Contents

1	Block d	liagram aı	nd pin description	5
2	Electric	al specifi	cation	7
	2.1	-	maximum ratings	
	2.2		data	
	2.3		ctrical characteristics	
	2.4	Wavefor	ms	20
	2.5	Electrica	I characteristics curves	22
3	Protect	ions		26
	3.1		nitation	
	3.2	Thermal	shutdown	26
	3.3	Current I	imitation	26
	3.4	Negative	voltage clamp	26
4	Applica	tion infor	mation	27
	4.1		tection network against reverse battery	
	4.2		against transient electrical disturbances	
	4.3		s protection	
	4.4		se - analog current sense	
		4.4.1	Principle of Multisense signal generation	
		4.4.2	TCASE and VCC monitor	32
		4.4.3	Short to VCC and OFF-state open-load detection	33
5	Packag	e and PCI	B thermal data	34
	5.1	PowerSS	SO-36 thermal data	34
6	Maximu	ım demag	netization energy (VCC = 16 V)	38
7			tion	
	7.1	PowerSS	SO-36 package information	39
	7.2		SO-36 packing information	
	7.3		SO-36 marking information	
8	Order c		······································	
9		n history		45

VND7004AY List of tables

List of tables

Table 1: Pin functions	5
Table 2: Suggested connections for unused and not connected pins	6
Table 3: Absolute maximum ratings	7
Table 4: Thermal data	8
Table 5: Power section	8
Table 6: Switching	10
Table 7: Logic inputs	10
Table 8: Protections	11
Table 9: MultiSense	12
Table 10: Truth table	19
Table 11: MultiSense multiplexer addressing	19
Table 12: ISO 7637-2 - electrical transient conduction along supply line	28
Table 13: MultiSense pin levels in off-state	32
Table 14: PCB properties	35
Table 15: Thermal parameters	37
Table 16: PowerSSO-36 mechanical data	39
Table 17: Reel dimensions	41
Table 18: PowerSSO-36 carrier tape dimensions	42
Table 19: Device summary	
Table 20: Document revision history	45

List of figures VND7004AY

List of figures

Figure 1: Block diagram	5
Figure 2: Configuration diagram (top view)	
Figure 3: Current and voltage conventions	
Figure 4: Switching time and Pulse skew	
Figure 5: MultiSense timings (current sense mode)	
Figure 6: Multisense timings (chip temperature and VCC sense mode)	18
Figure 7: TDSTKON	18
Figure 8: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD)	20
Figure 9: Latch functionality - behavior in hard short circuit condition	
Figure 10: Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off).	21
Figure 11: Standby mode activation	
Figure 12: Standby state diagram	22
Figure 13: OFF-state output current	22
Figure 14: Standby current	22
Figure 15: IGND(ON) vs. lout	22
Figure 16: Logic Input high level voltage	22
Figure 17: Logic Input low level voltage	
Figure 18: High level logic input current	23
Figure 19: Low level logic input current	
Figure 20: Logic Input hysteresis voltage	
Figure 21: FaultRST Input clamp voltage	23
Figure 22: Undervoltage shutdown	23
Figure 23: On-state resistance vs. Tcase	24
Figure 24: On-state resistance vs. VCC	24
Figure 25: Turn-on voltage slope	
Figure 26: Turn-off voltage slope	24
Figure 27: Won vs. Tcase	
Figure 28: Woff vs. Tcase	24
Figure 29: OFF-state open-load voltage detection threshold	25
Figure 30: Vsense clamp vs. Tcase	25
Figure 31: Vsenseh vs. Tcase	25
Figure 32: Application diagram	27
Figure 33: Simplified internal structure	27
Figure 34: MultiSense and diagnostic – block diagram	29
Figure 35: MultiSense block diagram	30
Figure 36: Analogue HSD – open-load detection in off-state	31
Figure 37: Open-load / short to VCC condition	32
Figure 38: GND voltage shift	33
Figure 39: PowerSSO-36 PC board	34
Figure 40: Rthj-amb vs PCB copper area in open box free air conditions	35
Figure 41: PowerSSO-36 thermal impedance junction ambient single pulse	36
Figure 42: Thermal fitting model for PowerSSO-36	36
Figure 43: Maximum turn off current versus inductance	
Figure 44: PowerSSO-36 package outline	
Figure 45: PowerSSO-36 reel 13"	
Figure 46: PowerSSO-36 carrier tape	42
Figure 47: PowerSSO-36 schematic drawing of leader and trailer tape	
Figure 48: PowerSSO-36 marking information	

Block diagram and pin description 1

Reverse Battery Control & Diagno stic V_{cc}-OUT Clamp FaultRST INPUT₁ INPUT₀ ↓ фоитрит₁ SEL1 SEL₀ MUX Multisense [Short to V_{CC} Open-Loadin OFF Fault GND L ¦оитрит₀

