.2 High-Speed Data Outputs4.2.3 Two-Wire Serial Interface	
		4.2.4 Parallel Programming Interface	
		4.2.5 Four-Wire Serial Interface	
	4.3	Operating Conditions	
	4.4	Stress Ratings	
5	Pin	Descriptions	67
	5.1	Pin Diagram	
	5.2	Pins by Function	
		5.2.1 High-Speed Data Inputs	
		5.2.2 High-Speed Data Outputs	
		5.2.3 Control Pins	
		5.2.4 Power Supplies	
	5.3	Pins by Number	
	5.4	Pins by Name	
6	Pac	kage Information	83
	6.1	Package Drawing	
	6.2	Thermal Specifications	
	6.3	Moisture Sensitivity	
7	Orc	lering Information	86

Figures

Figure 1.	Block Diagram	. 11
Figure 2.	LOS Threshold vs. CINPLOS	. 21
Figure 3.	Register Map for Individual Registers	. 28
Figure 4.	Register Map for Global Registers	. 29
Figure 5.	High-Speed Input Buffer Equivalent Circuit	. 58
Figure 6.	High-Speed Output Driver Equivalent Circuit	. 59
Figure 7.	Two-Wire Serial Timing Diagram	. 63
Figure 8.	Parallel Programming Timing Diagram	. 64
Figure 9.	Four-Wire Serial Timing Diagram	. 65
Figure 10.	Pin Diagram	. 67
Figure 11.	Package Drawing	. 84

Tables

Table 1.	Features and Benefits	11
Table 2.	Mapping of Register Address to EEPROM Address	
Table 3.	Connection Map Configuration	
Table 4.	Main-Protection Switching	
Table 5.	Global Programming	
Table 6.	Block Control	
Table 7.	Bandwidth Control	
Table 8.	Connection	
Table 9.	Input ISE 1	
Table 10.	Input ISE 2	
Table 10.	Input ISE 2	
Table 12.	Input State	
Table 13.	Input LOS	
Table 13.	Output PE 1	
Table 14.	Output PE 2	
	Output Level	
Table 16.		
Table 17.	Output Mode Core Control 1	
Table 18.		
Table 19.	Core Control 2	
Table 20.	Status Pin Configuration	
Table 21.	Unused	
Table 22.	Protection Connect	
Table 23.	Channel Status	
Table 24.	Global Connection	
Table 25.	Global Input ISE 1	
Table 26.	Global Input ISE 2	
Table 27.	Global Input Gain	
Table 28.	Global Input State	
Table 29.	Global Input LOS	
Table 30.	Global Output PE 1	
Table 31.	Global Output PE 2	
Table 32.	Global Output Level	
Table 33.	Global Output Mode	
Table 34.	Global Core Control 1	
Table 35.	Global Core Control 2	
Table 36.	Global Status Pin Configuration	
Table 37.	Unused	
Table 38.	Global Protection Connect	
Table 39.	Global Status Pin State	
Table 40.	Test1	
Table 41.	Test2	
Table 42.	Test3	
Table 43.	Test4	
Table 44.	Test5	
Table 45.	Test6	
Table 46.	Core Configuration	
Table 47.	Rx Delay Detect0	
Table 48.	Rx Delay Detect1	
Table 49.	Serial Address	
Table 50.	Interface Mode	
Table 51.	Test7	54

VSC3340-01 Datasheet Contents

Table 52.	Test8	. 54
Table 53.	Test9	. 55
Table 54.	Test10	. 55
Table 55.	RevID	. 56
Table 56.	Current Page	. 56
Table 57.	High-Speed Inputs	. 57
Table 58.	High-Speed Outputs	
Table 59.	LVTTL I/O Specifications	
Table 60.	Power Requirements	
Table 61.	Power Modes	. 60
Table 62.	High-Speed Inputs	. 61
Table 63.	High-Speed Outputs	. 61
Table 64.	Two-Wire Serial Interface Timing Parameters	. 62
Table 65.	Parallel Programming Interface Parameters	. 63
Table 66.	Four-Wire Serial Interface Parameters	
Table 67.	Recommended Operating Conditions	. 65
Table 68.	Stress Ratings	. 65
Table 69.	High-Speed Data Input Pins	. 68
Table 70.	High-Speed Data Output Pins	. 70
Table 71.	Control Pins	. 72
Table 72.	Power Supplies	. 73
Table 73.	Thermal Resistances	. 85
Table 74.	Ordering Information	. 86

Revision History

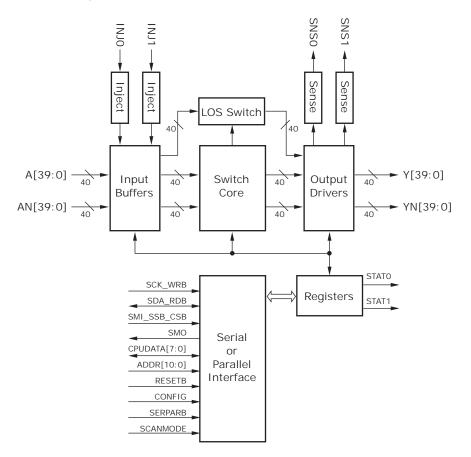
This section describes the changes that were implemented in this document. The changes are listed by revision, starting with the most current publication.

Revision 4.0

Revision 4.0 of this datasheet was published in January 2011. This was the first production-level publication of the document.

1 Product Overview

The VSC3340-01 device is a cost-effective, power-efficient asynchronous crosspoint switch capable of data rates up to 6.5 Gbps. The VSC3340-01 device has 40 input and 40 output ports. Each port has integrated terminations.


The VSC3340-01 device features programmable input signal equalization and output pre-emphasis (each with multiple settings), which makes it ideal for countering signal degradation over a wide variety of transmission media types and lengths.

Typical power consumption for the device is 110 mW per active channel in 3.2 Gbps (Green mode) and 155 mW per active channel in 6.5 Gbps mode. Unused channels may be deactivated to save the power associated with those ports. Further power savings can be realized by configuring the output level settings to the minimum effective value for a specific application. For more information about Green mode operation, see "Green Mode," page 26.

The VSC3340-01 device has a loss of signal (LOS) detector on every input port with programmable thresholds. The LOS status can be directed to either of two status pins for external use. The LOS signal is also switched to each of the outputs with the high-speed switching core. Out of band (OOB) signal forwarding can be enabled for each of the outputs, which causes the outputs to be squelched in response to an LOS detect at the corresponding input, thereby propagating an OOB envelope through the switch.

The VSC3340-01 device can be programmed through a two-wire or four-wire serial interface, or a parallel interface with 11-bit address and 8-bit data. The two-wire interface address can be hardwired using the address pins or a proprietary method that allows for address selection after power-up. The four-wire serial interface uses the SSB pin to select the device. All pin functions such as configuration, reset, and status pin states are also accessible using the registers to ensure maximum flexibility.

Figure 1. Block Diagram

1.1 Features and Benefits

The following table lists the features and benefits of the VSC3340-01 device.

Table 1.Features and Benefits

Feature	Benefit
6.5 Gbps operation	Supports all the latest high-speed protocols
Flexible switching options: multicast, loopback, and snoop capability	Allows great flexibility in routing and fanning signals in distributed and centralized architectures
Two-wire serial bus	Simple programming interface
Four-wire serial bus	Faster programming interface
Asynchronous operation	Data agnostic transfers allow each lane to run speed independent without an external reference clock
User-programmable input and output signal equalization	Flexibility in correcting transmission line losses in a variety of media
LOS detection and forwarding	Supports signal monitoring and OOB signal forwarding for SAS, SATA, and PCIe applications

Table 1.Features and Benefits (continued)

Feature	Benefit
Optional output signal squelch on a per-channel basis	Supports OOB signal forwarding for SAS, SATA, and PCIe applications

1.2 Applications

The following are some of the applications for the VSC3340-01 device:

- Wideband signal switching and clean-up
- Line driver or receiver
- Backplane signal fanout, driver, or receiver
- Copper cable driver or receiver
- PCB signal enhancement
- Broadcast video routers
- Broadcast video switchers
- SAS/SATA signal routing and switching
- PCIe signal routing and switching
- HDMI/DVI switching applications

2 Functional Descriptions

This section describes the functions supported by the VSC3340-01 device.

2.1 Reset

The VSC3340-01 device can be reset either by pulling the RESETB pin low or by using the internal power-on reset circuit linked to the power supply. The reset state can be released either by energizing the power supply or by releasing the RESETB pin. There are three ways to release the reset state:

- Energize the power supply.
- Externally drive the RESETB pin high.
- Allow the internal pull-up resistor to set the RESETB pin high.

In general, the power-on reset circuit ensures that the VSC3340-01 device powers up correctly. However, the order in which the device is energized is irrelevant if the RESETB pin is held low until the power supply is stable.

The minimum threshold for the power-on reset circuit is approximately 1.6 V for VDD. Therefore, it is important that there is sufficient decoupling on the circuit board to ensure that the supply voltage at the pins of the package does not drop below this value when multiple connection paths on the VSC3340-01 device are energized simultaneously.

2.2 Initialization

On reset, the VSC3340-01 device is in low-power state. The only initialization required is to write a value to address 79'h to enable the two-wire or four-wire serial interface if serial interface is desired (SERPARB = 1).

For more information, see "Two-Wire Serial Interface (Slave Mode)," page 14 or "Four-Wire (SPI) Serial Interface," page 16.

Upon reset, all inputs, outputs, and bias generators are in an off state to reduce the power consumption. Before any connections can be activated, setting the appropriate registers bits energizes these circuits.

Use the global programming registers or the CONFIG pin to transition multiple paths from an off state to an on state simultaneously.

2.3 Page-Based Programming

The VSC3340-01 device uses page-based register programming to configure the features and functions of the device. Pages are grouped according to function, and each page typically has a maximum of 40 addresses with a potential address space of 128 8-bit words. The register address within each page corresponds to the number of the input or output that it controls with pages 28'h and 29'h controlling the associated

Inject or Sense buffers. A specific page is selected by programming the value for the desired page into the Current Page register at address 7F'h.

The Current Page register and all other registers that have an address of 50'h or higher are not linked to a specific page; they can be programmed regardless of the value in the Current Page register (address 7F'h). These registers are used to set features and functions of the VSC3340-01 device globally by either setting all 40 registers in an associated page with a single programming step or by setting a configuration that affects the operation of the entire device. For more information about the registers and their functions, see "Registers," page 28.

2.4 Two-Wire Serial Interface (Slave Mode)

The VSC3340-01 device supports a slave mode two-wire serial interface where an external master device controls the VSC3340-01 slave device. The two-wire serial interface operates in both standard mode (up to 100 Kbps) and fast mode (up to 400 Kbps) data transfer rates.

A master device generates a start condition $\langle S \rangle$ by transitioning SDA high to low while SCK is high. Data is then transferred on the SDA line with the most significant bit (MSB) first and the SCK line clocking each bit. Data transitions occur when the SCK is low and is valid (read) or stable (write) when on the high to low transition of the SCK. Data transfers are acknowledged (ACK or $\langle A \rangle$) by the receiving device (VSC3340-01 for data writes and the master device for data reads) by holding the SDA signal low while strobing SCK high then low. The master generates a stop condition $\langle P \rangle$ (terminates the data transfer) with a low to high transition on the SDA signal while SCK is high. For more information, see Figure 7, page 63.

2.4.1 Serial Write

A serial write starts with the master sending a byte to the VSC3340-01 device. The first seven bits represent the serial interface address, and the eighth must be a 0 to indicate a write operation. The VSC3340-01 device compares its serial interface address (set by the SADDR[6:0] or the Serial Address register) to the one transmitted. An acknowledge is generated only if they match.

Without issuing a start or stop condition, the master then sends a second byte to the VSC3340-01 device. The VSC3340-01 device interprets this byte as the register address. Finally, the master sends a third byte to the VSC3340-01 device. This is interpreted as the data for the register write. At this point, the write has taken effect.

The following is an example of the write sequence (assuming the serial interface address is set to 00'h):

Write: <S><00'h><A><Address><A><Data><P>

2.4.2 Serial Read

A read cycle starts with the master sending a byte to the VSC3340-01 device. A stop condition is issued immediately after the desired register address (the second byte) is sent. The master then sends the serial interface address again but this time uses a 1 in the LSB to indicate a read operation. After the acknowledge cycle from the VSC3340-01

device, the master stops driving the SDA line. At this point, the VSC3340-01 device outputs one bit at a time on the falling edge of SCK, transmitting the MSB first until eight bits are transmitted.

After the eighth falling edge of the SCK, the VSC3340-01 device releases control of the SDA bus and the master issues the clock for the acknowledge cycle. After the master issues the acknowledge cycle, the master issues a stop condition to signal the end of the transmission.

The following is an example sequence (assuming the serial interface address is set to 00'h):

Read: <S><00'h><A><Address><A><P>

2.4.3 Serial Addressing

The VSC3340-01 device two-wire serial interface supports a 7-bit slave address. This address may be set either of two ways:

- Hardwire the appropriate ADDR[6:0] pins to VDD or GND.
- Use a proprietary interface that requires two additional signal wires (SMI and SMO) and permits the address to be programmed on initialization.

On reset, the address of the VSC3340-01 device is read from the ADDR[6:0] pins. If no address is programmed into the Serial Address register, then the pin voltages define the permanent address for the device. When a value other than all zeros is programmed into the Serial Address register, that new value overrides the value on the ADDR[6:0] pins. The SMI pin must be held high to program the Serial Address register.

The Serial Address register does not latch a programmed value unless the SMI pin is held high concurrent with the programming instruction. Also, the MSB (bit 7) of the Serial Address register controls the state of the SMO pin. By chaining the SMO of one VSC3340-01 device to the SMI pin of the next, it is possible to change the address of up to 64 different devices connected to the same SCK and SDA lines even if they all have identical addresses initially. Writing an address to the first device with the SMI pin held high changes the address of that device, but the remaining devices all have their SMI pins low, so they do not latch the address.

When the address is written to the first device, the state of the SMO can be set high, which sets the SMI pin of the next device high. Now the first device has a different address from the remaining devices, and the SMI pin of the second device is high. The first device does not acknowledge the programming instruction to write to the Serial Address register, and only the second device latches the new address. This process is repeated until all of the devices on the serial bus are defined.

The first programming instruction to the VSC3340-01 device is used to enable the twowire serial interface. The programming instruction is in the standard format and sets the address 79'h to the value 02'h. (The value 01'h sets the device in four-wire serial mode. The value 11'h is not valid but enables two-wire serial mode by default.)

2.5 Two-Wire Serial Interface (Master Mode)

The two-wire serial master mode is activated when the two-wire serial pin is pulled high. In this mode, the VSC3340-01 device drives SCK and uses SDA to communicate with an external serial EEPROM, and reads the contents into its internal register map to provide a loadable user configuration. The global register space of the VSC3340-01 device is not accessed during the master mode to prevent the overwriting of values already placed in the individual channel registers. Eleven-bits of EEPROM address space contain all the data necessary to write to the VSC3340-01 individual register space. The two-wire serial master controller skips over unused register space to speed the load time of the memory space.

The following table shows how the memory layout of the EEPROM maps to the internal register space.

Page Address (6-bits)	Base Address (6-bits)	EEPROM Address (11-bits)	EEPROM Address Space
00'h	00–29′h	000–029′h	Used
00'h	2A–3F′h	02A–03F′h	Not used
01′h	00–29′h	040–069′h	Used
01′h	2A–3F′h	06A–07F′h	Not used
02′h	00–29′h	080–0A9′h	Used
02′h	2A–3F′h	0AA–0BF'h	Not used
			Used
			Not used
0E'h	00–29′h	380–3A9′h	Used
0E'h	2A–3F′h	3AA–3FF′h	Not used

Table 2. Mapping of Register Address to EEPROM Address

2.6 Four-Wire (SPI) Serial Interface

With the four-wire SPI bus, the SSB signal is the active low serial select signal, which must be low to activate the port. Data is input to the device on the MOSI (SDA) signal (master out, slave in) and sampled on the falling edge of the SCK clock signal. Data is output on the MISO (SMO) signal (master in, slave out) synchronous with the rising edge of SCK. Each four-wire transaction is 3 bytes in length. An 8-bit OPCODE is transferred first, which specifies whether a read (OP = 1) or write (OP = 0) operation is to take place, followed by the 8-bit register address, finally followed by the 8-bit data word. For more information about the four-wire serial interface parameters, refer to "Four-Wire Serial Interface," page 64.

In single read/write (R/W) mode, a single 8-bit data word is transferred. After the 8 bits are transferred, the SSB line is brought high, indicating the end of the data transfer. If SSB is brought high before all 8 bits in a given word are transferred, none of the 8 bits in that word are transferred.

The four-wire SPI serial bus is designed for applications where higher data transfer rates are required. The four-wire interface has a maximum data transfer rate of 10 Mbps. Unlike the two-wire serial interface, the chip selection is done through an active low serial select signal (SSB). When SSB is low, the VSC3340-01 device will

respond as a slave device. An external tri-state buffer is required to use the four-wire serial interface in an application where the MISO pins are bused together.

The first programming instruction to the VSC3340-01 device is used to enable the fourwire serial interface. The programming instruction is in the standard format and sets the address 79'h to the value 01'h.

2.7 Parallel Programming Interface

The parallel programming mode is activated by setting SERPARB = 0. To write a register using this interface, parallel address and data are presented on the ADDR and CPUDATA[7:0] buses respectively and a rising edge on SCK_WRB strobes it into the target register. To read, address is presented and SDA_RDB is driven low to make the CPUDATA[7:0] bus pins into outputs and read out register contents.

Addressing can be in 7-bit paged mode for use with a lower-cost controller, or in combined page/register mode for maximum programming rate. In paged mode, ADDR[10:7] is wired to 0D'h and the page address is drawn from the current page register as with the serial modes, with the current page set to access registers on a given page. For any other value of ADDR[10:7], those bits are interpreted as the page address. In either mode, ADDR[6:0] is the register address within the page.

2.8 Crosspoint Connections

A complete connection through the VSC3340-01 device requires that the inputs and outputs are properly energized and configured. This section provides the necessary steps to create a complete connection.

2.8.1 Program a Connection through the Switch Core

The connection page is on page 00'h. The first step is to set the current page in the Current Page register (7F'h = 00'h). Next, the value of the desired output port is the value that is used as the address in the connection programming instruction. The data value in the programming instruction is the number of the input port to be connected.

The default state for an output is minimum swing and no pre-emphasis. For more information about configuring the output, see "Output Configuration," page 21.

2.8.2 Configure the Selected Input

By default, all inputs are turned off to save power on start-up. To turn on the power for a given input, the correct page in the register map must be selected. The Input State register is in page 04'h.