Figure 1: Block diagram

Table 1: Pin functions

Name	Function
Vcc	Battery connection.
OUTPUT _{0,1}	Power output.
GND	Ground connection.
INPUT _{0,1}	Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. They control output switch state.
MultiSense	Multiplexed analog sense output pin; it delivers a current proportional to the selected diagnostic: load current, supply voltage or chip temperature.
SEn	Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense diagnostic pin.
SEL _{0,1}	Active high compatible with 3 V and 5 V CMOS outputs pin; they address the MultiSense multiplexer.
FaultRST	Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart mode

GAPG3007151620CFT

Figure 2: Configuration diagram (top view)

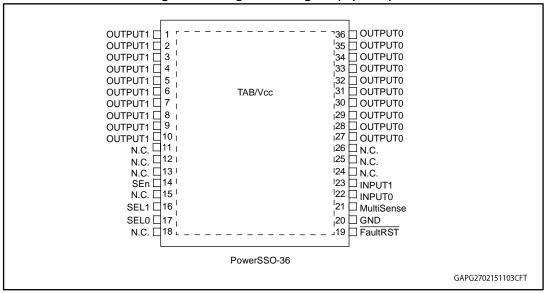
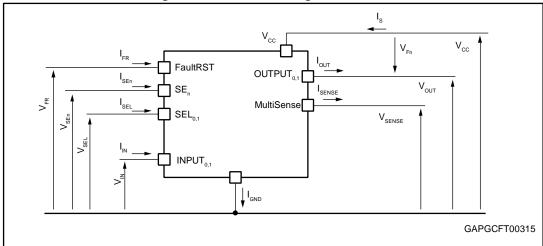


Table 2: Suggested connections for unused and not connected pins


Connection / pin	MultiSense	N.C.	Output	Input	SEn, SELx, FaultRST
Floating	Not allowed	X (1)	Χ	X	X
To ground	Through 1 kΩ resistor	Х	Not allowed	Through 10 kΩ resistor	Through 10 kΩ resistor

⁽¹⁾X: do not care.

577

2 Electrical specification

Figure 3: Current and voltage conventions

V_F = V_{OUT} - V_{CC} when V_{OUT} > V_{CC} and INPUT = LOW.

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 3: "Absolute maximum ratings"* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

Table 3: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vcc	DC supply voltage	38	V
-Vcc	Reverse DC supply voltage	16	V
Vссрк	Maximum transient supply voltage (ISO 7637-2:2004 Pulse 5b level IV clamped to 40 V; RL = 4 Ω)	40	V
VccJs	Maximum jump start voltage for single pulse short circuit protection	28	V
-I _{GND}	DC reverse ground pin current	200	mA
Іоит	OUTPUT _{0,1} DC output current	Internally limited	А
-Іоит	Reverse DC output current	65	
I _{IN}	INPUT _{0,1} DC input current		
I _{SEn}	SEn DC input current	1 to 10	A
ISEL	SEL _{0,1} DC input current	-1 to 10	mA
I _{FR}	FaultRST DC input current		
V _{FR}	FaultRST DC input voltage	7.5	V

DocID027772 Rev 11

7/47

Symbol	Parameter	Value	Unit
1	MultiSense pin DC output current (V _{GND} = V _{CC} and V _{SENSE} < 0 V)	10	A
ISENSE	MultiSense pin DC output current in reverse (Vcc < 0 V)	-20	mA
Емах	Maximum switching energy (single pulse) ($T_{DEMAG} = 0.4 \text{ ms}$; $T_{jstart} = 150 ^{\circ}\text{C}$)	103	mJ
Vesd	Electrostatic discharge (JEDEC 22A-114F) INPUT _{0,1} MultiSense SEn, SEL _{0,1} , FaultRST OUTPUT _{0,1} Vcc	4000 2000 4000 4000 4000	V V V V
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
Tj	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	

2.2 Thermal data

Table 4: Thermal data

Symbol	Parameter	Typ. value	Unit
R _{thj-board}	Thermal resistance junction-board (1)	3.4	
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-5) ⁽¹⁾⁽²⁾	50.6	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-7) ⁽¹⁾⁽³⁾	15.8	

Notes:

2.3 Main electrical characteristics

7 V < V_{CC} < 28 V; -40°C < T_j < 150°C, unless otherwise specified.

All typical values refer to V_{CC} = 13 V; T_j = 25°C, unless otherwise specified.

Table 5: Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		4	13	28	V
Vusd	Undervoltage shutdown				4	V
Vuspreset	Undervoltage shutdown reset				5	V
VuSDhyst	Undervoltage shutdown hysteresis			0.3		V
Ron	On-state	Іоит = 15 A; T _j = 25°С		4		mΩ

577

⁽¹⁾One channel ON.