Programming the Current Page register 7F'h to 13'h selects the Input State register page. Bit [1] of the Input State register controls the on and off state of the corresponding input. On reset, this bit is set to 1 to turn off the input. To turn the input on, this bit must be set to 0. The selected input becomes the value for the address on this register page, and the value to be written for a basic connection is 0. For more

information about configuring the input to optimize performance, see "Input Configuration," page 19.

2.9 Simultaneous Connections using the Config Pins

Use the CONFIG signal to activate multiple connection instructions nearly simultaneously. When the CONFIG pin is held low (value is 0), programming instructions can be written to the connection registers without changing the active connections. When the CONFIG signal is changed to 1, the new connections become active all at once. If the CONFIG signal value is held at 1, programming instructions that are written to the connection registers become active immediately.

The CONFIG_WP (bit 0) setting of the Core Configuration register inverts the sense of the CONFIG pin. Use this programming interface to assert the CONFIG signal by changing the sense of it regardless of the CONFIG pin state.

When CONFIG_WP of the Core Configuration register is set to 0, the CONFIG signal operates as previously described. When CONFIG_WP of the Core Configuration register is set to 1, the operation of the CONFIG pin is inverted so that new connections take effect immediately, as they are programmed. When CONFIG_WP is set to 1, the programming instructions are queued until the CONFIG pin is set to 0. The following table shows the connection map configurations.

Table 3.Connection Map Configuration

PROTECT_MODE Bit	CONFIG_WP Bit	CONFIG Pin	Connection Map Update
0	0	0	No
0	0	1	Yes
0	1	0	Yes
0	1	1	No

For most applications, the crosspoint switch core auto-configures when a connection is made. In some instances, however, it may be desirable to override the default configuration powering down half of the core to reduce power consumption or keeping all switch buffers energized to reduce switching time (at the expense of increased power). For information about setting up the switch core for maximum power efficiency and switching properties, see "Core Configuration," page 24.

2.10 Protection Mode Switching

Enable Protection Mode to configure the VSC3340-01 device for protection switching. Protection Mode switching is enabled by setting the PROTECT_MODE bit in the Core Configuration register (address 75'h) of the global register map. The Main connection map is set by the value in the Connection registers (page address 00'h) bits [5:0] and the Protection connection map is set by the value in the Protection Connect register (page address 0E'h) bits [5:0]. For more information, see "Protection Connect," page 38 and "Global Protection Connect," page 47. In Protection Mode the active connection configuration will switch between main and protection connection maps

when the value of the CONFIG pin or the configuration register bit is changed as shown in the following table.

PROTECT_MODE Bit	CONFIG_WP Bit	CONFIG Pin	Active Connection Map
1	0	0	Main
1	0	1	Protection
1	1	0	Protection
1	1	1	Main

Table 4.Main-Protection Switching

2.11 Input Configuration

Each input has three sets of registers that are used to configure the various features associated with it. Each of the three sets of registers are on three separate pages of the memory map. Setting the Current Page register (address 7F'h) to 01'h, 02'h, 03'h, 04'h, or 05'h provides access to the five pages named Input ISE 1 (Input Signal Equalization 1), Input ISE 2 (Input Signal Equalization 2), Input Gain, Input State, and Input LOS respectively. There are a total of 40 input ports.

2.11.1 Input Signal Equalization (ISE)

The input signal equalization on the VSC3340-01 device helps combat the intersymbol interference (ISI) of high-speed data as it passes through lossy media. This is accomplished by increasing the sensitivity of the receive circuits to the high frequency components of the data edges and works to reverse, in part or in whole, the degradation of signal quality due to propagation through the transmission media.

Discontinuities and losses in the transmission media act as low-pass filters and attenuate the high frequency components of a signal. The cut-off frequency and slope of the filter depend on the specifics of the discontinuities and the losses of the data path. Typically, electrically short discontinuities, such as solder pads and connectors, have a high cutoff frequency. Lossy media, such as transmission lines or backplanes, have a lower cutoff frequency bandwidth. The electrical length of the transmission line or the size of a discontinuity affects the magnitude of the attenuation.

The VSC3340-01 device provides flexibility in correcting for transmission losses by providing two independent ISE stages. Each stage has an adjustable gain and adjustable short, and long time constants associated with it. Each ISE stage can be deactivated or set to a level, depending on the magnitude of the signal filtering that occurred during propagation. The bits that control the ISE settings are in the input ISE registers (pages 01'h, 02'h, 03'h). For more information about these registers, see "Input ISE 1," page 30.

2.11.2 Standard Input Port Termination

Each input is terminated to a 100Ω differential impedance. It is also possible to connect the center of the termination resistor to VDD if necessary to support specific application requirements. The bit that controls this is bit 1 in the Input State register (page 04'h). The reset value of bit 1 for normal differential termination is 1. Setting this

bit to a 1 connects the center of this termination to VDD through ~20 Ω so that each differential input has a common-mode impedance to VDD through 70 Ω .

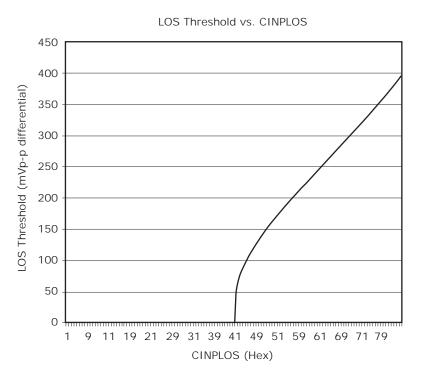
2.11.3 Input Port Disable

Each input port must be enabled before it forwards received data to the switching core. The on and off control bit for the inputs is located on page 04'h. Each address on this page refers to the number of the corresponding input. When bit 0 is set to 1, the input port is disabled and the power associated with that port is conserved. When the part is reset, this bit is set to a 1 by default. Therefore, inputs must be enabled before use. For more information about these registers, see "Input State," page 32.

2.11.4 Input LOS

Each input has an LOS (loss of signal) detector associated with it that sets a bit high whenever the signal level drops below a selected value. Although there is a time component to the detection, the primary metric for asserting the LOS signal is the signal amplitude. This amplitude is selectable in the registers on the Input LOS page (05'h). For more information about the amplitude settings, see "Input LOS," page 33.

The LOS signal is asserted upon a loss of signal or deasserted when a signal is present for more than 3 ns from when the signal level again exceeds the threshold. This signal can be read from the registers on the CLOS bit of the Channel Status register (OF'h) or it can be connected to either the STATO or STAT1 pin using the Global Status Pin Configuration register (5C'h).


This signal is also forwarded to any output connected to the corresponding input and can be used to squelch a transmitted signal when the connected input goes into an LOS state. This is how OOB signaling is propagated.

LOS is available when the CLOSMODE bit, Input LOS register bit 7, is set to 1 and is not available when set to 0, which disables the LOS circuitry to reduce power consumption when LOS function is not required. The following illustration shows the LOS threshold mapped against CINPLOS.

Revision 4.0 January 2011

Downloaded from Arrow.com.

Figure 2. LOS Threshold vs. CINPLOS

2.12 Output Configuration

Each output has four sets of registers that are used to configure the various features associated with the selected output. Each of the four registers is on a separate page of the memory map. Setting the Current Page register (address 7F'h) to 06'h, 07'h, 08'h, or 09'h provides access to the four pages named Output PE 1, Output PE 2, Output Level, or Output Mode respectively. There are a total of 40 output ports.

2.12.1 Output Pre-Emphasis

The output pre-emphasis function of the VSC3340-01 device helps combat the intersymbol interference (ISI) of high-speed data as it passes through lossy media. This is accomplished by shaping the output waveform to boost the magnitude of those frequency components of the transmitted signal that are most susceptible to attenuation as it propagates through the transmission media.

Discontinuities and losses in the transmission media act as low-pass filters and attenuate the high-frequency components of a signal. The cutoff frequency and slope of the filter depend on the specifics of the discontinuities and the losses as the signal propagates through the discontinuities or media. Typically, electrically short discontinuities, such as solder pads and connectors, have a high cutoff frequency. Lossy media, such as transmission lines or backplanes, have a lower cutoff frequency bandwidth. The electrical length of the transmission line or the size of a discontinuity affects the magnitude of the attenuation.

The VSC3340-01 device provides flexibility in correcting for transmission losses with two independent pre-emphasis stages that are additive. Each stage has a different adjustable time constant associated with it.

Each pre-emphasis stage can be deactivated or set to one of 7 levels, depending on the magnitude of the signal filtering that occurred during propagation. Additionally, each of the pre-emphasis stages permits the bandwidth of the boosted signal to be adjusted. Both pre-emphasis stages have eight bandwidth settings.

The bandwidth settings adjust the lower limit of the signal boost and have a single pole roll-off. The uppermost frequency of the signal boost is limited by the slew rate of the output amplifier.

The bits that control the pre-emphasis settings are in the Output PE 1 and Output PE 2 registers (06'h and 07'h). The PE 1 registers control a fast-decay pre-emphasis, and the PE 2 registers control a longer-decay pre-emphasis that is most useful for long cables and extremely long PCB traces. PE 2 is generally used in addition to PE 1, if required. For more information about these settings, see "Output PE 1," page 33 and "Output PE 2," page 34.

Maintain the following relationship between pre-emphasis settings and output drive to preserve pre-emphasis effectiveness and to avoid exceeding specified maximum device power:

CODRV + CPE1LEVEL + CPE2LEVEL < 1111'b

Although an operation with a sum that exceeds this will not damage the device, the maximum specified power may be exceeded and the output signal wave shape may be compromised.

2.12.2 Output Power Level

The VSC3340-01 device provides a selection of 14 power levels that enable compliance with most popular transmission standards. The output level is selectable using bits [3:0] in the registers on the Output Level page (page 08'h). The register address within the page is used to identify the number of the output that it controls.

For more information about the specific output levels and the values used to select them, see "Output Level," page 34.

2.12.3 Output Signal Suppression

The VSC3340-01 device can be configured to selectively suppress an output signal to reduce signal noise in a system. When the output signal is suppressed, the true and complement values are driven to the common mode value. This signal level is stable and maintains a DC level that is within ± 50 mV.

Output signal suppression is controlled by the CDRVCM bit [2] of the register on the Output Mode page 09'h. For more information about the bit values that set the state of the output for normal, power-off, or suppressed operations, see "Output Mode," page 35.

2.12.4 Out of Band Signal Forwarding

The VSC3340-01 device has the ability to suppress the output signal in response to an LOS assertion at the connected input. For more information, see "Input LOS," page 20. This feature is compatible with SAS, SATA, and PCIe operation, and its purpose is to propagate out of band (OOB) signaling information through the VSC3340-01 device.

The VSC3340-01 device features an OOB forwarding switch core that duplicates the connections in the high-speed switch core. This core is used to switch the LOS detect signal. With bit 1 of an Output Mode register set to 1, the selected output is suppressed whenever the connected input asserts an LOS condition. This overrides the current output state for as long as the LOS from the input remains asserted. After the LOS condition is removed and the LOS is deasserted, the output assumes whatever state is present on the currently selected input.

It takes approximately 4 ns for the LOS condition to be propagated from the input to the output. For more information, see "Output Mode," page 35.

2.12.5 PCI-Express Receive Detect

To function in a PCIe application, the VSC3340-01 device has two features that can be used with the aid of an external controller:

- The input termination has a switch to produce a low-common-mode impedance at the input, allowing it to appear as an active receiver from the perspective of a PCIe transmitter performing a receive detect operation. For more information, see "Standard Input Port Termination," page 19.
- The output driver has the capability to generate a receive-detect pulse and compare the rise time of that pulse to a criterion that indicates the presence or absence of an active PCIe receiver at the far end of the line.

To perform a receive detect, bit 7 of the Output Mode register is set to 1. The VSC3340-01 device then automatically performs the following sequence:

- 1. The output driver is placed in the squelched output mode before measuring the rise time of a common-mode pulse that is generated.
- 2. A comparator compares the output common-mode voltage to an internal threshold and flips a latch when the common-mode pulse rises past that threshold.
- The latched comparator output is sampled at pre-defined intervals set by the Rx Detect Delay0 and Rx Detect Delay1 registers, and at the end of the interval count (50 ms approximately, default setting).
- 4. The results of the two samples are available in the Channel Status register bits [2:1]. A value of 11 indicates a fast rise time (no receiver present) and a value of 10 indicates a slow rise time (receiver present). The 00 and 01 values represent error conditions.

Clear bit 7 of the Output Mode register to reset the state machine after the values have been read.

2.13 Core Configuration

Each output is driven by a configurable switch core that has two sets of registers that are used to configure the core. Each of the two registers is on a separate page of the memory map. Setting the Current Page register (address 7F'h) to 0A'h or 0B'h provides access to the two pages named Core Control 1 or Core Control 2 respectively. There are a total of 40 ports, each corresponding to the desired output port. Each core channel is enabled by setting the COREPOFF bit in the Core Control 1 register to 0 for the register address corresponding to the desired output channel.

2.13.1 Core Bandwidth

The VSC3340-01 device provides control of the power consumption and bandwidth of the switch core using the CLCOLDRVHP, CSCOLDRVHP, COREOUTHP, and CMAINHP control bits in the Core Control 1 and 2 registers. In most cases, for 3 GHz (Green mode) operation, setting CLCOLDRVHP = 10 and the remaining bits to 00 provides the lowest power consumption with sufficient bandwidth. For 6 GHz operation, setting the CMAINHP = 11 and the remaining bits to 10 is sufficient, with slightly higher bandwidth and power consumption when set to 11.

2.13.2 Core Equalization

The VSC3340-01 device provides for some amount of internal equalization using the CCOREEQ2 bits in the Core Control 2 register. Some small performance improvement may be realized by increasing the amount of core equalization when operating at the highest supported datarate. However, excessive core equalization can lead to a degraded output signal.

2.14 Status Pins

The VSC3340-01 device provides two status pins (STAT0 and STAT1) that permit external monitoring of LOS conditions of one or more selected inputs. LOS signals from one or more of the inputs can be OR'ed together to generate the final signal that appears at a status pin.

There is a separate page for both the STATO and STAT1 pins. The registers on the Status Pin State page (5F'h) control both STAT0 and STAT1 pins. Each address on each page refers to the input with the same number.

2.15 Channel Status

The VSC3340-01 device has a register associated with each input that reflects its LOS status. These registers are located on the Channel Status page (address 0F'h) and the address of each register corresponds to the number value of the input that it represents. Bit 0 is described as the LOS bit. This is the bit that reflects the current LOS state for the input as identified by the address that is read. For more information about these registers, see "Channel Status," page 38.

2.16 Pin Status

The state of the STAT0 and STAT1 pins can also be monitored using the programming interface. The Pin Status register is located at register address 5F'h. The two LSBs of this register show the current state of the STAT0 and STAT1 pins. Bit 0 reflects the state of STAT0, and bit 1 reflects the state of STAT1.

This provides a convenient and efficient way of polling the VSC3340-01 device for the LOS conditions of multiple inputs by using a single register read when external pin connections are not available or practical. The LOS condition of each input can be assigned to one pin or divided between the STAT0 and STAT1 pins using the registers on the Status 0 and Status 1 pages. When the value is nonzero, more detailed polling of each of the registers on the Channel Status page reveals which input exhibited the LOS condition. If the LOS conditions of the inputs are split between the STAT0 and STAT1 pins, fewer reads are required to locate the input with the LOS condition. For more information about these registers, see "Channel Status," page 38.

2.17 Global Programming

Global programming registers reduce the number of instructions required to initialize the VSC3340-01 device. A global programming register is associated with each page of registers with the exception of the one read-only page (OF'h) that contains the Channel Status and Pin Status registers. A single programming instruction to one of the global programming registers copies the same value to all the registers on the associated page. The global programming registers are assigned to each page as shown in the following table.

Register Name	Address	Function	Page Affected	Address Range
Global Connection	50'h	Set all connections (all outputs connected to 1 input)	00'h	00'h–27'h
Global Input ISE 1	51′h	Set all input ISE1 values	01′h	00'h–29'h
Global Input ISE 2	52′h	Set all input ISE2 values	02′h	00'h–29'h
Global Input Gain	53′h	Set all input Gain1 and Gain2	03′h	00'h–29'h
Global Input State	54'h	Set all channel input settings	04'h	00'h–29'h
Global Input LOS	55'h	Set all input LOS thresholds	05′h	00'h–29'h
Global Output PE 1	56'h	Set all output PE1 values	06'h	00'h–29'h
Global Output PE 2	57′h	Set all output PE2 values	07′h	00''h–29'h
Global Output Level	58'h	Set all output level values	08'h	00'h–29'h
Global Output Mode	59'h	Set all channel output settings	09'h	00'h–29'h
Global Core Control1	5A'h	Set all core controls	0A'h	00'h–29'h
Global Core Control2	5B'h	Set all core controls	0B'h	00'h–29'h
Global Status Pin Config	5C'h	Set all channels LOS OR'ed on STATO/STAT1	0C'h	00'h–29'h

Table 5.Global Programming

Exercise caution when using the global programming registers to change values on connection and input state pages. Because this programs all 40 outputs or inputs

simultaneously, it either turns all of them on, or all of them off, as well. This may cause a connection to be broken.

Turning on all outputs or inputs simultaneously also generates an instantaneous current spike. If there is insufficient decoupling capacitance connected to the package pins, the instantaneous power supply voltage may drop below the minimum level required to trip the device power-on reset that would change the device configuration.

2.18 Inject and Sense Ports

The inject and sense ports provide a full-speed input and output port that can be used to provide stimulus to the device without the need to use individual high-speed ports, relays, or external loopbacks on the board.

The Inject paths have the same input buffer as the main data inputs, but drive an internal net that connects each of the regular input buffers. Each input buffer has a switchable mux than can be enabled on a per-input basis to drive the signal from the inject port directly into the signal path of the input buffer, at a fairly low amplitude. The Inject signal mixes with the incoming signal from the input buffer pins, so the user needs to ensure that the channel receiving its signal from the Inject path does not simultaneously have a signal coming in from its pins.

The Sense path has the same output buffer as the main data outputs, but receives a signal from an internal sense net that can be driven from any one of the outputs by an optionally powered buffer embedded in each output driver, which takes a copy the output driver signal and buffers it onto the internal sense net.

The Sense and Inject paths are split into two halves, SNSP0/SNSN0 and INJP0/INJN0 for channels 0 through 19, and SNSP1/SNSN1 and INJP1/INJN1 for channels 20 through 39.

2.19 Green Mode

There are several ways to reduce power consumption of the VSC3340-01 device. The easiest is to disable unneeded circuitry using the control registers, as shown in the following table.