⁽²⁾ Device mounted on two-layers 2s0p PCB with 2 cm² heatsink copper trace

⁽³⁾ Device mounted on four-layers 2s2p PCB

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	resistance ⁽¹⁾	louт = 15 A; T _j = 150°С			8	
		I _{OUT} = 15 A; V _{CC} = 4 V; T _j = 25°C			6	
Ron_rev	On-state resistance in reverse battery	louт = -15 A; Vcc = -13 V; Т _j = 25°С		4		mΩ
V _{clamp}	Clamp voltage	Is = 20 mA; 25°C < T _j < 150°C	41	46	52	V
		$\begin{split} V_{CC} &= 13 \ V; \\ V_{IN} &= V_{OUT} = V_{FR} = V_{SEn} = 0 \ V; \\ V_{SEL0,1} &= 0 \ V; \ T_j = 25 ^{\circ}C \end{split}$			0.5	
Іѕтву	Supply current in standby at V _{CC} = 13 V ⁽²⁾	$ \begin{array}{l} V_{CC} = 13 \ V; \\ V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 \ V; \\ V_{SEL0,1} = 0 \ V; \ T_j = 85^{\circ}C \end{array} $			1.9	μA
		$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 \text{ V};$ $V_{SEL0,1} = 0 \text{ V}; T_j = 125^{\circ}\text{C}$			15	
t _{D_} STBY	Standby mode blanking time	$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{FR} = V_{SEL0,1} = 0 \text{ V};$ $V_{SEn} = 5 \text{ V to 0 V}$	60	300	550	μs
I _{S(ON)}	Supply current	V _{CC} = 13 V; V _{SEn} = V _{FR} = V _{SEL0,1} = 0 V; V _{IN0} = 5 V; V _{IN1} = 5 V; I _{OUT0} = 0 A; I _{OUT1} = 0 A		6	12	mA
Ignd(on)	Control stage current consumption in ON state. All channels active.	$V_{CC} = 13 \text{ V; } V_{SEn} = 5 \text{ V;}$ $V_{FR} = V_{SEL0,1} = 0 \text{ V; } V_{IN0} = 5 \text{ V;}$ $V_{IN1} = 5 \text{ V; } I_{OUT0,1} = 15 \text{ A}$			12	mA
li (-m)	Off-state output	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V}; $ $T_j = 25^{\circ}\text{C}$	0	0.01	0.5	
I _{L(off)}	current (2)	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 125^{\circ}\text{C}$	0		7.5	μA
VF	Output - V _{CC} diode voltage	Іоит = -15 A; Т _j = 150°С			0.7	٧

⁽¹⁾For each channel

 $^{{\ }^{(2)}} Power MOS \ leakage \ included.$

 $^{^{(3)}}$ Parameter specified by design; not subjected to production test.

Table 6: Switching

V _{CC} = 13 V; -40°C < T _j < 150°C, unless otherwise specified								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
t _{d(on)} ⁽¹⁾	Turn-on delay time	R ₁ = 0.87 Ω	60	110	195			
t _{d(off)} ⁽¹⁾	Turn-off delay time			100	160	μs		
(dVout/dt)on ⁽¹⁾	Turn-on voltage slope	R _L = 0.87 Ω	0.05	0.21	0.35	\//uo		
(dV _{OUT} /dt) _{off} ⁽¹⁾	Turn-off voltage slope	KL = 0.07 12	0.05	0.21	0.35	V/µs		
Won	Switching energy losses at turn-on (twon)	R _L = 0.87 Ω	_	2.3	3.7(2)	mJ		
W _{OFF}	Switching energy losses at turn-off (twoff)	$R_L = 0.87 \Omega$	_	2.5	4.5 ⁽²⁾	mJ		
tskew ⁽¹⁾	Differential pulse skew (t _{PHL} - t _{PLH})	$R_L = 0.87 \Omega$	-65	0	65	μs		

Table 7: Logic inputs

7 V < Vcc <	: 28 V; -40°C < T _j < 150°C					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
INPUT _{0,1} cl	haracteristics					
VIL	Input low level voltage				0.9	V
I _{IL}	Low level input current	V _{IN} = 0.9 V	1			μA
VIH	Input high level voltage		2.1			V
Іін	High level input current	V _{IN} = 2.1 V			10	μA
V _{I(hyst)}	Input hysteresis voltage		0.2			V
V/	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	_V
V_{ICL}	input ciamp voltage	I _{IN} = -1 mA		-0.7		V
FaultRST	characteristics					
V_{FRL}	Input low level voltage				0.9	V
I _{FRL}	Low level input current	V _{IN} = 0.9 V	1			μA
V_{FRH}	Input high level voltage		2.1			V
I _{FRH}	High level input current	V _{IN} = 2.1 V			10	μA
$V_{FR(hyst)}$	Input hysteresis voltage		0.2			V
V _{FRCL}	Input clamp voltage	I _{IN} = 1 mA	5.3		7.5	V
VFRCL	Input ciamp voltage	I _{IN} = -1 mA		-0.7		V
SEL _{0,1} characteristics (7 V < V _{CC} < 18 V)						
V _{SELL}	Input low level voltage				0.9	V
I _{SELL}	Low level input current	V _{IN} = 0.9 V	1			μA
Vselh	Input high level voltage		2.1			V
Iselh	High level input current	V _{IN} = 2.1 V			10	μA