Table 6.Block Control

Bit Name	Page	Bit Number	Effect
CINPPOWEROFF	04′h	0	Power down input buffer
CODPOWEROFF	09′h	0	Power down output driver
COREPOFF	0A'h	3	Power down core (note that the register address is associated with the output driver it connects to, not the input buffer)

Additionally, bandwidth settings within the VSC3340-01 device allow reduction in power consumption with a corresponding decrease in performance. For lower data rate conditions, reduced performance may be acceptable. The following table summarizes the control bits that control various bandwidths within the VSC3340-01 device and Vitesse recommendations for different data rates. For particularly noisy signals, higher

settings may be required to meet performance requirements. For more information about added jitter specifications for these settings, see Table 63, page 61.

Table 7.	Bandwidth Control
----------	-------------------

Bit Name	Page	Bit Number	Effect	3.2 Gbps Green Mode	6.5 Gbps Mode
CINPLOW_PWR	04'h	3:2	Control input buffer bandwidth	00'b	10′b
CODHIGHPOWER	08′h	5:4	Control output driver bandwidth	00'b	10′b
CMAINHP	0A'h	7:6	Switch core main amplifier bandwidth	00'b	11′b
COREOUTHP	0A'h	5:4	Switch core output amplifier bandwidth	00'b	10′b
CSCOLDRVHP ⁽¹⁾	0B'h	6:5	Switch core short column driver bandwidth	00'b	10′b
CLCOLDRVHP ⁽¹⁾	0B'h	4:3	Switch core long column driver bandwidth	10'b	10′b

1. When configured as a fan-out buffer (one receiver to multiple transmitters), if the number of transmitters exceeds two, both the CSCOLDRVHP and CLCOLDRVHP values should be set to at least 10'b.

3 Registers

This section provides information about the register maps, register descriptions, and register tables.

3.1 Individual Register Map

The individual register map provides a summary of the individual registers in the VSC3340-01 device.

Page	Address Range	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
00'h	00'h to 27'h	Connection	Reserved, r	ead only	Main channel connection (0 to 39)					
01′h	00'h to 29'h	Input ISE 1	Reserved, r	ead only	ISE 1, 9	short time c	constant	ISE 1,	long time c	onstant
02′h	00'h to 29'h	Input ISE 2	Reserved, r	ead only	ISE 2, 9	short time c	constant	ISE 2,	long time c	onstant
03′h	00'h to 29'h	Input Gain	Reserved, r	ead only	Inj	out amp ga	in1	In	out amp ga	in2
04′h	00'h to 29'h	Input State	Offset compensatio n	Inject buffer control	Reserved	Reserved	Input low	bandwidth	Low CM terminatio n	Channel input power
05′h	00'h to 29'h	Input LOS	LOS sampler		LOS threshold					
06′h	00'h to 29'h	Output PE 1	Reserved, r	ead only		PE 1 level		PE 1 de	ecay time c	onstant
07′h	00'h to 29'h	Output PE 2	Reserved, r	ead only		PE 2 level		PE 2 de	ecay time c	onstant
08′h	00'h to 29'h	Output Level	Reserved, r	ead only		andwidth vel		Output drive level		
09′h	00'h to 29'h	Output Mode	Rx detect enable	Sense on	Reserved	Jam	Forced output value	Drive common mode	OOB enable	Output power off
0A'h	00'h to 27'h	Core Control1	Main cor power/ba	5		tput high andwidth	Core power off	Core main test top	Core main test bottom	Core Tx test
0B'h	00'h to 27'h	Core Control2	Reserved, read only		umn drive power	3	ımn drive power		Core EQ	
0C 'h	00'h to 29'h	Status Pin Configurati on		Reserved read only STAT1 pin STAT				STAT2 pin config		
0D'h	00'h to 29'h	Unused	Reserved, read only							
0E'h	00'h to 27'h	Protection Connect	Reserved, r	ead only			Protection	connection		
0F'h	00'h to 29'h	Channel Status		Reser	ved, read c	only		Rx detect res1	Rx detect res0	LOS status

Figure 3. Register Map for Individual Registers

3.2 Global Register Map

The global register map provides a summary of the global registers in the VSC3340-01 device.

Figure 4. Register Map for Global Registers

	Desisten							i	
Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
50'h	Global Connection	Reserved, re	ead only		Main ch	nannel input	connection	n (0 to 39)	
51'h	Global Input ISE 1	Reserved, re	ead only	ISE 1, 9	short time o	constant	ISE 1	, long time co	nstant
52′h	Global Input ISE 2	Reserved, read only ISE 2, short time constant ISE 2, lo				, long time co	nstant		
53'h	Global Input Gain	Reserved, re	ead only	Inj	out amp ga	in1	I	nput amp gair	12
54'h	Global Input State	Offset compensation	Inject on	Reserved	Reserved	Input low	bandwidth	Low CM termination	Global input power
55′h	Global Input LOS	LOS sampler				LOS thresh	old		
56′h	Global Output PE 1	Reserved, re	ead only		PE 1 level		PE 1	decay time co	nstant
57′h	Global Output PE 2	Reserved, re	ead only		PE 2 level		PE 2 (decay time co	nstant
58'h	Global Output Level	Reserved, re	ead only		andwidth /el		Output	drive level	
59'h	Global Output Mode	Reserved, re	ead only	Reserved	Forced output	Forced output value	Drive common mode	OOB forwarding enable	Output power off
5A'h	Global Core Control1	Main core power/ban			tput high andwidth	Core power off	Core top test	Core bottom test	Core Tx test
5B'h	Global Core Control2	Reserved	Long colu	umn drive power	Short col	umn drive power		Core EQ	
5C'h	Global Status Pin Config	Reserved, read only				STAT1 pin config	STAT0 pin config		
5D'h	Unused		Reserved, read only						
5E'h	Global Protection Connect	Reserved, read only Protection input connection				(0 to 39)			
5F'h	Global Status Pin State		R	eserved, re	ad only			STAT1 pin state	STAT0 pin state
60'h-6C'h	Unused			I	Reserved, r	ead only			
6D′h	Test1	A7	A6	A5	A4	A3	A2	A1	AO
6E'h	Test2	A15	A14	A13	A12	A11	A10	A9	A8
6F′h	Test3	A23	A22	A21	A20	A19	A18	A17	A16
70′h	Test4	A31	A30	A29	A28	A27	A26	A25	A24
71′h	Test5	A39	A38	A37	A36	A35	A34	A33	A32
72′h	Test6	P DAC 1			C test			X select	
75′h	Core Configuration		Enable cor			Tweak o	core bias	Protect mode	Connect map config
76′h	Rx Detect Delay0				Delay0	value			
77′h	Rx Detect Delay1				Delay1	value			
78′h	Serial Address	SMO			Se	rial port ad	dress		
79′h	Interface Mode		ed, read or	nly	RESET	Unu	ised	Enable 2- wire serial	Enable 4- wire serial
7A'h	Test7	SMI	TWS	CONFIG	INJ1	INJO	ADDR9	ADDR9	ADDR8
7B′h	Test8	ADDR7	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0
7C'h	Test9	CPU DATA7	CPU DATA6	CPU DATA5	CPU DATA4	CPU DATA3	CPU DATA2	CPU DATA1	CPU DATA0
7D′h	Test10	Reserved, re		CPU DATA OUT ALL	STAT1 value	STATO value	SMO value	CPUDATA input	I/O test mode
7E'h	RevID				Revision	n code			
7F′h	Current Page			C	urrent pag	e address			

3.3 Individual Registers

This section provides information about the individual registers.

3.3.1 Connection

The settings in the Connection register make connections through the switch core. The CCCONNCHA_MAIN bit controls the main connection map.

Register name: Connection

Page address: 00'h

Register address: 00'h-27'h

Register type: R/W

Table 8. Connection

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	
5:0	CCONNCHA_MAIN	Main channel connection 0–39: Input channel to connect to output	R/W	000000

3.3.2 Input ISE 1

The Input ISE 1 register configures the input signal equalization (ISE) stage 1.

Register name: Input ISE 1

Page address: 01'h

Register address: 00'h-29'h

Register type: R/W

Table 9. Input ISE 1

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	00
5:3	CISE1SHORT	ISE 1 short time constant 111: Maximum 110 101 100 011 010 001 000: Minimum	R/W	000

Bit	Label	Description	Access	Reset
2:0	CISE1LONG	ISE 1 long time constant 111: Maximum 110 101 100 011 010 001 000: Minimum	R/W	000

Table 9.Input ISE 1 (continued)

3.3.3 Input ISE 2

The Input ISE 2 register configures the input signal equalization (ISE) stage 2.

Register name: Input ISE 2

Page address: 02'h

Register address: 00'h-29'h

Register type: R/W

Table 10. Input ISE 2

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	00
5:3	CISE2SHORT	ISE 2 short time constant 111: Maximum 110 101 100 011 010 001 000: Minimum	R/W	000
2:0	CISE2LONG	ISE 2 long time constant 111: Maximum 110 101 100 011 010 001 000: Minimum	R/W	000

3.3.4 Input Gain

The Input Gain register defines the main amplifier gain settings for the selected input.

Register name: Input Gain

Page address: 03'h

Register address: 00'h-29'h

Register type: R/W

Table 11. Input Gain

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	00
5:3	CINPGAIN1	Main input amp gain1 111: Maximum 110 101 100 011 010 001 000: Minimum	R/W	111
2:0	CINPGAIN2	Main input amp gain2 111: Maximum 110 101 100 011 010 001 000: Minimum	R/W	111

3.3.5 Input State

The Input State register defines the input enable, inject, offset compensation, and termination settings for the selected input.

Register name: Input State

Page address: 04'h

Register address: 00'h-29'h

Register type: R/W

Table 12. Input State

Bit	Label	Description	Access	Reset
7	COFFCOMPDIS	Offset compensation 1: Disable offset compensation 0: Enable offset compensation	R/W	1
6	CINJECTON	Inject buffer control 1: Inject buffer on 0: Inject buffer off	R/W	0
5	CVSCOPON	Reserved	R/W	0
4	Reserved	Reserved	R/W	0
3:2	CINPLOW_PWR	Input low bandwidth 11: Maximum (6 Gbps) power/bandwidth operation 00: Minimum (3 Gbps) power/bandwidth operation	R/W	00

Table 12.Input State (continued)

Bit	Label	Description	Access	Reset
1	CINPTERMVDD	Low CM termination 1: Low input termination CM resistance to VDD 0: High input termination CM resistance to VDD	R/W	1
0	CINPPOWEROFF	Channel input power 1: Power off this input 0: Power on this input	R/W	1

3.3.6 Input LOS

The Input LOS register controls LOS and configures the input LOS threshold value for the selected input.

Register name: Input LOS

Page address: 05'h

Register address: 00'h-29'h

Register type: R/W

Table 13. Input LOS

Bit	Label	Description	Access	Reset
7	CLOSMODE	LOS sampler 1: Sampler on 0: Sampler off	R/W	0
6:0	CINPLOS	Channel input LOS threshold 1111111: 133 mV (maximum) 1000100: 26 mV (minimum useful value) 1000000: 0 mV (minimum) 0111111–0000000: Unsupported	R/W	01100000

3.3.7 Output PE 1

The Output PE 1 register configures the pre-emphasis amp 1 (PE 1) value and decay time constant for the selected output.

Register name: Output PE 1

Page address: 06'h

Register address: 00'h-29'h

Register type: R/W

Table 14. Output PE 1

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	00
5:3	CPE1LEVEL1	PE 1 level 111: Maximum PE 001: Minimum PE 000: PE off	R/W	000
2:0	CPE1DECAY	PE 1 decay time constant 111: Fastest decay 000: Slowest decay	R/W	000

3.3.8 Output PE 2

The Output PE 2 register configures the pre-emphasis amp 2 (PE 1) value and decay time constant for the selected output.

Register name: Output PE 2

Page address: 07'h

Register address: 00'h-29'h

Register type: R/W

Table 15. Output PE 2

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	00
5:3	CPE2LEVEL1	PE 2 level 111: Maximum PE 001: Minimum PE 000: PE off	R/W	000
2:0	CPE2DECAY	PE 2 decay time constant 111: Fastest decay 000: Slowest decay	R/W	000

3.3.9 Output Level

The Output Level register sets the output power level (peak-to-peak differential voltage) for the selected output.

Register name: Output Level

Page address: 08'h

Register address: 00'h-29'h

Register type: R/W

Table 16.Output Level

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	00
5:4	CODHIGHPOWER	Reduce power/bandwidth 11: Maximum bandwidth/power (100%) 10: 75% power 01: 50% power 00: Minimum bandwidth/power (40%)	R/W	00
3:0	CODRV	Channel output drive level 1111: 1600 mV (maximum drive level) 1110: 1450 mV 1101: 1300 mV 1100: 1130 mV 1010: 900 mV 1011: 1000 mV 1001: 800 mV 1000: 740 mV 0111: 680 mV 0111: 680 mV 0110: 630 mV 0101: 580 mV 0100: 540 mV 0011: 500 mV 0011: 500 mV 0010: 450 mV (minimum drive level) 0001: Vitesse use only (unspecified output swing) 0000: Vitesse use only (unspecified output swing)	R/W	1001

3.3.10 Output Mode

The Output Mode register controls out-of-bound (OOB) signalling and output modes for the selected output.

Register name: Output Mode

Page address: 09'h

Register address: 00'h-29'h

Register type: R/W

Table 17. Output Mode

Bit	Label	Description	Access	Reset
7	CRXDETEN	Enable RX detect 1: Enable RX detect 0: Disable RX detect	R/W	0
6	CSENSEON	Activate the sense buffer 1: Sense buffer on 0: Sense buffer off	R/W	0
5	CSLEWLIM	Reserved	R/W	0
4	CJAM	Enable forced output 1: Output is forced to jam value 0: Output normal	R/W	0

Bit	Label	Description	Access	Reset
3	CJAMVAL	Forced output value 1: Output value is 1 0: Output value is 0	R/W	0
2	CDRVCM	Channel drive common mode 1: Output suppressed (0 differential drive) 0: Output normal	R/W	0
1	COOBEN	Low channel OOB forwarding enable 1: Enable OOB (0 differential when LOS detected) 0: Disable OOB forwarding	R/W	0
0	CODPOWEROFF	Output power off 1: Output driver off 0: Output driver on	R/W	1

Table 17.Output Mode (continued)

3.3.11 Core Control 1

The Core Control 1 register controls the switch core configuration and the output termination for the selected output.

Register name: Core Control 1

Page address: OA'h

Register address: 00'h-27'h

Register type: R/W

Table 18. Core Control 1

Bit	Label	Description	Access	Reset
7:6	CMAINHP	Core main high power/bandwidth 11: Maximum 10 01 00: Minimum	R/W	00
5:4	COREOUTHP	Core output high power/bandwidth 11: Maximum 10: 01: 00: Minimum	R/W	00
3	COREPOFF	Core power off 0: Core enabled 1: Core disabled	R/W	1
2	COREMAINTESTTOP	Core top testmode 0: Test mode disabled 1: Test mode enabled	R/W	0
1	COREMAINTESTBOT	Core bottom testmode 0: Test mode disabled 1: Test mode enabled	R/W	0
0	CORETXTEST	Core TX MUX testmode 0: Test mode disabled 1: Test mode enabled	R/W	0

3.3.12 Core Control 2

The Core Control 2 register configures the switch core signal equaliation and column drive strength.

Register name: Core Control 2

Page address: OB'h

Register address: 00'h-27'h

Register type: R/W

Table 19.Core Control 2

Bit	Label	Description	Access	Reset
7	Reserved	Reserved	R	0
6:5	CSCOLDRVHP	Short column drive high power 11: Maximum 10: 01: 00: Minimum	R/W	00
4:3	CLCOLDRVHP	Long column drive high power 11: Maximum 10: 01: 00: Minimum	R/W	00
2:0	CCOREEQ2	Core EQ 111: Maximum 110: 101: 100: 011: 010: 001: 000: Minimum	R/W	000

3.3.13 Status Pin Configuration

The Status Pin Configuration register assigns LOS signals from the selected input to STATO and STAT1 pins.

Register name: Status Pin Configuration

Page address: 0C'h

Register address: 00'h-29'h

Register type: R/W

Table 20. Status Pin Configuration

Bit	Label	Description	Access	Reset
7:2	Reserved	Reserved	R	000000

Bit	Label	Description	Access	Reset
1	STAT1CFG	STAT1 pin configuration 1: LOS value OR'ed on STAT1 pin 0: No connection	R/W	0
0	STATOCFG	STATO pin configuration 1: LOS value OR'ed on STATO pin 0: No connection	R/W	0

Table 20.Status Pin Configuration (continued)

3.3.14 Unused

This register is for Vitesse use only.

Register name: Local unused

Page address: 0D'h

Register address: 00'h

Register type: R/W

Table 21. Unused

Bit	Label	Description	Access	Reset
7:2	Reserved	Reserved	R	0000000

3.3.15 Protection Connect

The settings in the Protection Connect register make connections through the switch core. The CCONNCHA_PROTECT bit controls the protection connection map.

Register name: Connection

Page address: OE'h

Register address: 00'h-27'h

Register type: R/W

Table 22. Protection Connect

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	00
5:0	CONNCHA_PROTECT	Protection connection 0–39: Input channel to connect to output	R/W	000000

3.3.16 Channel Status

The Channel Status register provides the Rx detect results and LOS status for the selected input.

Register name: Channel Status

Page address: OF'h

Register address: 00'h-29'h

Register type: R

Table 23. Channel Status

Bit	Label	Description	Access	Reset
7:3	Reserved	Reserved	R	00000
2	CRXDETRES1	1: Output common-mode did pass threshold after longer delay period 0: Error condition; output common- mode never passed threshold	R	0
1	CRXDETRESO	1: Output common-mode did pass threshold after shorter delay period 0: Output common mode had not passed threshold by earlier sampling time	R	0
0	CLOS	Channel LOS status 1: LOS detected 0: Signal present	R	0

3.4 Global Registers

This section provides information about the global registers.

3.4.1 Global Connection

The settings in the Global Connection register make global connections. The GCONNCHA_MAIN bit controls the main connection map.

Register name: Global Connection

Register address: 50'h

Register type: R/W

Table 24. Global Connection

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	
5:0	GCONNCHA_MAIN	Main channel connection 0–39: Input channel to connect to output	R/W	000000

3.4.2 Global Input ISE 1

The Global Input ISE 1 register configures the input signal equalization (ISE) for all inputs.

Register name: Global Input ISE 1

Register address: 51'h

Register type: R/W

Table 25. Global Input ISE 1

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	00
5:3	GISE1SHORT	Global ISE 1 short time constant 111: Maximum 110 101 100 011 010 001 000: Minimum	R/W	000
2:0	GISE1LONG	Global ISE 1 long time constant 111: Maximum 110 101 100 011 010 001 000: Minimum	R/W	000

3.4.3 Global Input ISE 2

The Global Input ISE 2 register configures the ISE 2 for all inputs.