10/47 DocID027772 Rev 11

⁽¹⁾See Figure 4: "Switching time and Pulse skew".

 $^{^{(2)}}$ Parameter guaranteed by design and characterization; not subjected to production test.

7 V < V _{CC} <	$7 \text{ V} < V_{CC} < 28 \text{ V}; -40^{\circ}\text{C} < T_{j} < 150^{\circ}\text{C}$						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{SEL(hyst)}	Input hysteresis voltage		0.2			V	
\/	lanut alama valtana	I _{IN} = 1 mA	5.3		7.2	V	
VSELCL	Input clamp voltage	I _{IN} = -1 mA		-0.7		V	
SEn characteristics (7 V < V _{CC} < 18 V)							
V _{SEnL}	Input low level voltage				0.9	V	
I _{SEnL}	Low level input current	V _{IN} = 0.9 V	1			μΑ	
V _{SEnH}	Input high level voltage		2.1			V	
IsenH	High level input current	V _{IN} = 2.1 V			10	μA	
V _{SEn(hyst)}	Input hysteresis voltage		0.2			V	
\/:	Innut alama valtaga	I _{IN} = 1 mA	5.3		7.2	V	
VSEnCL	Input clamp voltage	I _{IN} = -1 mA		-0.7		V	

Table 8: Protections

7 V < Vcc	7 V < Vcc < 18 V; -40°C < T _j < 150°C						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
	DC short circuit	Vcc = 13 V	70	100	140		
I _{LIMH}	current	4 V < Vcc < 18 V ⁽¹⁾			140	Α	
ILIML	Short circuit current during thermal cycling	$V_{CC} = 13 \text{ V};$ $T_R < T_j < T_{TSD}$		33		^	
T _{TSD}	Shutdown temperature		150	175	200		
T _R	Reset temperature ⁽¹⁾		T _{RS} + 1	T _{RS} + 7			
T _{RS}	Thermal reset of fault diagnostic indication	V _{FR} = 0 V; V _{SEn} = 5 V	135			°C	
Тнүзт	Thermal hysteresis $(T_{TSD} - T_R)^{(1)}$			7			
ΔT_{J_SD}	Dynamic temperature	$T_j = -40$ °C; $V_{CC} = 13 \text{ V}$		60		K	
tLATCH_RST	Fault reset time for output unlatch	V _{FR} = 5 V to 0 V; V _{SEn} = 5 V; V _{IN} = 5 V; V _{SEL0,1} = 0 V	3	10	20	μs	
Various	Turn-off output	I _{OUT} = 2 A; L = 6 mH; T _j = -40°C	V _{CC} - 38			V	
VDEMAG	voltage clamp	$I_{OUT} = 2 \text{ A}; L = 6 \text{ mH};$ $T_j = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	V _{CC} - 41	V _{CC} - 46	V _{CC} - 52	V	

 $^{^{(1)}}$ Parameter guaranteed by design and characterization; not subjected to production test.

Table 9: MultiSense

7 V < V _{CC} < 18 V	/; -40°C < T _j < 150°C	Table 9: MultiSense				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
\/	MultiSense clamp	V _{SEn} = 0 V; I _{SENSE} = 1 mA	-17		-12	.,
Vsense_cl	voltage	V _{SEn} = 0 V; I _{SENSE} = -1 mA		7		V
Current sense	characteristics					
K ₁	I _{OUT} /I _{SENSE}	I _{OUT} = 3.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	5000	14200	31500	
$dK_1/K_1^{(1)(2)}$	Current sense ratio drift	I _{OUT} = 3.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-30		30	%
K_GP	I _{OUT} /I _{SENSE}	I _{OUT} = 10 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	7990	13900	21050	
dK _{GP} /K _{GP} ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 10 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-10		10	%
K ₂	I _{OUT} /I _{SENSE}	I _{OUT} = 15 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	9580	13850	19020	
dK ₂ /K ₂ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 15 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-7		7	%
K ₃	I _{OUT} /I _{SENSE}	I _{OUT} = 45 A; V _{SENSE} = 4 V; V _{SEN} = 5 V	11470	13800	15840	
dK ₃ /K ₃ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 45 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-5		5	%
		MultiSense disabled: V _{SEn} = 0 V	0		0.5	
		MultiSense disabled: -1 V < V _{SENSE} < 5 V ⁽¹⁾	-0.5		0.5	
		MultiSense enabled: V _{SEn} = 5 V; All channels ON; I _{OUTX} = 0 A; Ch _X diagnostic selected;				
Isenseo	MultiSense leakage current	• E.g. Ch ₀ : V _{IN0} = 5 V; V _{IN1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 0 V; I _{OUT0} = 0 A; I _{OUT1} = 15 A	0		120	μΑ
		MultiSense enabled: V _{SEn} = 5 V; Chx OFF; Chx diagnostic selected:				
		• E.g. Ch ₀ : V _{IN0} = 0 V; V _{IN1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 0 V; I _{OUT1} = 15 A	0		2	