Register name: Global Input ISE 2

Register address: 52'h

Register type: R/W

Table 26. Global Input ISE 2

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	00
5:3	GISE2SHORT	Global ISE 2 short time constant 111: Maximum 110 101 100 011 010 001 000: Minimum	R/W	000

Bit	Label	Description	Access	Reset
2:0	GISE2LONG	Global ISE 2 long time constant 111: Maximum 100 101 000 011 010 001 000: Minimum	R/W	000

Table 26.Global Input ISE 2 (continued)

3.4.4 Global Input Gain

The Global Input Gain register configures input gain for all inputs.

Register name: Global Input Gain

Register address: 53'h

Register type: R/W

Table 27. Global Input Gain

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	00
5:3	GINPGAIN1	Main input amp gain1 111: Maximum 110 101 100 011 010 001	R/W	111
2:0	GINPGAIN2	000: Minimum Main input amp gain2 111: Maximum 110 101 100 011 010 001 000: Minimum	R/W	111

3.4.5 Global Input State

The Global Input State register defines the input enable, inject, offset compensation, and termination settings for all inputs.

Register name: Global Input State

Register address: 54'h

Register type: R/W

Table 28.Global Input State

Bit	Label	Description	Access	Reset
7	GOFFCOMPDIS	Global offset compensation 1: Disable offset compensation 0: Enable offset compensation	R/W	1
6	GINJECTON	Global inject buffer control 1: Inject buffers on 0: Inject buffers off	R/W	0
5	GLOSMODE	Reserved	R/W	0
4	Reserved	Reserved	R/W	0
3:2	GINPLOW_PWR	Global input low bandwidth 11: Maximum (6 Gbps) power/bandwidth operation 00: Minimum (3 Gbps) power/bandwidth operation	R/W	00
1	GINPTERMVDD	Global low CM termination 1: Low input termination CM resistance to VDD 0: High input termination CM resistance to VDD	R/W	1
0	GINPPOWEROFF	Global input power 1: Power off all inputs 0: Power on all inputs	R/W	1

3.4.6 Global Input LOS

The Global Input LOS register controls the LOS threshold value for all inputs.

Register name: Global Input LOS

Register address: 55'h

Register type: R/W

Table 29. Global Input LOS

Bit	Label	Description	Access	Reset
7	GLOSMODE	Global LOS sampler 1: Sampler on 0: Sampler off	R/W	0
6:0	GINPLOS	Global LOS threshold 1111111: 133 mV (maximum) 1000100: 26 mV (minimum useful value) 1000000: 0 mV (minimum) 0111111–0000000: Unsupported	R/W	1100000

3.4.7 Global Output PE 1

The Global Output PE 1 register configures the pre-emphasis amp 1 (PE 1) value and decay time constant for all outputs.

Register name: Global Output PE 1

Register address: 56'h

Register type: R/W

Table 30. Global Output PE 1

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	00
5:3	GPE1LEVEL1	Global PE 1 level 111: Maximum PE 001: Minimum PE 000: PE off	R/W	000
2:0	GPE1DECAY	Global PE 1 decay time constant 111: Fastest decay 000: Slowest decay	R/W	000

3.4.8 Global Output PE 2

The Global Output PE 2 register configures the pre-emphasis amp 2 (PE 2) value and decay time constant for all outputs.

Register name: Global Output PE 2

Register address: 57'h

Register type: R/W

Table 31.Global Output PE 2

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	00
5:3	GPE2LEVEL1	Global PE 2 level 111: Maximum PE 001: Minimum PE 000: PE OFF	R/W	000
2:0	GPE2DECAY	Global PE 2 decay time constant 111: Slowest decay 000: Fastest decay	R/W	000

3.4.9 Global Output Level

The Global Output Level register sets the output power level (peak-to-peak differential voltage) for all outputs.

Register name: Global Output Level

Register address: 58'h

Register type: R/W

Table 32. Global Output Level

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	00
5:4	GODHIGHPOWER	Reduce power/bandwidth	R/W	00
		11: Maximum bandwidth/power (100%)		
		10: 75% power		
		01: 50% power		
		00: Minimum bandwidth/power (40%)		
3:0	GODRV	Global output drive level	R/W	1001
		1111: 1600 mV (maximum drive level)		
		1110: 1450 mV		
		1101: 1300 mV		
		1100: 1130 mV		
		1011: 1000 mV		
		1010: 900 mV		
		1001: 800 mV		
		1000: 740 mV		
		0111: 680 mV		
		0110: 630 mV		
		0101: 580 mV		
		0100: 540 mV		
		0011: 500 mV		
		0010: 450 mV (minimum drive level)		
		0001: Vitesse use only (unspecified output swing)		
		0000: Vitesse use only (unspecified output swing)		

3.4.10 Global Output Mode

The Global Output Mode register controls out-of-bound (OOB) signaling and output modes for all outputs.

Register name: Global Output Mode

Register address: 59'h

Register type: R/W

Table 33.Global Output Mode

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	0
5	GSLEWLIM	Reserved	R/W	0
4	GJAM	Global forced output 1: Output is forced to jam value 0: Output normal	R/W	0
3	GJAMVAL	Global forced output value 1: Output value is 1 0: Output value is 0	R/W	0
2	GDRVCM	Global drive common mode 1: Output suppressed (0 differential drive) 0: Output normal	R/W	0

Table 33. Global Output Mode (continued)

Bit	Label	Description	Access	Reset
1	GOOBEN	Global OOB forwarding enable 1: Enable OOB (0 differential when LOS detected) 0: Disable OOB forwarding	R/W	0
0	GODPOWEROFF	Global output power off 1: Output driver off 0: Output driver on	R/W	1

3.4.11 Global Core Control 1

The Global Core Control 1 register controls the switch core configuration and the output termination for all outputs.

Register name: Global Core Control 1

Register address: 5A'h

Register type: R/W

Table 34. Global Core Control 1

Bit	Label	Description	Access	Reset
7:6	GMAINHP	Core main high power/bandwidth 11: Maximum 10 01 00: Minimum	R/W	00
5:4	GCOREOUTHP	Core output high power/bandwidth 11: Maximum 10: 01: 00: Minimum	R/W	00
3	GCOREPOFF	Core power off O: Core enabled 1: Core disabled	R/W	1
2	GCOREMAINTESTTOP	Core top testmode 0: Test mode disabled 1: Test mode enabled	R/W	0
1	GCOREMAINTESTBOT	Core bottom testmode O: Test mode disabled 1: Test mode enabled	R/W	0
0	GCORETXTEST	Core TX MUX testmode 0: Test mode disabled 1: Test mode enabled	R/W	0

3.4.12 Global Core Control 2

The Global Core Control 2 register configures the switch core signal equaliation and column drive strength.

Register name: Global Core Control 2

Register address: 5B'h

Register type: R/W

Table 35. Global Core Control 2

Bit	Label	Description	Access	Reset
7	Reserved	Reserved	R	0
6:5	GLCOLDRVHP	Long column drive high power 11: Maximum 10: 01: 00: Minimum	R/W	00
4:3	GSCOLDRVHP	Short column drive high power 11: Maximum 10: 01: 00: Minimum	R/W	00
2:0	GCOREEQ2	Core EQ 111: Maximum 110: 101: 100: 011: 010: 001: 000: Minimum	R/W	000

3.4.13 Global Status Pin Configuration

The Global Status Pin Configuration register assigns LOS signals from all inputs to STATO and STAT1 pins.

Register name: Global Status Pin Configuration

Register address: 5C'h

Register type: R/W

Table 36.Global Status Pin Configuration

Bit	Label	Description	Access	Reset
7:2	Reserved	Reserved	R	000000
1	GSTAT1CFG	Global STAT1 pin configuration 1: LOS value OR'ed to STAT1 pin 0: No connection	R/W	0
0	GSTATOCFG	Global STATO pin configuration 1: LOS value OR'ed to STATO pin 0: No connection	R/W	0

3.4.14 Unused

This register is for Vitesse use only.

Register name: Local unused

Register address: 5D'h

Register type: R/W

Table 37. Unused

Bit	Label	Description	Access	Reset
7:0	Reserved	Reserved	R	0000000

3.4.15 Global Protection Connect

The settings in the Global Protection Connect register make connections through the switch core. The GCONNCHA_PROTECT bit controls the protection connection map.

Register name: Global Protection Connect

Register address: 5E'h

Register type: R/W

Table 38.Global Protection Connect

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	00
5:0	GCONNCHA_PROTECT	Protection connection 0–39: Input channel to connect to output	R/W	000000

3.4.16 Global Status Pin State

The Global Status Pin State register contains the LOS signals from designated inputs to the STAT0 and STAT1 pins.

Register name: Global Status Pin State

Register address: 5F'h

Register type: R

Table 39. Global Status Pin State

Bit	Label	Description	Access	Reset
7:2	Reserved	Reserved	R	000000
1	GSTAT1STATE	Global STAT1 pin state 1: LOS values OR'ed on STAT1 pin 0: No LOS detected	R	0
0	GSTATOSTATE	Global STATO pin state 1: LOS values OR'ed on STATO pin 0: No LOS detected	R	0

3.4.17 Test1

The Test1 register is for Vitesse use only.

Register name: Test1

Register address: 6D'h

Register type: R

Table 40. Test1

Bit	Label	Description	Access
7	A7	1: A7 pin high 0: A7 pin low	R
6	A6	1: A6 pin high 0: A6 pin low	R
5	A5	1: A5 pin high 0: A5 pin low	R
4	A4	1: A4 pin high 0: A4 pin low	R
3	A3	1: A3 pin high 0: A3 pin low	R
2	A2	1: A2 pin high 0: A2 pin low	R
1	A1	1: A1 pin high 0: A1 pin low	R
0	AO	1: A0 pin high 0: A0 pin low	R

3.4.18 Test2

The Test2 register is for Vitesse use only.

Register name: Test2

Register address: 6E'h

Register type: R

Table 41. Test2

Bit	Label	Description	Access
7	A15	1: A15 pin high 0: A15 pin low	R
6	A14	1: A14 pin high 0: A14 pin low	R
5	A13	1: A13 pin high 0: A13 pin low	R
4	A12	1: A12 pin high 0: A12 pin low	R
3	A11	1: A11 pin high 0: A11 pin low	R

Table 41. Test2 (continued)

Bit	Label	Description	Access
2	A10	1: A10 pin high 0: A10 pin low	R
1	A9	1: A9 pin high 0: A9 pin low	R
0	A8	1: A8 pin high 0: A8 pin low	R

3.4.19 Test3

The Test3 register is for Vitesse use only.

Register name: Test3

Register address: 6F'h

Register type: R

Table 42. Test3

Bit	Label	Description	Access
7	A23	1: A23 pin high 0: A23 pin low	R
6	A22	1: A22 pin high 0: A22 pin low	R
5	A21	1: A21 pin high 0: A21 pin low	R
4	A20	1: A20 pin high 0: A20 pin low	R
3	A19	1: A19 pin high 0: A19 pin low	R
2	A18	1: A18 pin high 0: A18 pin low	R
1	A17	1: A17 pin high 0: A17 pin low	R
0	A16	1: A16 pin high 0: A16 pin low	R

3.4.20 Test4

The Test4 register is for Vitesse use only. Register name: Test4 Register address: 70'h Register type: R

Table 43. Test4

Bit	Label	Description	Access
7	A31	1: A31 pin high 0: A31 pin low	R
6	A30	1: A30 pin high 0: A30 pin low	R
5	A29	1: A29 pin high 0: A29 pin low	R
4	A28	1: A28 pin high 0: A28 pin low	R
3	A27	1: A27 pin high 0: A27 pin low	R
2	A26	1: A26 pin high 0: A26 pin low	R
1	A25	1: A25 pin high 0: A25 pin low	R
0	A24	1: A24 pin high 0: A24 pin low	R

3.4.21 Test5

The Test5 register is for Vitesse use only.

Register name: Test5

Register address: 71'h

Register type: R

Table 44. Test5

Bit	Label	Description	Access
7	A39	1: A39 pin high 0: A39 pin low	R
6	A38	1: A38 pin high 0: A38 pin low	R
5	A37	1: A37 pin high 0: A37 pin low	R
4	A36	1: A36 pin high 0: A36 pin low	R
3	A35	1: A35 pin high 0: A35 pin low	R
2	A34	1: A34 pin high 0: A34 pin low	R
1	A33	1: A33 pin high 0: A33 pin low	R
0	A32	1: A32 pin high 0: A32 pin low	R

3.4.22 Test6

The Test6 register is for Vitesse use only (select control for the APAD pin).

Register name: Test6

Register address: 72'h

Register type: R/W

Table 45. Test6

Bit	Label	Description	Access	Reset
7:6	DAC_TEST_P_EN	01: Enable P DAC test for input buffers 0–19 and inject buffer 0 10: Enable P DAC test for input buffers 20–39 and inject buffer 1	R/W	00
5:4	DAC_TEST_N_EN	01: Enable N DAC test for input buffers 0–19 and inject buffer 0 10: Enable N DAC test for input buffers 20–39 and inject buffer 1	R/W	00
3:0	AMUXSEL	1001–1111: APAD off (HiZ) 1000: On-chip 123.2 Ω to ground 0111: On-chip 246.4 Ω to ground 0110: On-chip 1.8 V regulated voltage 0101: DAC test currents 0100: Left side IPTAT current 0011: Left side bandgap voltage 0010: Right side IPTAT current 0001: Right side bandgap voltage 0000: APAD off (HiZ)	R/W	0000

3.4.23 Core Configuration

The Core Configuration register contains the configuration bit and the $\ensuremath{\mathsf{PROTECT_MODE}}$ bit.

Register name: Core Configuration

Register address: 75'h

Register type: R/W

Table 46. Core Configuration

Bit	Label	Description	Access	Reset
7:4	COREBIASENABLE	1111: All biases enabled 0000: All biases disabled	R/W	1111
3:2	COREBIASTWEAK	00: Nominal core biases 01: 25% core bias reduction 10: 25% core bias increase 11: 50% core bias increase	R/W	00
1	PROTECT_MODE	1: Protection mode enabled 0: Normal configuration mode	R/W	0

Bit	Label	Description	Access	Reset
0	CONFIG_WP	1: Configure connect map		0
		0: Configure connect map		
		See "Simultaneous Connections using		
		the Config Pins," page 18		

Table 46.Core Configuration (continued)

3.4.24 Rx Detect Delay0

The Rx Detect Delay0 register sets the delay before first sample for PCIe receive detect in units of 250 ns.

Register name: Rx Detect Delay0

Register address: 76'h

Register type: R/W

Table 47. Rx Delay Detect0

Bit	Label	Description	Access	Reset
7:0	RXDETDELO	Delay value 0–255: Delay of sample time in units of 250 ns	R/W	1000 (2000 ns)

3.4.25 Rx Detect Delay1

The Rx Detect Delay1 register sets the delay before first sample for PCIe receive detect in units of 4000 ns.

Register name: Rx Detect Delay1

Register address: 77'h

Register type: R/W

Table 48. Rx Delay Detect1

Bit	Label	Description	Access	Reset
7:0	RXDETDEL1	Delay value 0–255: Delay of sample time in units of 4000 ns	R/W	0101 (20000 ns)

3.4.26 Serial Address

The Serial Address register sets the two-wire serial address.

Register name: Serial Address

Register address: 78'h

Register type: R/W

Table 49.Serial Address

Bit	Label	Description	Access	Reset
7	SMO	Sets value of SMO pin in two-wire serial mode 1: SMO = 1 0: SMO = 0	R/W	0
6:0	SERADDR	11111111–0000000: Sets the device address for the two-wire serial mode. This setting overrides the value set on the ADDR[6:0] pins. The SMI pin must be high to enable a write to this register.	R/W	0000000

3.4.27 Interface Mode

The Interface Mode register sets the serial interface mode to two-wire or four-wire serial mode.

Register name: Interface Mode

Register address: 79'h

Register type: R/W

Table 50. Interface Mode

Bit	Label	Description	Access	Reset
7:5		Unused	R	000
4	Soft reset	1: Reset registers (self-clearing) 0: Normal operation	R/W	0
3:2		Unused	R/W	00
1	2WIRE	Two-wire serial enable 1: Selected 0: Not selected	R/W	0
0	4WIRE	Four-wire serial enable 1: Selected 0: Not selected	R/W	0

3.4.28 Test7

The Test7 register is for Vitesse use only.

Register name: Test7

Register address: 7A'h

Register type: R

Table 51. Test7

Bit	Label	Description	Access
7	SMI	1: SMI pin high 0: SMI pin low	R
6	TWS	1: TWS pin high 0: TWS pin low	R
5	CONFIG	1: CONFIG pin high 0: CONFIG pin low	R
4	INJ1	1: Inject 1 input high 0: Inject 1 input low	R
3	INJO	1: Inject 0 input high 0: Inject 0 input low	R
2	ADDR9	1: ADDR9 pin high 0: ADDR9 pin low	R
1	ADDR8	1: ADDR8 pin high 0: ADDR8 pin low	R
0	ADDR7	1: ADDR7 pin high 0: ADDR7 pin low	R

3.4.29 Test8

The Test8 register is for Vitesse use only.

Register name: Test8

Register address: 7B'h

Register type: R

Table 52. Test8

Bit	Label	Description	Access
7	ADDR7	1: ADDR7 pin high 0: ADDR7 pin low	R
6	ADDR6	1: ADDR6 pin high 0: ADDR6 pin low	R
5	ADDR5	1: ADDR5 pin high 0: ADDR5 pin low	R
4	ADDR4	1: ADDR4 pin high 0: ADDR4 pin low	R
3	ADDR3	1: ADDR3 pin high 0: ADDR3 pin low	R
2	ADDR2	1: ADDR2 pin high 0: ADDR2 pin low	R
1	ADDR1	1: ADDR1 pin high 0: ADDR1 pin low	R
0	ADDR0	1: ADDR0 pin high 0: ADDR0 pin low	R

3.4.30 Test9

The Test9 register is for Vitesse use only.

Register name: Test9

Register address: 7C'h

Register type: R

Table 53. Test9

Bit	Label	Description	Access
7	CPUDATA7	1: CPUDATA7 pin high 0: CPUDATA7 pin low	R
6	CPUDATA6	1: CPUDATA6 pin high 0: CPUDATA6 pin low	R
5	CPUDATA5	1: CPUDATA5 pin high 0: CPUDATA5 pin low	R
4	CPUDATA4	1: CPUDATA4 pin high 0: CPUDATA4 pin low	R
3	CPUDATA3	1: CPUDATA3 pin high 0: CPUDATA3 pin low	R
2	CPUDATA2	1: CPUDATA2 pin high 0: CPUDATA2 pin low	R
1	CPUDATA1	1: CPUDATA1 pin high 0: CPUDATA1 pin low	R
0	CPUDATAO	1: CPUDATA0 pin high 0: CPUDATA0 pin low	R

3.4.31 Test10

The Test10 register is for Vitesse use only.