47/

7 V < V _{CC} < 18 V	7 V < V _{CC} < 18 V; -40°C < T _j < 150°C					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vout_msd ⁽¹⁾	Output Voltage for MultiSense shutdown	$\begin{split} &V_{SEn} = 5 \ V; \\ &R_{SENSE} = 2.7 \ k\Omega; \\ \bullet & E.g. \ Ch_0: \\ &V_{IN0} = 5 \ V; \\ &V_{SEL0} = 0 \ V; \\ &V_{SEL1} = 0 \ V; \\ &I_{OUT0} = 15 \ A \end{split}$		5		V
Vsense_sat	Multisense saturation voltage	$\begin{split} &V_{\text{CC}} = 7 \text{ V}; \\ &R_{\text{SENSE}} = 2.7 \text{ k}\Omega; \\ &V_{\text{SEn}} = 5 \text{ V}; V_{\text{INO}} = 5 \text{ V}; \\ &V_{\text{SEL0}} = 0 \text{ V}; V_{\text{SEL1}} = 0 \text{ V}; \\ &I_{\text{OUT0}} = 45 \text{ A}; T_{j} = 150^{\circ}\text{C} \end{split}$	5			V
ISENSE_SAT ⁽¹⁾	CS saturation current	$\begin{split} &V_{CC} = 7 \; V; \; V_{SENSE} = 4 \; V; \\ &V_{IN0} = 5 \; V; \; V_{SEn} = 5 \; V; \\ &V_{SEL0} = 0 \; V; \; V_{SEL1} = 0 \; V; \\ &T_j = 150 ^{\circ} C \end{split}$	4			mA
I _{OUT_SAT} ⁽¹⁾	Output saturation current	$\begin{split} &V_{CC} = 7 \; V; \; V_{SENSE} = 4 \; V; \\ &V_{IN0} = 5 \; V; \; V_{SEn} = 5 \; V; \\ &V_{SEL0} = 0 \; V; \; V_{SEL1} = 0 \; V; \\ &T_j = 150 ^{\circ} C \end{split}$	65			А
OFF-state diagn	ostic					
VoL	OFF-state open- load voltage detection threshold	V _{SEn} = 5 V; Ch _X OFF; Ch _X diagnostic selected • E.g: Ch ₀ V _{IN0} = 0 V; V _{SEL0} = 0 V; V _{SEL1} = 0 V	2	3	4	٧
I _{L(off2)}	OFF-state output sink current	$V_{IN} = 0 \text{ V}; V_{OUT} = V_{OL};$ $T_j = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	-100		-15	μΑ
tdstkon	OFF-state diagnostic delay time from falling edge of INPUT (see Figure 7: "TDSTKON")	Vsen = 5 V; Chx ON to OFF transition; Chx diagnostic selected • E.g: Cho ViNO = 5 V to 0 V; VSELO = 0 V; VSEL1 = 0 V; IOUTO = 0 A; VOUT = 4 V	100	350	700	μs
t _{D_OL_} v	Settling time for valid OFF-state open load diagnostic indication from rising edge of SEn	V _{IN0} = 0 V; V _{IN1} = 0 V; V _{FR} = 0 V; V _{SEL0} = 0 V; V _{SEL1} = 0 V; V _{OUT0} = 4 V; V _{SEn} = 0 V to 5 V			60	μs

7 V < V _{CC} < 18 V	; -40°C < T _j < 150°C					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{D_VOL}	OFF-state diagnostic delay time from rising edge of V _{OUT}	V _{SEn} = 5 V; Chx OFF; Ch _X diagnostic selected • E.g: Ch ₀ V _{IN0} = 0 V; V _{SEL0} = 0 V; V _{SEL1} = 0 V; V _{OUT} = 0 V to 4 V		5	30	μs
Chip temperatur	re analog feedback					
	M I''	$\begin{split} V_{\text{SEn}} &= 5 \text{ V; } V_{\text{SEL0}} = 0 \text{ V;} \\ V_{\text{SEL1}} &= 5 \text{ V; } V_{\text{IN0,1}} = 0 \text{ V;} \\ R_{\text{SENSE}} &= 1 \text{ k}\Omega; \text{ Tj} = -40^{\circ}\text{C} \end{split}$	2.325	2.41	2.495	V
V _{SENSE_TC}	MultiSense output voltage proportional to chip temperature	$\begin{split} &V_{SEn} = 5 \text{ V; } V_{SEL0} = 0 \text{ V;} \\ &V_{SEL1} = 5 \text{ V; } V_{IN0,1} = 0 \text{ V;} \\ &R_{SENSE} = 1 \text{ k}\Omega; T_j = 25^{\circ}\text{C} \end{split}$	1.985	2.07	2.155	V
	3.77	$\begin{split} &V_{SEn} = 5 \text{ V; } V_{SEL0} = 0 \text{ V;} \\ &V_{SEL1} = 5 \text{ V; } V_{IN0,1} = 0 \text{ V;} \\ &R_{SENSE} = 1 \text{ k}\Omega; T_j = 125^{\circ}\text{C} \end{split}$	1.435	1.52	1.605	٧
dV _{SENSE_TC} /dT ⁽¹⁾	Temperature coefficient	$T_j = -40^{\circ}C$ to 150°C		-5.5		mV/K
Transfer function		Vsense_tc (T) = Vsense_tc (T	o) + dVse	ENSE_TC / C	T - T) * Tb	ō)
V _{CC} supply volta	nge analog feedback					
Vsense_vcc	MultiSense output voltage proportional to V _{CC} supply voltage	$ \begin{array}{c} V_{CC} = 13 \ V; \ V_{SEn} = 5 \ V; \\ V_{SEL0} = 5 \ V; \ V_{SEL1} = 5 \ V; \\ V_{IN0,1} = 0 \ V; \\ R_{SENSE} = 1 \ k\Omega \end{array} $	3.16	3.23	3.3	V
Transfer function	(3)	Vsense_vcc = Vcc / 4	•	•		
Fault diagnostic	feedback (see <i>Tabl</i>	e 10: "Truth table")				
Vsenseh	MultiSense output voltage in fault condition	$\begin{split} &V_{CC} = 13 \text{ V}; \\ &R_{SENSE} = 1 \text{ k}\Omega; \\ \bullet & E.g. \text{ Ch}_0 \text{ in open} \\ &\text{load } V_{INO} = 0 \text{ V}; \\ &V_{SEn} = 5 \text{ V}; \\ &V_{SEL0} = 0 \text{ V}; \\ &V_{SEL1} = 0 \text{ V}; \\ &\text{lout}_0 = 0 \text{ A}; \\ &V_{OUT} = 4 \text{ V} \end{split}$	5		6.6	V
Isenseh	MultiSense output current in fault condition	Vcc = 13 V; Vsense = 5 V	7	20	30	mA
MultiSense timin mode)")(4)	ngs (current sense n	node - see <i>Figure 5: "Multi</i> S	Sense tim	nings (cu	ırrent se	nse
tdsense1H	Current sense settling time from rising edge of SEn	$V_{\text{IN}} = 5 \text{ V}; \text{ V}_{\text{SEn}} = 0 \text{ V to}$ $5 \text{ V}; \text{ R}_{\text{SENSE}} = 1 \text{ k}\Omega;$ $R_{L} = 0.87 \Omega$			60	μs