Register name: Test10

Register address: 7D'h

Register type: R/W

Table 54. Test10

Bit	Label	Description	Access	Reset
7:6	Reserved	Reserved	R	0
5	CPU DATA OUT ALL	1: CPUDATA[7:0] = 11111111b 0: CPUDATA[7:0] = 00000000b	R/W	0
4	STAT1 OUT	Value set on STAT1 1: Set STAT1 pin high 0: Set STAT1 pin low	R/W	0
3	STATO OUT	Value set on STATO 1: Set STATO pin high 0: Set STATO pin low	R/W	0

Table 54.Test10 (continued)

Bit	Label	Description	Access	Reset
2	SMO OUT	Value to set on SMO 1: Set SMO pin high 0: Set SMO pin low	R/W	0
1	CPUDATA_OEN	1: CPUDATA output mode 0: CPUDATA input mode	R/W	0
0	I/O Test Mode	1: I/O test mode enabled 0: I/O test mode disabled	R/W	0

3.4.32 RevID

The RevID register provides the revision code.

Register name: RevID

Register address: 7E'h

Register type: R

Table 55. RevID

Bit	Label	Description	Access	Reset
7:0	REVID	10101010: Revision code	R	10101010

3.4.33 Current Page

The Current Page register sets the page value for register programming.

Register name: Current Page

Register address: 7F'h

Register type: R/W

Table 56. Current Page

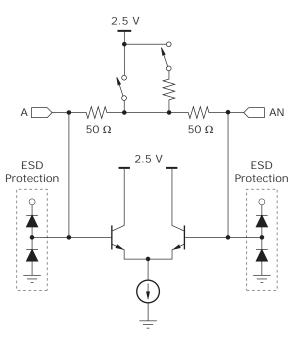
Bit	Label	Description	Access	Reset
7:0	CURRPAGE	0000–11111111: Current page setting	R/W	00000000

4 Electrical Specifications

This section provides the DC characteristics, AC characteristics, recommended operating conditions, and stress ratings for the VSC3340-01 device.

4.1 DC Characteristics

This section contains the DC specifications for the VSC3340-01 device.


4.1.1 High-Speed Data Inputs

This section provides information about the DC specifications for the high-speed data input pins: A and AN.

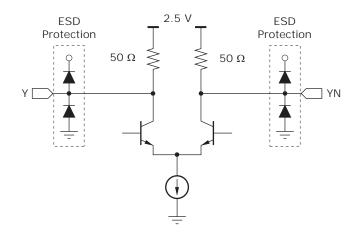
Table 57. High-Speed Inputs

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Condition
Input voltage swing, differential drive	V _{A_DE}	100		1800	mVp-p	Differential
Input common-mode voltage	V _{ICM}	1.9		V _{DD}	V	
Input resistance	R _{IN}	80	100	120	Ω	Between true and complement of same input, with nominal setting
Input common-mode resistance	R _{IN_CM}		35		Ω	Input buffer enabled CINPTERMVDD = 1
			3000		Ω	Input buffer enabled CINPTERMVDD = 0
		>50k			Ω	Input buffer disabled

Figure 5. High-Speed Input Buffer Equivalent Circuit

4.1.2 High-Speed Data Outputs

This section provides information about the DC specifications for the high-speed data output pins: Y and YN.


Table 58. High-Speed Outputs

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Condition
Serial data output voltage swing, level 2	V _{OUT_2}	380	450	570	mV	Differential peak-to-peak
Serial data output voltage swing, level 3	V _{OUT_3}	410	500	620	mV	Differential peak-to-peak
Serial data output voltage swing, level 4	V _{OUT_4}	440	540	670	mV	Differential peak-to-peak
Serial data output voltage swing, level 5	V _{OUT_5}	470	580	720	mV	Differential peak-to-peak
Serial data output voltage swing, level 6	V _{OUT_6}	530	630	790	mV	Differential peak-to-peak
Serial data output voltage swing, level 7	V _{OUT_7}	560	680	830	mV	Differential peak-to-peak
Serial data output voltage swing, level 8	V _{OUT_8}	610	740	890	mV	Differential peak-to-peak
Serial data output voltage swing, level 9	V _{OUT_9}	660	800	960	mV	Differential peak-to-peak
Serial data output voltage swing, level 10	V _{OUT_10}	760	900	1080	mV	Differential peak-to-peak

Table 58.High-Speed Outputs (continued)

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Condition
Serial data output voltage swing, level 11	V _{OUT_11}	850	1000	1190	mV	Differential peak-to-peak
Serial data output voltage swing, level 12	V _{OUT_12}	950	1130	1350	mV	Differential peak-to-peak
Serial data output voltage swing, level 13	V _{OUT_13}	1050	1300	1550	mV	Differential peak-to-peak
Serial data output voltage swing, level 14	V _{OUT_14}	1230	1450	1710	mV	Differential peak-to-peak
Serial data output voltage swing, level 15	V _{OUT_15}	1340	1600	1890	mV	Differential peak-to-peak
Back-terminated output resistance	R _{OUT_Y}	40	50	60	Ω	From true or complement to AC ground

Figure 6. High-Speed Output Driver Equivalent Circuit

4.1.3 LVTTL Inputs and Outputs

The following table shows the LVTTL I/O specifications for the VSC3340-01 device.

Table 59. LVTTL I/O Specifications

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Input high voltage	V _{IH}	1.7	V _{DD} + 0.7	V	$V_{DD} = 2.5 V$
Input low voltage	V _{IL}	0	0.6	V	$V_{DD} = 2.5 V$
Input high current	I _{IH}		500	μA	
Input low current	I _{IL}	-900		μA	
Output high voltage	V _{OH}	$V_{DD} - 0.4$	V _{DD}	V	DC load < 500 µA
Output low voltage	V _{OL}	0	0.4	V	DC load < 2 mA
Output tri-state leakage (high)	I _{OZH}		500	μA	

Table 59. LVTTL I/O Specifications (continued)

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Output tri-state leakage (low)	I _{OZL}	-900		μA	

4.1.4 Power Supply Requirements

The following table shows the power dissipation for the VSC3340-01 device assuming all 40 channels are used. For information about the various power modes, see Table 61, page 60.

Table 60. Power Requirements

Parameter	Symbol	Typical	Maximum	Unit
Power supply current, maximum	I _{DD-MAX}	3.8	4.4	А
Power supply current, 6 Gbps nominal	IDD-6G-NOM	2.8	3.3	А
Power supply current, Green mode	I _{DD-GREEN}	1.8	2.3	А
Total power dissipation, maximum	P _{D-MAX}	9.7	11.5	W
Total power dissipation, 6 Gbps nominal	P _{D-6G-NOM}	7.1	8.5	W
Total power dissipation, Green mode	P _{D-GREEN}	4.8	5.5	W

The following table provides information about the various power modes.

Table 61. Power Modes

Control	Maximum Mode	Nominal 6 Gbps Mode	Green Mode	Register
Channel mapping	Straight through A[39:0] to Y[39:0]	Straight through A[39:0] to Y[39:0]	Straight through A[39:0] to Y[39:0]	Page 00'h Range 00'h to 27'h
Receive ISE	Off	Off	Off	51'h, 52'h
Receive gain	Maximum	Maximum	Maximum	53'h
Receive bandwidth	11b	10b	00b	54'h
Output pre- emphasis	Off	Off	Off	56'h, 57'h
Output power level	1111b	1001b	0101b	58′h
Output high power	11b	10b	00b	58'h
Main core high power	11b	11b	00b	5A'h
Core output high power	11b	10b	00b	5A'h
Short column drive	11b	10b	00b	5B'h
Long column drive	11b	10b	10b	5B'h
VDD	2.625 V	2.5 V	2.5 V	

4.2 AC Characteristics

The following tables show the AC specifications for the VSC3340-01 device. The specifications apply for all channels.

4.2.1 High-Speed Data Inputs

The following table shows the AC specifications for the high-speed data input pins: A, AN, INJP[1:0], and INJN[1:0].

Table 62. High-Speed Inputs

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Condition
Serial NRZ input data rate	DR _A	0		6.5	Gbps	Minimum data rate is limited by the AC-coupling capacitor value (if AC-coupled)
Propagation delay from any A input to any Y output			750	1000	ps	
Output channel-to-channel delay skew	t _{skew}	-150		150	ps	Skew = longest path delay = shortest path delay
Input LOS threshold	V _{THLOS}	26		133	mVp-p	Default CINPLOS = 60'h = 81 mVp

4.2.2 High-Speed Data Outputs

The following table shows the AC specifications for the high-speed data output pins: Y, YN, SNSP[1:0], and SNSN[1:0].

Table 63. High-Speed Outputs

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Condition
Serial NRZ output data rate	D _{RY}	0		6.5	Gbps	Minimum data rate is limited by the AC-coupling capacitor value (if AC-coupled)
Added random jitter	t _{RJ_RMS}			0.5	ps_rms	See note ⁽¹⁾
Added random jitter, green mode	t _{RJ_RMS,Green}			0.5	ps_rms	See note ⁽²⁾
Output deterministic jitter ⁽³⁾	t _{DJ}			25	ps_p-p	See note ⁽⁴⁾
Output deterministic jitter, green mode ⁽³⁾	t _{DJ,Green}			40	ps_p-p	See note ⁽⁵⁾
Added crosstalk jitter ⁽³⁾	t _{XJ_RMS}			1.8	ps_rms	See note ⁽⁶⁾

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Condition
Added crosstalk jitter, green mode ⁽³⁾	t _{XJ_RMS,Green}			2.5	ps_rms	See note ⁽⁷⁾
Output duty cycle distortion	D _{CY}	40	50	60	%	Applies only to 101010 input data patterns
Output rise time and fall time	t _{R-Y} , t _{F-Y}		50	65	ps	20% to 80% with 50 Ω to AC ground ⁽⁸⁾
Output rise time and fall time, green mode	t _{R-Y, Green} , t _{F-Y,Green}		65	85	ps	20% to 80% with 50 Ω to AC ground ⁽⁹⁾
Squelched output amplitude ⁽¹⁰⁾	V _{out-sq}			30	mV _{p-p,DIFF}	Output level = 15

Table 63.High-Speed Outputs (continued)

1. Random jitter at the output with a clean input clock pattern measured after subtracting system random jitter values. Measured with default non-green mode and equalization except for ISE1 = 2.

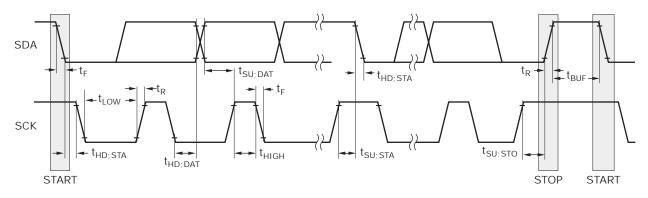
2. Random jitter at the output with a clean input clock pattern measured after subtracting system random jitter values. Measured with default green mode and equalization settings except for ISE1 = 2.

3. Measured by bathtub curve with an Agilent JBERT, with system jitter subtracted linearly from the deterministic jitter and as square-root-difference-of-squares for random jitter.

- Deterministic jitter at the output with a clean PRBS 2⁷-1 input measured after subtracting system random jitter and channel random jitter values. Measured with default non-green mode and equalization settings except for ISE1 = 2. Measured after 3" of FR-4 PCB trace.
- Deterministic jitter at the output with a clean PRBS 2^7-1 input measured after subtracting system random jitter and channel random jitter values. Measured with default green mode and equalization settings except for ISE1 = 2. Measured after 3" of FR-4 PCB trace.
- Random jitter at the output with a clean PRBS 2⁷-1 input measured in the presence of asynchronous PRBS 2⁷-1 interferers after subtracting system and single channel random jitter values. Measured with default nongreen mode and equalization settings except for ISE1 = 2.
- Random jitter at the output with a clean PRBS 2^7-1 input measured in the presence of asynchronous PRBS 2^7-1 interferers after subtracting system and single channel random jitter values. Measured with default green mode and equalization settings except for ISE1 = 2, input buffer bandwidth = 01b, and main switch core bandwidth = 10b.
- 8. Measured at the output pin for output level = 8 with non-green mode settings except for CPE1LEVEL = 010b and CPE1DECAY = 110b.
- 9. Measured at the output pin for output level = 8 with green mode settings except for CPE1LEVEL = 010b and CPE1DECAY = 110b.
- 10. Represents the maximum signal present at the output when the output is active but squelched, either by using the CDRVCM bit or by enabling OOB signal forwarding, while in the presence of asynchronous PRBS 2^7-1 interferers on adjacent channels.

4.2.3 Two-Wire Serial Interface

This section provides information about the two-wire serial interface parameters.

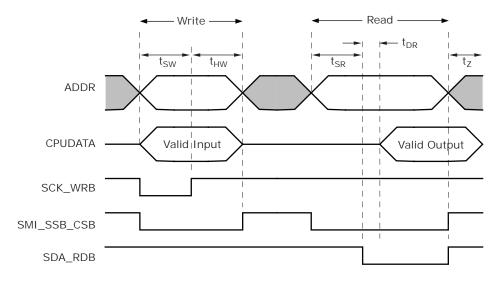

Table 64. Two-Wire Serial Interface Timing Parameters

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Serial clock	f _{SCK}		400	kHz	
Serial I/O	f _{SDA}		400	kHz	
Hold time START condition after this period, the first CLK pulse is generated	t _{hd;sta}	0.6		μs	
Low period of SCK	t _{LOW}	1.3		μs	
High period of SCK	t _{HIGH}	0.6		μs	

Table 64. Two-Wire Serial Interface Timing Parameters (continued)

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Data hold time	t _{HD; DAT}	0.09		μs	
Data setup time	t _{SU; DAT}	100		ns	
Rise time of both SDA and SCK	t _R		300	ns	$Cload \leq 3nF$
Fall time of both SDA and SCK	t _F		300	ns	$Cload \leq 3nF$
Bus free time between STOP and START	t _{BUF}	1.3		μs	
Capacitive load for each bus line	CB		400	pF	

Figure 7. Two-Wire Serial Timing Diagram



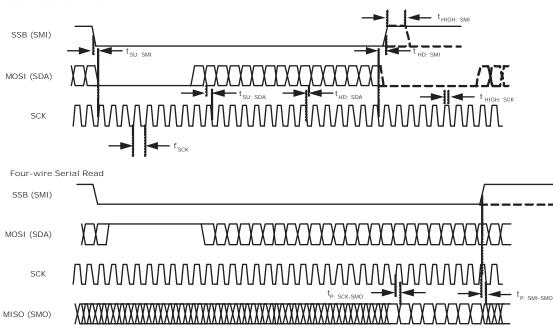
4.2.4 Parallel Programming Interface

This section provides information about the parallel programming interface parameters.

Table 65. Parallel Programming Interface Parameters

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Delay from SDA_RDB falling to valid output data on CPUDATA	t _{DR}		15	ns	
ADDR setup time before falling edge of SDA_RDB for a read	t _{SR}	5		ns	
CPUDATA/ADDR hold time after rising edge of SCK_WRB for a write	t _{HW}	5		ns	
CPUDATA/ADDR setup time before rising edge of SCK_WRB for a write	t _{SW}	5		ns	
Rise, fall time of CPUDATA as output	t _{RDFD}		2	ns	Cload ≤ 15pF
Rise, fall time of SCK_WRB input	t _{RFSW}		2	ns	$Cload \leq 15 pF$
Time to tri-state CPUDATA after rising edge of SDA_RDB or SMI_SSB_CSB	tz	0	1	ns	
Capacitive load for each pin	CB		5	pF	

Figure 8. Parallel Programming Timing Diagram


4.2.5 Four-Wire Serial Interface

This section provides information about the four-wire serial interface parameters.

Table 66. Four-Wire Serial Interface Parameters

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Serial clock	f _{SCK}		30	MHz	
Serial clock minimum pulse width	t _{HIGH; SCK}	5		ns	
SDA setup time to falling edge of SCK	t _{SU; SDA}	1		ns	
SDA hold time from falling edge of SCK	t _{HD;SDA}	2		ns	
SMI setup time to rising edge of SCK	t _{SU; SMI}	2		ns	
Falling SCK in last valid data to rising SMI	t _{HD; SMI}	100		ns	
SMI minimum pulse width	t _{HIGH; SMI}	5		ns	
Rising edge of SCK to SMO propagation delay	t _{p;SCK-SMO}	15		ns	
Rise time for all four-wire signals	t _R		3	ns	$Cload \leq 15 pF$
Fall time for all four-wire signals	t _F		3	ns	$Cload \leq 15 pF$

Figure 9. Four-Wire Serial Timing Diagram

Four-wire Serial Write

4.3 Operating Conditions

The following table shows the recommended operating conditions for the VSC3340-01 device.

Table 67. Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Core and I/O power supply	V _{DD}	2.375	2.5	2.625	V
Operating temperature ⁽¹⁾	Т	-40		100	°C

1. Minimum specification is ambient temperature, and the maximum is case temperature.

4.4 Stress Ratings

This section contains the stress ratings for the VSC3340-01 device.

Warning Stresses listed in the following table may be applied to devices one at a time without causing permanent damage. Functionality at or exceeding the values listed is not implied. Exposure to these values for extended periods may affect device reliability.

Table 68. Stress Ratings

Parameter	Symbol	Minimum	Maximum	Unit
Power supply voltage, potential to GND	V _{DD}	-0.5		V

Table 68. Stress Ratings (continued)

Parameter	Symbol	Minimum	Maximum	Unit
DC input voltage applied (TTL)		-0.5	V _{DD} + 1.0	V
DC input voltage applied (CML)		-0.5	$V_{DD} + 0.5$	V
Output current (LVTTL)	I _{OUT}	-50	50	mA
Storage temperature	Τ _S	-40	125	°C
Electrostatic discharge voltage, charged device model	V_{ESD_CDM}	-500	500	V
Electrostatic discharge voltage, human body model	$V_{ESD_{HBM}}$	See r	ote ⁽¹⁾	V

1. This device has completed all required testing as specified in the JEDEC standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*, and complies with a Class 2 rating. The definition of Class 2 is any part that passes an ESD pulse of 2000 V, but fails an ESD pulse of 4000 V.

Warning This device can be damaged by electrostatic discharge (ESD) voltage. Vitesse recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures may adversely affect reliability of the device.

5 Pin Descriptions

The VSC3340-01 device has 484 pins, which are described in this section.

The pin information is also provided as an attached Microsoft Excel file, so that you can copy it electronically. In Adobe Reader, double-click the attachment icon.