7 V < V _{CC} < 18 V	$T_{\rm j} = 40^{\circ} \text{C} < T_{\rm j} < 150^{\circ} \text{C}$					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
tdsense1L	Current sense disable delay time from falling edge of SEn	$V_{\text{IN}} = 5 \text{ V}; \text{ V}_{\text{SEn}} = 5 \text{ V to}$ 0 V; Rsense = 1 k Ω ; RL = 0.87 Ω		5	20	μs
t _{DSENSE2} H	Current sense settling time from rising edge of INPUT	$V_{IN} = 0 \text{ V to 5 V};$ $V_{SEn} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega;$ $R_{L} = 0.87 \Omega$		170	400	μs
Δt _{DSENSE2} H	Current sense settling time from rising edge of lout (dynamic response to a step change of lout)	$V_{\text{IN}} = 5 \text{ V; } V_{\text{SEn}} = 5 \text{ V;}$ $R_{\text{SENSE}} = 1 \text{ k}\Omega; \text{ Isense}$ $= 90 \% \text{ of Isensemax;}$ $R_{\text{L}} = 0.87 \Omega$			200	μs
tdsense2L	Current sense turn-off delay time from falling edge of INPUT	$V_{IN} = 5 \text{ V to 0 V};$ $V_{SEn} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega;$ $R_{L} = 0.87 \Omega$		50	250	μs
	ngs (chip temperatured VCC sense mode)"	re sense mode - see <i>Figure</i>) ⁽⁴⁾	6: "Mult	isense ti	mings (c	hip
t _{DSENSE3H}	V _{SENSE_TC} settling time from rising edge of SEn	$\begin{split} V_{SEn} &= 0 \text{ V to 5 V;} \\ V_{SEL0} &= 0 \text{ V; } V_{SEL1} = 5 \text{ V;} \\ R_{SENSE} &= 1 \text{ k}\Omega \end{split}$			60	μs
tdsenseal	V _{SENSE_TC} disable delay time from falling edge of SEn	$V_{SEn} = 5 \text{ V to 0 V;}$ $V_{SEL0} = 0 \text{ V; } V_{SEL1} = 5 \text{ V;}$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs
	ngs (V _{CC} voltage sen d VCC sense mode)"	se mode - see <i>Figure 6: "M</i>) ⁽⁴⁾	ultisens	e timings	s (chip	
tdsense4H	Vsense_vcc settling time from rising edge of SEn	$\begin{split} &V_{\text{SEn}} = 0 \text{ V to 5 V;} \\ &V_{\text{SEL0}} = 5 \text{ V; } V_{\text{SEL1}} = 5 \text{ V;} \\ &R_{\text{SENSE}} = 1 \text{ k}\Omega \end{split}$			60	μs
tdsense4L	Vsense_vcc disable delay time from falling edge of SEn	$V_{SEn} = 5 \text{ V to 0 V};$ $V_{SEL0} = 5 \text{ V};$ $V_{SEL1} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs
MultiSense timi	ngs (Multiplexer tran	sition times) ⁽⁴⁾				
t _{D_Xto} y	MultiSense transition delay from Chx to Chy	$\begin{split} &V_{IN0} = 5 \text{ V; } V_{IN1} = 5 \text{ V;} \\ &V_{SEn} = 5 \text{ V; } V_{SEL1} = 0 \text{ V;} \\ &V_{SEL0} = 0 \text{ V to 5 V;} \\ &I_{OUT0} = 0 \text{ A; } I_{OUT1} = 15 \text{ A;} \\ &R_{SENSE} = 1 \text{ k}\Omega \end{split}$			20	μs
tp_cstotc	MultiSense transition delay from current sense to Tc sense	$\begin{split} &V_{IN0}=5~V;~V_{SEn}=5~V;\\ &V_{SEL0}=0~V;~V_{SEL1}=0~V~to\\ &5~V;~I_{OUT0}=1.5~A;\\ &R_{SENSE}=1~k\Omega \end{split}$			60	μs

7 V < V _{CC} < 18 V	$7 \text{ V} < \text{V}_{CC} < 18 \text{ V}; -40^{\circ}\text{C} < \text{T}_{j} < 150^{\circ}\text{C}$					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{D_TCto} cs	MultiSense transition delay from T _C sense to current sense	$ \begin{aligned} & V_{\text{IN0}} = 5 \; \text{V}; \; V_{\text{SEn}} = 5 \; \text{V}; \\ & V_{\text{SEL0}} = 0 \; \text{V}; \; V_{\text{SEL1}} = 5 \; \text{V} \; \text{to} \\ & 0 \; \text{V}; \; I_{\text{OUT0}} = 1.5 \; \text{A}; \\ & R_{\text{SENSE}} = 1 \; k\Omega \end{aligned} $			20	μs
tp_cstovcc	MultiSense transition delay from current sense to V _{CC} sense	$\begin{aligned} &V_{\text{IN1}} = 5 \text{ V}; \text{ V}_{\text{SEn}} = 5 \text{ V}; \\ &V_{\text{SEL0}} = 5 \text{ V}; \text{ V}_{\text{SEL1}} = 0 \text{ V to} \\ &5 \text{ V}; \text{ Iout1} = 15\text{A}; \\ &R_{\text{SENSE}} = 1 \text{ k}\Omega \end{aligned}$			60	μs
t _{D_} vcctocs	MultiSense transition delay from V _{CC} sense to current sense	$V_{IN1} = 5 \text{ V}; V_{SEn} = 5 \text{ V}; V_{SEL0} = 5 \text{ V}; V_{SEL1} = 5 \text{ V to} $ 0 V; Iout1 = 15 A; RSENSE = 1 k Ω			20	μs
t _{D_TCto} vcc	MultiSense transition delay from T _C sense to V _{CC} sense	$V_{CC} = 13 \text{ V}; T_j = 125^{\circ}\text{C};$ $V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V to}$ $5 \text{ V}; V_{SEL1} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs
t _{D_} vcc _{to} тc	MultiSense transition delay from V _{CC} sense to T _C sense	$\label{eq:Vcc} \begin{array}{l} V_{\text{CC}} = 13 \; V; \; T_{j} = 125 ^{\circ} C; \\ V_{\text{SEn}} = 5 \; V; \; V_{\text{SEL0}} = 5 \; V \; to \\ 0 \; V; \; V_{\text{SEL1}} = 5 \; V; \\ R_{\text{SENSE}} = 1 \; k\Omega \end{array}$			20	μs
td_cstoVsenseh	MultiSense transition delay from stable current sense on Chx to V _{SENSEH} on Chy	$\begin{split} V_{IN0} &= 5 \text{ V}; \text{ V}_{IN1} = 0 \text{ V}; \\ V_{SEn} &= 5 \text{ V}; \text{ V}_{SEL1} = 0 \text{ V}; \\ V_{SEL0} &= 0 \text{ V to 5 V}; \\ I_{OUT0} &= 3 \text{ A}; \text{ V}_{OUT1} = 15 \text{ V}; \\ R_{SENSE} &= 1 \text{ k}\Omega \end{split}$			20	μs