5.1 Pin Diagram

The following illustration shows the top view of the pin diagram for the VSC3340-01 device.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Α	Y20	YN20	A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
в	Y21	YN21	AN19	AN18	AN17	AN16	AN15	AN14	AN13	AN12	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0
с	Y22	YN22	ADDR3	ADDR2	ADDR1	ADDR0	VDD	VSS	VSS	VDD	INJPO	INJNO	VSS	VDD	VDD	VSS	CPUD ATA7	CPUD ATA6	CPUD ATA5	CPUD ATA4	YNO	YO
D	Y23	YN23	ADDR4	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	CPUD ATA3	YN1	Y1
Е	Y24	YN24	ADDR5	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	CPUD ATA2	YN2	Y2
F	Y25	YN25	ADDR6	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	CPUD ATA1	YN3	Y3
G	Y26	YN26	APAD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	CPUD ATA0	YN4	Y4
н	Y27	YN27	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	YN5	Y5
J	Y28	YN28	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	YN6	Y6
к	Y29	YN29	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	YN7	Y7
L	Y30	YN30	SNSN1	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	SNSPO	YN8	Y8
м	Y31	YN31	SNSP1	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	SNSNO	YN9	Y9
Ν	Y32	YN32	VREG	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	YN10	Y10
Ρ	Y33	YN33	VSS	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	YN11	Y11
R	Y34	YN34	VSS	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	YN12	Y12
т	Y35	YN35	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	TWS	YN13	Y13
U	Y36	YN36	ADDR7	VDD	VDD	vss	vss	VDD	VDD	vss	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	STAT1	YN14	Y14
v	Y37	YN37	ADDR8	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	STATO	YN15	Y15
w	Y38	YN38	ADDR9	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS	VSS	VDD	VDD	SERP ARB	YN16	Y16
Y	Y39	YN39	ADDR10	RESETB	CONFIG	SCAN MODE	VSS	VDD	VDD	VSS	INJN1	INJP1	VDD	VSS	VSS	VDD	SCK_ WRB	SDA_ RDB	SMI_SS B_CSB	SMO	YN17	Y17
AA	AN39	AN38	AN37	AN36	AN35	AN34	AN33	AN32	AN31	AN30	AN29	AN28	AN27	AN26	AN25	AN24	AN23	AN22	AN21	AN20	YN18	Y18
AB	A39	A38	A37	A36	A35	A34	A33	A32	A31	A30	A29	A28	A27	A26	A25	A24	A23	A22	A21	A20	YN19	Y19

Figure 10. Pin Diagram

5.2 Pins by Function

This section contains the functional pin descriptions for the VSC3340-01 device.

5.2.1 High-Speed Data Inputs

The following table shows the high-speed data input pins for the VSC3340-01 device.

Table 69. High-Speed Data Input Pins

A0A22ICMLDifferential input port, trueA1A21ICMLDifferential input port, trueA2A20ICMLDifferential input port, trueA3A19ICMLDifferential input port, trueA4A18ICMLDifferential input port, trueA5A17ICMLDifferential input port, trueA6A16ICMLDifferential input port, trueA7A15ICMLDifferential input port, trueA8A14ICMLDifferential input port, trueA9A13ICMLDifferential input port, trueA10A12ICMLDifferential input port, trueA11A11ICMLDifferential input port, trueA13A9ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA14<	 Description	Level	1/0	Number	Name
A1A21ICMLDifferential input port, trueA2A20ICMLDifferential input port, trueA3A19ICMLDifferential input port, trueA4A18ICMLDifferential input port, trueA5A17ICMLDifferential input port, trueA6A16ICMLDifferential input port, trueA6A16ICMLDifferential input port, trueA7A15ICMLDifferential input port, trueA8A14ICMLDifferential input port, trueA9A13ICMLDifferential input port, trueA10A12ICMLDifferential input port, trueA11A11ICMLDifferential input port, trueA12A10ICMLDifferential input port, trueA13A9ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA16A6ICMLDifferential input port, trueA17A5ICMLDifferential input port, trueA18A4ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, true <td< td=""><td></td><td>CML</td><td>I</td><td>A22</td><td>AO</td></td<>		CML	I	A22	AO
A3A19ICMLDifferential input port, trueA4A18ICMLDifferential input port, trueA5A17ICMLDifferential input port, trueA6A16ICMLDifferential input port, trueA7A15ICMLDifferential input port, trueA8A14ICMLDifferential input port, trueA9A13ICMLDifferential input port, trueA10A12ICMLDifferential input port, trueA11A11ICMLDifferential input port, trueA12A10ICMLDifferential input port, trueA13A9ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA16A6ICMLDifferential input port, trueA17A5ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA22AB18ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, true<	 Differential input port, true	CML	Ι	A21	A1
A4A18ICMLDifferential input port, trueA5A17ICMLDifferential input port, trueA6A16ICMLDifferential input port, trueA7A15ICMLDifferential input port, trueA8A14ICMLDifferential input port, trueA9A13ICMLDifferential input port, trueA10A12ICMLDifferential input port, trueA11A11ICMLDifferential input port, trueA12A10ICMLDifferential input port, trueA13A9ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA16A6ICMLDifferential input port, trueA17A5ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA22AB18ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, true<	 Differential input port, true	CML	Ι	A20	A2
A5A17ICMLDifferential input port, trueA6A16ICMLDifferential input port, trueA7A15ICMLDifferential input port, trueA8A14ICMLDifferential input port, trueA9A13ICMLDifferential input port, trueA10A12ICMLDifferential input port, trueA11A11ICMLDifferential input port, trueA12A10ICMLDifferential input port, trueA13A9ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA16A6ICMLDifferential input port, trueA17A5ICMLDifferential input port, trueA18A4ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	 Differential input port, true	CML	I	A19	A3
A6A16ICMLDifferential input port, trueA7A15ICMLDifferential input port, trueA8A14ICMLDifferential input port, trueA9A13ICMLDifferential input port, trueA10A12ICMLDifferential input port, trueA11A11ICMLDifferential input port, trueA12A10ICMLDifferential input port, trueA13A9ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA16A6ICMLDifferential input port, trueA17A5ICMLDifferential input port, trueA18A4ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	 Differential input port, true	CML	Ι	A18	A4
A7A15ICMLDifferential input port, trueA8A14ICMLDifferential input port, trueA9A13ICMLDifferential input port, trueA10A12ICMLDifferential input port, trueA11A11ICMLDifferential input port, trueA12A10ICMLDifferential input port, trueA13A9ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA16A6ICMLDifferential input port, trueA17A5ICMLDifferential input port, trueA18A4ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA22AB18ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	 Differential input port, true	CML	Ι	A17	A5
A8A14ICMLDifferential input port, trueA9A13ICMLDifferential input port, trueA10A12ICMLDifferential input port, trueA11A11ICMLDifferential input port, trueA12A10ICMLDifferential input port, trueA13A9ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA16A6ICMLDifferential input port, trueA17A5ICMLDifferential input port, trueA18A4ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA22AB18ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	 Differential input port, true	CML	Ι	A16	A6
A9A13ICMLDifferential input port, trueA10A12ICMLDifferential input port, trueA11A11ICMLDifferential input port, trueA12A10ICMLDifferential input port, trueA13A9ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA16A6ICMLDifferential input port, trueA17A5ICMLDifferential input port, trueA18A4ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA22AB18ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	 Differential input port, true	CML	Ι	A15	A7
A10A12ICMLDifferential input port, trueA11A11ICMLDifferential input port, trueA12A10ICMLDifferential input port, trueA13A9ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA16A6ICMLDifferential input port, trueA17A5ICMLDifferential input port, trueA18A4ICMLDifferential input port, trueA19A3ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA22AB18ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	 Differential input port, true	CML	Ι	A14	A8
A11A11ICMLDifferential input port, trueA12A10ICMLDifferential input port, trueA13A9ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA16A6ICMLDifferential input port, trueA17A5ICMLDifferential input port, trueA18A4ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	 Differential input port, true	CML	Ι	A13	A9
A12A10ICMLDifferential input port, trueA13A9ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA16A6ICMLDifferential input port, trueA17A5ICMLDifferential input port, trueA18A4ICMLDifferential input port, trueA19A3ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	Differential input port, true	CML	Ι	A12	A10
A13A9ICMLDifferential input port, trueA14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA16A6ICMLDifferential input port, trueA17A5ICMLDifferential input port, trueA18A4ICMLDifferential input port, trueA19A3ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	 Differential input port, true	CML	Ι	A11	A11
A14A8ICMLDifferential input port, trueA15A7ICMLDifferential input port, trueA16A6ICMLDifferential input port, trueA17A5ICMLDifferential input port, trueA18A4ICMLDifferential input port, trueA19A3ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	Differential input port, true	CML	Ι	A10	A12
A15A7ICMLDifferential input port, trueA16A6ICMLDifferential input port, trueA17A5ICMLDifferential input port, trueA18A4ICMLDifferential input port, trueA19A3ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	Differential input port, true	CML	Ι	A9	A13
A16A6ICMLDifferential input port, trueA17A5ICMLDifferential input port, trueA18A4ICMLDifferential input port, trueA19A3ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA22AB18ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	Differential input port, true	CML	Ι	A8	A14
A17A5ICMLDifferential input port, trueA18A4ICMLDifferential input port, trueA19A3ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA22AB18ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	Differential input port, true	CML	Ι	A7	A15
A18A4ICMLDifferential input port, trueA19A3ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA22AB18ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	Differential input port, true	CML	Ι	A6	A16
A19A3ICMLDifferential input port, trueA20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA22AB18ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	Differential input port, true	CML	Ι	A5	A17
A20AB20ICMLDifferential input port, trueA21AB19ICMLDifferential input port, trueA22AB18ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	Differential input port, true	CML	Ι	A4	A18
A21AB19ICMLDifferential input port, trueA22AB18ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	Differential input port, true	CML	I	A3	A19
A22AB18ICMLDifferential input port, trueA23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	Differential input port, true	CML	Ι	AB20	A20
A23AB17ICMLDifferential input port, trueA24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	Differential input port, true	CML	Ι	AB19	A21
A24AB16ICMLDifferential input port, trueA25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	Differential input port, true	CML	Ι	AB18	A22
A25AB15ICMLDifferential input port, trueA26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	Differential input port, true	CML	Ι	AB17	A23
A26AB14ICMLDifferential input port, trueA27AB13ICMLDifferential input port, true	Differential input port, true	CML	Ι	AB16	A24
A27 AB13 I CML Differential input port, true	Differential input port, true	CML	Ι	AB15	A25
	Differential input port, true	CML	Ι	AB14	A26
A28 AB12 I CML Differential input port, true	Differential input port, true	CML	Ι	AB13	A27
• • •	 Differential input port, true	CML	Ι	AB12	A28
A29 AB11 I CML Differential input port, true	 Differential input port, true	CML	I	AB11	A29
A30 AB10 I CML Differential input port, true	 Differential input port, true	CML	I	AB10	A30
A31 AB9 I CML Differential input port, true	 Differential input port, true	CML	I	AB9	A31
A32 AB8 I CML Differential input port, true	 Differential input port, true	CML	I	AB8	A32

Name	Number	1/0	Level	Description
A33	AB7	I	CML	Differential input port, true
A34	AB6	Ι	CML	Differential input port, true
A35	AB5	I	CML	Differential input port, true
A36	AB4	I	CML	Differential input port, true
A37	AB3	I	CML	Differential input port, true
A38	AB2	I	CML	Differential input port, true
A39	AB1	I	CML	Differential input port, true
ANO	B22	I	CML	Differential input port, complement
AN1	B21	I	CML	Differential input port, complement
AN2	B20	I	CML	Differential input port, complement
AN3	B19	I	CML	Differential input port, complement
AN4	B18	Ι	CML	Differential input port, complement
AN5	B17	I	CML	Differential input port, complement
AN6	B16	I	CML	Differential input port, complement
AN7	B15	Ι	CML	Differential input port, complement
AN8	B14	I	CML	Differential input port, complement
AN9	B13	I	CML	Differential input port, complement
AN10	B12	I	CML	Differential input port, complement
AN11	B11	I	CML	Differential input port, complement
AN12	B10	I	CML	Differential input port, complement
AN13	B9	I	CML	Differential input port, complement
AN14	B8	I	CML	Differential input port, complement
AN15	B7	I	CML	Differential input port, complement
AN16	B6	I	CML	Differential input port, complement
AN17	B5	I	CML	Differential input port, complement
AN18	B4	I	CML	Differential input port, complement
AN19	B3	I	CML	Differential input port, complement
AN20	AA20	I	CML	Differential input port, complement
AN21	AA19	I	CML	Differential input port, complement
AN22	AA18	I	CML	Differential input port, complement
AN23	AA17	I	CML	Differential input port, complement
AN24	AA16	I	CML	Differential input port, complement
AN25	AA15	I	CML	Differential input port, complement
AN26	AA14	I	CML	Differential input port, complement
AN27	AA13	I	CML	Differential input port, complement
AN28	AA12	I	CML	Differential input port, complement
AN29	AA11	I	CML	Differential input port, complement
AN30	AA10	I	CML	Differential input port, complement
AN31	AA9	I	CML	Differential input port, complement
AN32	AA8	I	CML	Differential input port, complement
AN33	AA7	I	CML	Differential input port, complement

Table 69. High-Speed Data Input Pins (continued)

Name	Number	1/0	Level	Description
AN34	AA6	Ι	CML	Differential input port, complement
AN35	AA5	Ι	CML	Differential input port, complement
AN36	AA4	Ι	CML	Differential input port, complement
AN37	AA3	Ι	CML	Differential input port, complement
AN38	AA2	I	CML	Differential input port, complement
AN39	AA1	Ι	CML	Differential input port, complement
INJPO	C11	Ι	CML	Differential test input port, true
INJNO	C12	I	CML	Differential test input port, complement
INJP1	Y12	I	CML	Differential test input port, true
INJN1	Y11	I	CML	Differential test input port, complement

Table 69. High-Speed Data Input Pins (continued)

5.2.2 High-Speed Data Outputs

The following table shows the high-speed data output pins for the VSC3340-01 device.

Table 70.High-Speed Data Output Pins

Name	Number	1/0	Level	Description
YO	C22	0	CML	Differential output port, true
Y1	D22	0	CML	Differential output port, true
Y2	E22	0	CML	Differential output port, true
Y3	F22	0	CML	Differential output port, true
Y4	G22	0	CML	Differential output port, true
Y5	H22	0	CML	Differential output port, true
Y6	J22	0	CML	Differential output port, true
Y7	K22	0	CML	Differential output port, true
Y8	L22	0	CML	Differential output port, true
Y9	M22	0	CML	Differential output port, true
Y10	N22	0	CML	Differential output port, true
Y11	P22	0	CML	Differential output port, true
Y12	R22	0	CML	Differential output port, true
Y13	T22	0	CML	Differential output port, true
Y14	U22	0	CML	Differential output port, true
Y15	V22	0	CML	Differential output port, true
Y16	W22	0	CML	Differential output port, true
Y17	Y22	0	CML	Differential output port, true
Y18	AA22	0	CML	Differential output port, true
Y19	AB22	0	CML	Differential output port, true
Y20	A1	0	CML	Differential output port, true
Y21	B1	0	CML	Differential output port, true
Y22	C1	0	CML	Differential output port, true
Y23	D1	0	CML	Differential output port, true

Name	Number	1/0	Level	Description
Y24	E1	0	CML	Differential output port, true
Y25	F1	0	CML	Differential output port, true
Y26	G1	0	CML	Differential output port, true
Y27	H1	0	CML	Differential output port, true
Y28	J1	0	CML	Differential output port, true
Y29	K1	0	CML	Differential output port, true
Y30	L1	0	CML	Differential output port, true
Y31	M1	0	CML	Differential output port, true
Y32	N1	0	CML	Differential output port, true
Y33	P1	0	CML	Differential output port, true
Y34	R1	0	CML	Differential output port, true
Y35	T1	0	CML	Differential output port, true
Y36	U1	0	CML	Differential output port, true
Y37	V1	0	CML	Differential output port, true
Y38	W1	0	CML	Differential output port, true
Y39	Y1	0	CML	Differential output port, true
YNO	C21	0	CML	Differential output port, complement
YN1	D21	0	CML	Differential output port, complement
YN2	E21	0	CML	Differential output port, complement
YN3	F21	0	CML	Differential output port, complement
YN4	G21	0	CML	Differential output port, complement
YN5	H21	0	CML	Differential output port, complement
YN6	J21	0	CML	Differential output port, complement
YN7	K21	0	CML	Differential output port, complement
YN8	L21	0	CML	Differential output port, complement
YN9	M21	0	CML	Differential output port, complement
YN10	N21	0	CML	Differential output port, complement
YN11	P21	0	CML	Differential output port, complement
YN12	R21	0	CML	Differential output port, complement
YN13	T21	0	CML	Differential output port, complement
YN14	U21	0	CML	Differential output port, complement
YN15	V21	0	CML	Differential output port, complement
YN16	W21	0	CML	Differential output port, complement
YN17	Y21	0	CML	Differential output port, complement
YN18	AA21	0	CML	Differential output port, complement
YN19	AB21	0	CML	Differential output port, complement
YN20	A2	0	CML	Differential output port, complement
YN21	B2	0	CML	Differential output port, complement
YN22	C2	0	CML	Differential output port, complement
YN23	D2	0	CML	Differential output port, complement
YN24	E2	0	CML	Differential output port, complement

Table 70. High-Speed Data Output Pins (continued)

F2 G2	1/0 0	Level	Description
• =	0		
62		CML	Differential output port, complement
02	0	CML	Differential output port, complement
H2	0	CML	Differential output port, complement
J2	0	CML	Differential output port, complement
K2	0	CML	Differential output port, complement
L2	0	CML	Differential output port, complement
M2	0	CML	Differential output port, complement
N2	0	CML	Differential output port, complement
P2	0	CML	Differential output port, complement
R2	0	CML	Differential output port, complement
T2	0	CML	Differential output port, complement
U2	0	CML	Differential output port, complement
V2	0	CML	Differential output port, complement
W2	0	CML	Differential output port, complement
Y2	0	CML	Differential output port, complement
L20	0	CML	Differential test output port, true
M20	0	CML	Differential test output port, complement
M3	0	CML	Differential test output port, true
L3	0	CML	Differential test output port, complement
	J2 K2 L2 M2 N2 P2 R2 T2 U2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 M20 M3	J2 O J2 O K2 O L2 O M2 O N2 O P2 O R2 O T2 O V2 O V2 O Y2 O Y2 O M20 O M3 O	J2 O CML K2 O CML L2 O CML M2 O CML M2 O CML N2 O CML P2 O CML T2 O CML U2 O CML V2 O CML V2 O CML V2 O CML Y2 O CML Y2 O CML Y2 O CML M20 O CML M3 O CML

Table 70. High-Speed Data Output Pins (continued)

5.2.3 Control Pins

The following table shows the control pins for the VSC3340-01 device, including their pull-up (PU) or pull-down (PD) designations.

Name	Number	1/0	Level	PU/PD	Description
ADDR0	C6	I	LVTTL	PD	Two-wire serial address, parallel interface address.
ADDR1	C5	I	LVTTL	PD	Two-wire serial address, parallel interface address.
ADDR2	C4	I	LVTTL	PD	Two-wire serial address, parallel interface address.
ADDR3	C3	Ι	LVTTL	PD	Two-wire serial address, parallel interface address.
ADDR4	D3	Ι	LVTTL	PD	Two-wire serial address, parallel interface address.
ADDR5	E3	I	LVTTL	PU	Two-wire serial address, parallel interface address.
ADDR6	F3	Ι	LVTTL	PD	Two-wire serial address, parallel interface address.
ADDR7	U3	Ι	LVTTL	PD	Two-wire serial address, parallel interface address.
ADDR8	V3	I	LVTTL	PD	Two-wire serial address, parallel interface address.
ADDR9	W3	I	LVTTL	PD	Two-wire serial address, parallel interface address.
ADDR10	Y3	Ι	LVTTL	PD	Two-wire serial address, parallel interface address.
CPUDATAO	G20	1/0	LVTTL	PD	Bidirectional data pin for parallel programming interface.
CPUDATA1	F20	1/0	LVTTL	PD	Bidirectional data pin for parallel programming interface.
CPUDATA2	E20	1/0	LVTTL	PD	Bidirectional data pin for parallel programming interface.

Table 71. Control Pins

Name	Number	1/0	Level	PU/PD	Description
CPUDATA3	D20	1/0	LVTTL	PD	Bidirectional data pin for parallel programming interface.
CPUDATA4	C20	1/0	LVTTL	PD	Bidirectional data pin for parallel programming interface.
CPUDATA5	C19	1/0	LVTTL	PD	Bidirectional data pin for parallel programming interface.
CPUDATA6	C18	1/0	LVTTL	PD	Bidirectional data pin for parallel programming interface.
CPUDATA7	C17	1/0	LVTTL	PD	Bidirectional data pin for parallel programming interface.
CONFIG	Y5	I	LVTTL	PD	Permits simultaneous configuration of multiple connection steps. Internal pull-up resistor.
RESETB	Y4	Ι	LVTTL	PU	Resets device when pulled low. Internal pull-up resistor.
SCK_WRB	Y17	1/0	LVTTL	PU	Serial clock for two-wire serial bus. Write strobe for parallel interface.
SDA_RDB	Y18	1/0	LVTTL	PU	Serial data for two-wire serial bus. Read control for parallel interface.
SMI_SSB_CSB	Y19	I	LVTTL	PD	Input for optional proprietary two-wire addressing scheme. Chip select for four-wire serial interface and parallel interface.
SMO	Y20	1/0	LVTTL	PD	Output for optional proprietary two-wire addressing scheme.
STAT0	V20	0	LVTTL	PD	Status output for LOS.
STAT1	U20	0	LVTTL	PD	Status output for LOS.
SERPARB	W20	I	LVTTL	PD	Control for programming interface type. Serial = 1. Parallel = 0.
SCANMODE	Y6	I	LVTTL	PD	Puts device into scan test mode when 1.
VREG	N3	I	Analog		Internal 1.8 V regulated supply sense point. Vitesse use only.
APAD	G3	0	Analog		Analog test point output. Vitesse use only.
TWS	T20	Ι	LVTTL	PD	Two-wire signaling mode when 1.

Table 71.Control Pins (continued)

5.2.4 Power Supplies

The following table shows the power supply pins for the VSC3340-01 device.

Table 72.Power Supplies

Name	Number	Description
VDD	C7, C10, C14, C15, D4, D5, D8, D9, D12, D13, D16, D17, E4, E5, E8, E9, E12, E13, E16, E17, F6, F7, F10, F11, F14, F15, F18, F19, G6, G7, G10, G11, G14, G15, G18, G19, H4, H5, H8, H9, H12, H13, H16, H17, H20, J4, J5, J8, J9, J12, J13, J16, J17, J20, K3, K6, K7, K10, K11, K14, K15, K18, K19, L6, L7, L10, L11, L14, L15, L18, L19, M4, M5, M8, M9, M12, M13, M16, M17, N4, N5, N8, N9, N12, N13, N16, N17, N20, P6, P7, P10, P11, P14, P15, P18, P19, R6, R7, R10, R11, R14, R15, R18, R19, T4, T5, T8, T9, T12, T13,T16, T17, U4, U5, U8, U9, U12, U13, U16, U17, V6, V7, V10, V11, V14, V15, V18, V19, W6, W7, W10, W11, W14, W15, W18, W19, Y8, Y9, Y13, Y16	Power supply for switch core high-speed inputs, outputs and control logic (2.5 V)

Table 72.Power Supplies (continued)

Name	Number	Description
VSS	C8, C9, C13, C16, D6, D7, D10, D11, D14, D15, D18, D19, E6, E7, E10, E11, E14, E15, E18, E19, F4, F5, F8, F9, F12, F13, F16, F17, G4, G5, G8, G9, G12, G13, G16, G17, H3, H6, H7, H10, H11, H14, H15, H18, H19, J3, J6, J7, J10, J11, J14, J15, J18, J19, K4, K5, K8, K9, K12, K13, K16, K17, K20, L4, L5, L8, L9, L12, L13, L16, L17, M6, M7, M10, M11, M14, M15, M18, M19, N6, N7, N10, N11, N14, N15, N18, N19, P3, P4, P5, P8, P9, P12, P13, P16, P17, P20, R3, R4, R5, R8, R9, R12, R13, R16, R17, R20, T3, T6, T7, T10, T11, T14, T15, T18, T19, U6, U7, U10, U11, U14, U15, U18, U19, V4, V5, V8, V9, V12, V13, V16, V17, W4, W5, W8, W9, W12, W13, W16, W17, Y7, Y10, Y14, Y15	Ground

5.3 Pins by Number

This section provides a numeric list of the VSC3340-01 device pins.

A1	Y20
A2	YN20
A3	A19
A4	A18
A5	A17
A6	A16
A7	A15
A8	A14
A9	A13
A10	A12
A11	A11
A12	A10
A13	A9
A14	A8
A15	A7
A16	A6
A17	A5
A18	A4
A19	A3
A20	A2
A21	A1
A22	AO
AA1	AN39
AA2	AN38
AA3	AN37
AA4	AN36
AA5	AN35
AA6	AN34
AA7	AN33
AA8	AN32
AA9	AN31
AA10	AN30
AA11	AN29
AA12	AN28
AA13	AN27
AA14	AN26
AA15	AN25
AA16	AN24
AA17	AN23
AA18	AN22
AA19	AN21
AA20	AN20
AA21	YN18

		_
AA22	Y18	_
AB1	A39	_
AB2	A38	_
AB3	A37	_
AB4	A36	_
AB5	A35	_
AB6	A34	_
AB7	A33	_
AB8	A32	_
AB9	A31	_
AB10	A30	_
AB11	A29	_
AB12	A28	_
AB13	A27	_
AB14	A26	_
AB15	A25	_
AB16	A24	_
AB17	A23	_
AB18	A22	_
AB19	A21	_
AB20	A20	_
AB21	YN19	_
AB22	Y19	_
B1	Y21	_
B2	YN21	_
B3	AN19	_
B4	AN18	_
B5	AN17	_
B6	AN16	_
B7	AN15	_
B8	AN14	_
B9	AN13	_
B10	AN12	_
B11	AN11	_
B12	AN10	_
B13	AN9	_
B14	AN8	_
B15	AN7	_
B16	AN6	_
B17	AN5	_
B18	AN4	_
B19	AN3	_
B20	AN2	_

B21	AN1
B22	ANO
C1	Y22
C2	YN22
C3	ADDR3
C4	ADDR2
C5	ADDR1
C6	ADDR0
C7	VDD
C8	VSS
C9	VSS
C10	VDD
C11	INJPO
C12	INJNO
C13	VSS
C14	VDD
C15	VDD
C16	VSS
C17	CPUDATA7
C18	CPUDATA6
C19	CPUDATA5
C20	CPUDATA4
C21	YNO
C22	YO
D1	Y23
D2	YN23
D3	ADDR4
D4	VDD
D5	VDD
D6	VSS
D7	VSS
D8	VDD
D9	VDD
D10	VSS
D11	VSS
D12	VDD
D13	VDD
D14	VSS
D15	VSS
D16	VDD
D17	VDD
D18	VSS
D19	VSS

Pins by number (continued)

D20	CPUDATA3
D21	YN1
D22	Y1
E1	Y24
E2	YN24
E3	ADDR5
E4	VDD
E5	VDD
E6	VSS
E7	VSS
E8	VDD
E9	VDD
E10	VSS
E11	VSS
E12	VDD
E13	VDD
E14	VSS
E15	VSS
E16	VDD
E17	VDD
E18	VSS
E19	VSS
E20	CPUDATA2
E21	YN2
E22	Y2
F1	Y25
F2	YN25
F3	ADDR6
F4	VSS
F5	VSS
F6	VDD
F7	VDD
F8	VSS
F9	VSS
F10	VDD
F11	VDD
F12	VSS
F13	VSS
F14	VDD
F15	VDD
F16	VSS
F17	VSS
F17 F18	VDD
F18 F19	VDD
F19 F20	CPUDATA1
120	UDAIAI

F21 YN3 F22 Y3 G1 Y26 G2 YN26 G3 APAD G4 VSS G5 VSS G6 VDD G7 VDD G8 VSS G9 VSS G10 VDD G11 VDD G12 VSS G13 VSS G14 VDD G15 VDD G16 VSS G17 VSS G18 VDD G19 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD		
G1 Y26 G2 YN26 G3 APAD G4 VSS G5 VSS G6 VDD G7 VDD G8 VSS G9 VSS G10 VDD G11 VDD G12 VSS G13 VSS G14 VDD G15 VDD G16 VSS G17 VSS G18 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H1 VSS H1 VSS H1 VSS H1 VSS H1 VSS H1 VSS H11 VSS	F21	YN3
G2 YN26 G3 APAD G4 VSS G5 VSS G6 VDD G7 VDD G8 VSS G9 VSS G10 VDD G11 VDD G12 VSS G13 VSS G14 VDD G15 VDD G16 VSS G17 VSS G18 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 <t< td=""><td>F22</td><td>Y3</td></t<>	F22	Y3
G3 APAD G4 VSS G5 VSS G6 VDD G7 VDD G8 VSS G9 VSS G10 VDD G11 VDD G12 VSS G13 VSS G14 VDD G15 VDD G16 VSS G17 VSS G18 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H1 VSS H1 VSS H1 VSS H1 VSS H4 VDD H5 VDD H10 VSS H11 VSS H12 VD	G1	Y26
G4 VSS G5 VSS G6 VDD G7 VDD G8 VSS G9 VSS G10 VDD G11 VDD G12 VSS G13 VSS G14 VDD G15 VDD G16 VSS G17 VSS G18 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 <t< td=""><td>G2</td><td>YN26</td></t<>	G2	YN26
G5 VSS G6 VDD G7 VDD G8 VSS G9 VSS G10 VDD G11 VDD G12 VSS G13 VSS G14 VDD G15 VDD G16 VSS G17 VSS G18 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 <	G3	APAD
G6 VDD G7 VDD G8 VSS G9 VSS G10 VDD G11 VDD G12 VSS G13 VSS G14 VDD G15 VDD G16 VSS G17 VSS G18 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19	G4	VSS
G7 VDD G8 VSS G9 VSS G10 VDD G11 VDD G12 VSS G13 VSS G14 VDD G15 VDD G16 VSS G17 VSS G18 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H19	G5	VSS
G8 VSS G9 VSS G10 VDD G11 VDD G12 VSS G13 VSS G14 VDD G15 VDD G16 VSS G17 VSS G18 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H19 VSS H19	G6	VDD
G9 VSS G10 VDD G11 VDD G12 VSS G13 VSS G14 VDD G15 VDD G16 VSS G17 VSS G18 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H14 VSS H15 VSS H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19	G7	VDD
G10 VDD G11 VDD G12 VSS G13 VSS G14 VDD G15 VDD G16 VSS G17 VSS G18 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H19 VSS H19 VSS H19 VSS H19	G8	VSS
G11 VDD G12 VSS G13 VSS G14 VDD G15 VDD G16 VSS G17 VSS G18 VDD G19 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H11 VSS H11 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H19 VSS H19	G9	VSS
G12 VSS G13 VSS G14 VDD G15 VDD G16 VSS G17 VSS G18 VDD G19 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS	G10	VDD
G13 VSS G14 VDD G15 VDD G16 VSS G17 VSS G18 VDD G19 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H19 VSS H19	G11	VDD
G14 VDD G15 VDD G16 VSS G17 VSS G18 VDD G19 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H19 VSS H19 VSS H12 VDD	G12	VSS
G15 VDD G16 VSS G17 VSS G18 VDD G19 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19	G13	VSS
G16 VSS G17 VSS G18 VDD G19 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS	G14	VDD
G17 VSS G18 VDD G19 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H19 VSS H20 VDD	G15	VDD
G18 VDD G19 VDD G20 CPUDATA0 G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H19 VSS H20 VDD	G16	VSS
G19 VDD G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H20 VDD	G17	VSS
G20 CPUDATAO G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H20 VDD	G18	VDD
G21 YN4 G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H20 VDD	G19	VDD
G22 Y4 H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H20 VDD	G20	CPUDATAO
H1 Y27 H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDS H18 VSS H19 VSS H19 VSS H20 VDD	G21	YN4
H2 YN27 H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H9 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H19 VSS H10 VSS	G22	Y4
H3 VSS H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H9 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H19 VSS H10 VSS	H1	Y27
H4 VDD H5 VDD H6 VSS H7 VSS H8 VDD H9 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H20 VDD	H2	
H5 VDD H6 VSS H7 VSS H8 VDD H9 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H20 VDD	H3	VSS
H6 VSS H7 VSS H8 VDD H9 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H20 VDD	H4	
H7 VSS H8 VDD H9 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H18 VSS H19 VSS H20 VDD	H5	
H8 VDD H9 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H20 VDD		
H9 VDD H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H18 VSS H19 VSS		VSS
H10 VSS H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H20 VDD	H8	VDD
H11 VSS H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H20 VDD	H9	
H12 VDD H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H20 VDD		
H13 VDD H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H20 VDD		
H14 VSS H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H20 VDD		
H15 VSS H16 VDD H17 VDD H18 VSS H19 VSS H20 VDD		
H16 VDD H17 VDD H18 VSS H19 VSS H20 VDD		
H17 VDD H18 VSS H19 VSS H20 VDD		
H18 VSS H19 VSS H20 VDD		
H19 VSS H20 VDD		
H20 VDD		
HZI YN5		
	HZI	YIN5

H22 Y5 J1 Y28 J2 YN28 J3 VSS J4 VDD J5 VDD J6 VSS J7 VSS J8 VDD J9 VDD J11 VSS J11 VSS J12 VDD J13 VDD J14 VSS J15 VSS J14 VSS J15 VSS J16 VDD J17 VDD J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K5 VSS K6 VDD K11 VDD K12 VSS K10 VDD K11 VDD K12 VSS <th></th> <th></th>		
J2 YN28 J3 VSS J4 VDD J5 VDD J6 VSS J7 VSS J8 VDD J9 VDD J10 VSS J11 VSS J12 VDD J13 VDD J14 VSS J15 VSS J16 VDD J17 VDD J18 VSS J16 VDD J17 VDD J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K3 VDD K4 VSS K5 VSS K6 VDD K11 VDD K12 VSS K10 VDD K11 VDD K12 VSS	H22	Y5
J3 VSS J4 VDD J5 VDD J6 VSS J7 VSS J8 VDD J9 VDD J10 VSS J11 VSS J12 VDD J13 VDD J14 VSS J15 VSS J16 VDD J17 VDD J18 VSS J17 VDD J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K3 VDD K4 VSS K5 VSS K6 VDD K1 VDD K1 VDD K4 VSS K5 VSS K10 VDD K11 VDD K12 VSS <td>J1</td> <td>Y28</td>	J1	Y28
J4 VDD J5 VDD J6 VSS J7 VSS J8 VDD J9 VDD J10 VSS J11 VSS J12 VDD J13 VDD J14 VSS J15 VSS J16 VDD J17 VDD J18 VSS J16 VDD J17 VDD J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VD	J2	YN28
J5 VDD J6 VSS J7 VSS J8 VDD J9 VDD J10 VSS J11 VSS J12 VDD J13 VDD J14 VSS J15 VSS J16 VDD J17 VDD J18 VSS J19 VSS J10 VSS J14 VSS J15 VSS J16 VDD J17 VDD J18 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K3 VDD K4 VSS K5 VSS K6 VDD K11 VDD K12 VSS K10 VDD K11 VDD K12 VSS	J3	VSS
J6 VSS J7 VSS J8 VDD J9 VDD J10 VSS J11 VSS J12 VDD J13 VDD J14 VSS J15 VSS J16 VDD J17 VDD J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K14 VDD K15 VDD K16 VSS K17 V	J4	VDD
J7 VSS J8 VDD J9 VDD J10 VSS J11 VSS J12 VDD J13 VDD J14 VSS J15 VSS J16 VDD J17 VDD J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19	J5	VDD
J8 VDD J9 VDD J10 VSS J11 VSS J12 VDD J13 VDD J14 VSS J15 VSS J16 VDD J17 VDD J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 <t< td=""><td>J6</td><td>VSS</td></t<>	J6	VSS
J9 VDD J10 VSS J11 VSS J12 VDD J13 VDD J14 VSS J15 VSS J16 VDD J17 VDD J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 <	J7	VSS
J10 VSS J11 VSS J12 VDD J13 VDD J14 VSS J15 VSS J16 VDD J17 VDD J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 <	78	VDD
J11 VSS J12 VDD J13 VDD J14 VSS J15 VSS J16 VDD J17 VDD J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 <	J9	VDD
J12 VDD J13 VDD J14 VSS J15 VSS J16 VDD J17 VDD J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 <	J10	VSS
J13 VDD J14 VSS J15 VSS J16 VDD J17 VDD J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7	J11	VSS
J14 VSS J15 VSS J16 VDD J17 VDD J18 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7	J12	VDD
J15 VSS J16 VDD J17 VDD J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7	J13	VDD
J16 VDD J17 VDD J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K19 VDD K20 VSS K21 YN7	J14	VSS
J17 VDD J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7	J15	VSS
J18 VSS J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7	J16	VDD
J19 VSS J20 VDD J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7	J17	VDD
J20 VDD J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7	J18	VSS
J21 YN6 J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7	J19	VSS
J22 Y6 K1 Y29 K2 YN29 K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K19 VDD K20 VSS K21 YN7	J20	VDD
K1 Y29 K2 YN29 K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K10 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7	J21	YN6
K2 YN29 K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K9 VSS K10 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7		Y6
K3 VDD K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K9 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7		
K4 VSS K5 VSS K6 VDD K7 VDD K8 VSS K9 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS		YN29
K5 VSS K6 VDD K7 VDD K8 VSS K9 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K18 VDD K19 VDD K20 VSS	K3	
K6 VDD K7 VDD K8 VSS K9 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7	K4	
K7 VDD K8 VSS K9 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7	-	
K8 VSS K9 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K18 VDD K19 VDD K20 VSS	К6	VDD
K9 VSS K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K18 VDD K19 VDD K20 VSS	К7	
K10 VDD K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS	-	
K11 VDD K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS	-	
K12 VSS K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7	-	VDD
K13 VSS K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS	-	
K14 VDD K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7		
K15 VDD K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7		
K16 VSS K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7		
K17 VSS K18 VDD K19 VDD K20 VSS K21 YN7		
K18 VDD K19 VDD K20 VSS K21 YN7		
K19 VDD K20 VSS K21 YN7		
K20 VSS K21 YN7		
K21 YN7		
K22 Y7		
	K22	¥7

Pins by number (continued)

L1	Y30
L2	YN30
L3	SNSN1
L4	VSS
L5	VSS
L6	VDD
L7	VDD
L8	VSS
L9	VSS
L10	VDD
L11	VDD
L12	VSS
L13	VSS
L14	VDD
L15	VDD
L16	VSS
L17	VSS
L18	VDD
L19	VDD
L20	SNSP0
L21	YN8
L22	Y8
M1	Y31
M2	YN31
М3	SNSP1
M4	VDD
M5	VDD
M6	VSS
M7	VSS
M8	VDD
M9	VDD
M10	VSS
M11	VSS
M12	VDD
M13	VDD
M14	VSS
M15	VSS
M16	VDD
M17	VDD
M18	VSS
M19	VSS
M20	SNSN0
M21	YN9
M22	Y9
N1	Y32

N2	YN32
N3	VREG
N4	VDD
N5	VDD
N6	VSS
N7	VSS
N8	VDD
N9	VDD
N10	VSS
N11	VSS
N12	VDD
N13	VDD
N14	VSS
N15	VSS
N16	VDD
N17	VDD
N18	VSS
N19	VSS
N20	VDD
N21	YN10
N22	Y10
P1	Y33
P2	YN33
P3	VSS
P4	VSS
P5	VSS
P6	VDD
P7	VDD
P8	VSS
P9	VSS
P10	VDD
P11	VDD
P12	VSS
P13	VSS
P14	VDD
P15	VDD
P16	VSS
P17	VSS
P18	VDD
P19	VDD
P20	VSS
P21	YN11
P22	Y11
R1	Y34
R2	YN34

R3	VSS
R4	VSS
R5	VSS
R6	VDD
R7	VDD
R8	VSS
R9	VSS
R10	VDD
R11	VDD
R12	VSS
R13	VSS
R14	VDD
R15	VDD
R16	VSS
R17	VSS
R18	VDD
R19	VDD
R20	VSS
R21	YN12
R22	Y12
T1	Y35
T2	YN35
Т3	VSS
Τ4	VDD
Т5	VDD
Т6	VSS
Т7	VSS
Т8	VDD
Т9	VDD
T10	VSS
T11	VSS
T12	VDD
T13	VDD
T14	VSS
T15	VSS
T16	VDD
T17	VDD
T18	VSS
T19	VSS
T20	TWS
T21	YN13
T22	Y13
U1	Y36
U2	YN36
U3	ADDR7

Pins by number (continued)

U4	VDD	
U5	VDD	
U6	VSS	
U7	VSS	
U8	VDD	
U9	VDD	
U10	VSS	
U11	VSS	
U12	VDD	
U13	VDD	
U14	VSS	
U15	VSS	
U16	VDD	
U17	VDD	
U18	VSS	
U19	VSS	
U20	STAT1	
U21	YN14	
U22	Y14	
V1	Y37	
V2	YN37	
V3	ADDR8	
V4	VSS	
V5	VSS	
V6	VDD	
V7	VDD	
V8	VSS	
V9	VSS	
V10	VDD	
V11	VDD	
V12	VSS	
V13	VSS	
V14	VDD	
V15	VDD	
V16	VSS	
V17	VSS	
V18	VDD	
V19	VDD	
V20	STATO	
V21	YN15	
V22	Y15	
W1	Y38	
W2	YN38	
W3	ADDR9	
W3 W4	VSS	

W5	VSS
W6	VDD
W7	VDD
W8	VSS
W9	VSS
W10	VDD
W11	VDD
W12	VSS
W13	VSS
W14	VDD
W15	VDD
W16	VSS
W17	VSS
W18	VDD
W19	VDD
W20	SERPARB
W21	YN16
W22	Y16
Y1	Y39
Y2	YN39
Y3	ADDR10
Y4	RESETB
Y5	CONFIG
Y6	SCANMODE
Y7	VSS
Y8	VDD
Y9	VDD
Y10	VSS
Y11	INJN1
Y12	INJP1
Y13	VDD
Y14	VSS
Y15	VSS
Y16	VDD
Y17	SCK_WRB
Y18	SDA_RDB
Y19	SMI_SSB_CSB
Y20	SMO
Y21	YN17
Y22	Y17

Downloaded from Arrow.com.

5.4 Pins by Name

This section provides an alphabetical list of the VSC3340-01 device pins.

AO	A22	
A1	A21	
A2	A20	
A3	A19	
A4	A18	
A5	A17	
A6	A16	
A7	A15	
A8	A14	
A9	A13	
A10	A12	
A11	A11	
A12	A10	
A13	A9	
A14	A8	
A15	A7	
A16	A6	
A17	A5	
A18	A4	
A19	A3	
A20	AB20	
A21	AB19	
A22	AB18	
A23	AB17	
A24	AB16	
A25	AB15	
A26	AB14	
A27	AB13	
A28	AB12	
A29	AB11	
A30	AB10	
A31	AB9	
A32	AB8	
A33	AB7	
A34	AB6	
A35	AB5	
A36	AB4	
A37	AB3	
A38	AB2	
A39	AB1	
ADDR0	C6	
ADDR1	C5	
ADDR2	C4	

ADDR3	C3	
ADDR4	D3	
ADDR5	E3	
ADDR6	F3	
ADDR7	U3	
ADDR8	V3	
ADDR9	W3	
ADDR10	Y3	
ANO	B22	
AN1	B21	
AN2	B20	
AN3	B19	
AN4	B18	
AN5	B17	
AN6	B16	
AN7	B15	
AN8	B14	
AN9	B13	
AN10	B12	
AN11	B11	
AN12	B10	
AN13	B9	
AN14	B8	
AN15	B7	
AN16	B6	
AN17	B5	
AN18	B4	
AN19	B3	
AN20	AA20	
AN21	AA19	
AN22	AA18	
AN23	AA17	
AN24	AA16	
AN25	AA15	
AN26	AA14	
AN27	AA13	
AN28	AA12	
AN29	AA11	
AN30	AA10	
AN31	AA9	
AN32	AA8	
AN33	AA7	
AN34	AA6	

AN35	AA5
AN36	AA4
AN37	AA3
AN38	AA2
AN39	AA1
APAD	G3
CONFIG	Y5
CPUDATAO	G20
CPUDATA1	F20
CPUDATA2	E20
CPUDATA3	D20
CPUDATA4	C20
CPUDATA5	C19
CPUDATA6	C18
CPUDATA7	C17
INJNO	C12
INJN1	Y11
INJPO	C11
INJP1	Y12
RESETB	Y4
SCANMODE	Y6
SCK_WRB	Y17
SDA_RDB	Y18
SERPARB	W20
SMI_SSB_CSB	Y19
SMO	Y20
SNSNO	M20
SNSN1	L3
SNSP0	L20
SNSP1	M3
STAT0	V20
STAT1	U20
TWS	T20
VDD	C7
VDD	C10
VDD	C14
VDD	C15
VDD	D4
VDD	D5
VDD	D8
VDD	D9
VDD	D12
VDD	D13
	<u> </u>

Pins by name (continued)

VDD	D16
VDD	D17
VDD	E4
VDD	E5
VDD	E8
VDD	E9
VDD	E12
VDD	E13
VDD	E16
VDD	E17
VDD	F6
VDD	F7
VDD	F10
VDD	F11
VDD	F14
VDD	F15
VDD	F18
VDD	F19
VDD	G6
VDD	G7
VDD	G10
VDD	G11
VDD	G14
VDD	G15
VDD	G18
VDD	G19
VDD	H4
VDD	H5
VDD	H8
VDD	H9
VDD	H12
VDD	H13
VDD	H16
VDD	H17
VDD	H20
VDD	J4
VDD	J5
VDD	J8
VDD	J9
VDD	J12
VDD	J13
VDD	J16
VDD	J17
VDD	J20
VDD	К3

VDD	K6	
VDD	K7	
VDD	K10	
VDD	K11	
VDD	K14	
VDD	K15	
VDD	K18	
VDD	K19	
VDD	L6	
VDD	L7	
VDD	L10	
VDD	L11	
VDD	L14	
VDD	L15	
VDD	L18	
VDD	L19	
VDD	M4	
VDD	M5	
VDD	M8	
VDD	M9	
VDD	M12	
VDD	M13	
VDD	M16	
VDD	M17	
VDD	N4	
VDD	N5	
VDD	N8	
VDD	N9	
VDD	N12	
VDD	N13	
VDD	N16	
VDD	N17	
VDD	N20	
VDD	P6	
VDD	P7	
VDD	P10	
VDD	P11	
VDD	P14	
VDD	P15	
VDD	P18	
VDD	P19	
VDD	R6	
VDD	R7	
VDD	R10	
VDD	R11	

VDD	R14
VDD	R15
VDD	R18
VDD	R19
VDD	T4
VDD	T5
VDD	T8
VDD	T9
VDD	T12
VDD	T13
VDD	T16
VDD	T17
VDD	U4
VDD	U5
VDD	U8
VDD	U9
VDD	U12
VDD	U13
VDD	U16
VDD	U17
VDD	V6
VDD	V7
VDD	V10
VDD	V11
VDD	V14
VDD	V15
VDD	V18
VDD	V19
VDD	W6
VDD	W7
VDD	W10
VDD	W11
VDD	W14
VDD	W15
VDD	W18
VDD	W19
VDD	Y8
VDD	Y9
VDD	Y13
VDD	Y16
VREG	N3
VSS	C8
VSS	С9
VSS	C13
VSS	C16

Pins by name (continued)

1

VSS	D6
VSS	D7
VSS VSS	D10
VSS	D11
VSS	D14
VSS VSS	D15
VSS	D18
VSS VSS	D19
VSS VSS	E6
VSS	E7
VSS	E10
VSS	E11
VSS	E14
VSS	E15
VSS	E18
VSS	E19
VSS	F4
VSS	F5
VSS	F8
VSS VSS	F9
VSS VSS	F12
VSS	F13
VSS	F16
VSS VSS	F17
VSS	G4
VSS VSS	G5
VSS	G8
VSS VSS	G9
VSS	G12
VSS	G13
VSS	G16
VSS VSS	G17
VSS	H3
VSS	H6
VSS	H7
VSS	H10
VSS	H11
VSS	H14
VSS	H15
VSS	H18
VSS	H19
VSS	J3
VSS	J6
VSS	J7
VSS	J10
	510

VSS	J11
VSS	J14
VSS	J15
VSS	J18
VSS	J19
VSS	K4
VSS	K5
VSS	K8
VSS	К9
VSS	K12
VSS	K13
VSS	K16
VSS	K17
VSS	K20
VSS	L4
VSS	L5
VSS	L8
VSS	L9
VSS	L12
VSS	L13
VSS	L16
VSS	L17
VSS	M6
VSS	M7
VSS	M10
VSS	M11
VSS	M14
VSS	M15
VSS	M18
VSS	M19
VSS	N6
VSS	N7
VSS	N10
VSS	N11
VSS	N14
VSS	N15
VSS	N18
VSS	N19
VSS	P3
VSS	P4
VSS	P5
VSS	P8
VSS	P9
VSS	P12
VSS	P13

VSS	P16
VSS	P17
VSS	P20
VSS VSS	R3
VSS	R4
VSS	R5
VSS	R8
VSS	R9
VSS	R12
VSS	R13
VSS	R16
VSS	R17
VSS	R20
VSS	Т3
VSS	Т6
VSS	Τ7
VSS	T10
VSS	T11
VSS	T14
VSS	T15
VSS	T18
VSS	T19
VSS	U6
VSS	U7
VSS	U10
VSS	U11
VSS	U14
VSS	U15
VSS	U18
VSS	U19
VSS	V4
VSS VSS	V5
VSS	V8
VSS	V9
VSS	V12
VSS	V13
VSS	V16
VSS	V17
VSS	W4
VSS	W5
VSS	W8
VSS	W9
VSS	W12
VSS	W13
VSS	W16

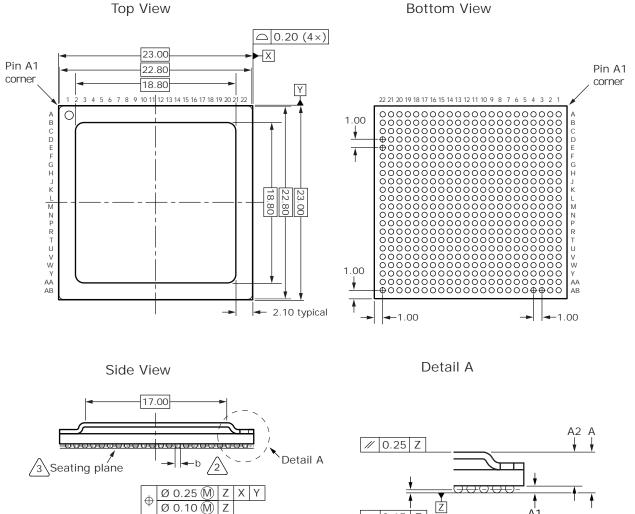
Pins by name (continued)

VSS	W17
VSS	Y10
VSS	Y14
VSS	Y15
VSS	Y7
YO	C22
Y1	D22
Y2	E22
Y3	F22
Y4	G22
Y5	H22
Y6	J22
Y7	K22
Y8	L22
Y9	M22
Y10	N22
Y11	P22
Y12	R22
Y13	T22
Y14	U22
Y15	V22
Y16	W22
Y17	Y22
Y18	AA22
Y19	AB22
Y20	A1
Y21	B1
Y22	C1
Y23	D1
Y24	E1
Y25	F1
Y26	G1
Y27	H1
Y28	J1
Y29	K1
Y30	L1
Y31	M1
Y32	N1
Y33	P1
Y34	R1
Y35	T1
Y36	U1
Y37	V1
Y38	W1
Y39	Y1

YNO	C21
YN1	D21
YN2	E21
YN3	F21
YN4	G21
YN5	H21
YN6	J21
YN7	K21
YN8	L21
YN9	M21
YN10	N21
YN11	P21
YN12	R21
YN13	T21
YN14	U21
YN15	V21
YN16	W21
YN17	Y21
YN18	AA21
YN19	AB21
YN20	A2
YN21	B2
YN22	C2
YN23	D2
YN24	E2
YN25	F2
YN26	G2
YN27	H2
YN28	J2
YN29	К2
YN30	L2
YN31	M2
YN32	N2
YN33	P2
YN34	R2
YN35	T2
YN36	U2
YN37	V2
YN38	W2
YN39	Y2

6 Package Information

The VSC3340-01 device is available in two package types. VSC3340JJ-01 is a 484-pin, flip chip ball grid array (FCBGA) with a 23 mm \times 23 mm body size, 1 mm pin pitch, and 3.16 mm maximum height. The device is also available in a lead(Pb)-free (second-level interconnect only) package, VSC3340XJJ-01.


Lead(Pb)-free products from Vitesse comply with the temperatures and profiles defined in the joint IPC and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard.

This section provides the package drawing, thermal specifications, and moisture sensitivity rating for the VSC3340-01 device.

6.1 Package Drawing

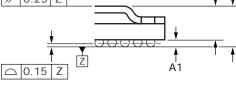

The following illustration shows the package drawing for the VSC3340-01 device. The drawing contains the top view, bottom view, side view, detail view, dimensions, tolerances, and notes.

Figure 11. Package Drawing

Notes

- All dimensions and tolerances are in millimeters (mm). Dimension is measured at the maximum solder ball
- diameter, parallel to primary datum Z.
- A Primary datum Z and seating plane are defined by the spherical crowns of the solder balls.
- 4. Package corners are R0.5 mm.
- 5. Heatspreader corners are R0.5 1.25 mm.
- 6. Radial true position is represented by typical values.

Dimensions and Tolerances

Reference	Minimum	Nominal	Maximum
А			3.16
A1		0.50	
A2	2.25	2.43	2.61
b	0.50	0.64	0.70

6.2 Thermal Specifications

Thermal specifications for this device are based on the JEDEC JESD51 family of documents. These documents are available on the JEDEC Web site at www.jedec.org. The thermal specifications are modeled using a four-layer test board with two signal layers, a power plane, and a ground plane (2s2p PCB). For more information about the thermal measurement method used for this device, see the JESD51-1 standard.

Table 73.Thermal Resistances

Symbol	°C/W	Parameter
θ_{JCtop}	1.9	Die junction to package case top
θ_{JB}	9.65	Die junction to printed circuit board
θ_{JA}	15.6	Die junction to ambient
θ_{JMA} at 1 m/s	12.95	Die junction to moving air measured at an air speed of 1 m/s
θ_{JMA} at 2 m/s	11	Die junction to moving air measured at an air speed of 2 m/s

To achieve results similar to the modeled thermal measurements, the guidelines for board design described in the JESD51 family of publications must be applied. For information about applications using FCBGA packages, see the following:

- JESD51-2A, Integrated Circuits Thermal Test Method Environmental Conditions, Natural Convection (Still Air)
- JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions, Forced Convection (Moving Air)
- JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions, Junction-to-Board
- JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements

6.3 Moisture Sensitivity

This device is rated moisture sensitivity level 4 as specified in the joint IPC and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard.

7 Ordering Information

The VSC3340-01 device is available in two package types. VSC3340JJ-01 is a 484-pin, flip chip ball grid array (FCBGA) with a 23 mm \times 23 mm body size, 1 mm pin pitch, and 3.16 mm maximum height. The device is also available in a lead(Pb)-free (second-level interconnect only) package, VSC3340XJJ-01.

Lead(Pb)-free products from Vitesse comply with the temperatures and profiles defined in the joint IPC and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard.

The following table shows the ordering information for the VSC3340-01 device.

Table 74. Ordering Information

Part Order Number	Description
VSC3340JJ-01	484-pin FCBGA with a 23 mm \times 23 mm body size, 1 mm pin pitch, and 3.16 mm maximum height
VSC3340XJJ-01	Lead(Pb)-free (second-level interconnect only), 484-pin FCBGA with a 23 mm \times 23 mm body size, 1 mm pin pitch, and 3.16 mm maximum height