⁽¹⁾Parameter guaranteed by design and characterization; not subjected to production test.

 $^{^{(2)}}AII$ values refer to Vcc = 13 V; T_{j} = 25 °C, unless otherwise specified.

 $^{^{(3)}\}mbox{Vcc}$ sensing and Tc sensing are referred to GND potential.

 $^{^{(4)}}$ Transition delay are measured up to +/- 10% of final conditions.

VOUT

twon

80% Vcc

ON

OFF

dV_{OUT}/dt

20% Vcc

t

t

t

t

Figure 4: Switching time and Pulse skew

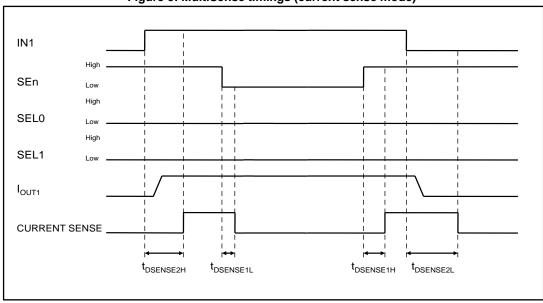


Figure 6: Multisense timings (chip temperature and VCC sense mode)

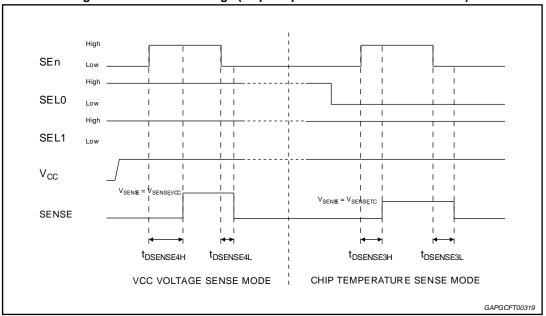


Figure 7: TDSTKON

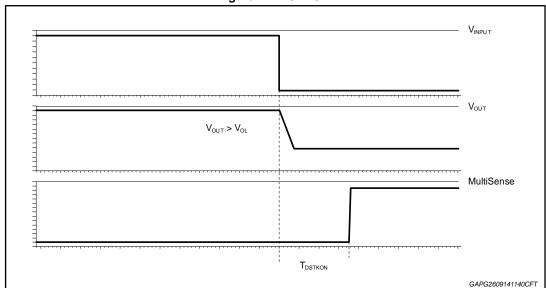


Table 10: Truth table

							_	
Mode	Conditions	INx	FR	SEn	SELx	OUTx	MultiSense	Comments
Standby	All logic inputs low	ш	L	ا ـ	L	L	Hi-Z	Low quiescent current consumption
		L	Х			L	See (1)	
Normal	Nominal load connected;	Н	L	See (1)		Н	See (1)	Outputs configured for auto-restart
	T _j < 150 °C	Ι	н				See (1)	Outputs configured for Latch-off
		L	Х	See (1)		L	See (1)	
Overload	Overload or short to GND causing: T _j > T _{TSD} or	Н	L			Н	See ⁽¹⁾	Output cycles with temperature hysteresis
	$\Delta T_j > \Delta T_{j_SD}$	Η	Н				See (1)	Output latches- off
Undervoltage	V _{CC} < V _{USD} (falling)	X	Х	Х	Х	L L	Hi-Z Hi-Z	Re-start when Vcc > Vusp + Vusphyst (rising)
OFF-state	Short to Vcc	L	Х		2 (4)		See (1)	
diagnostics	Open-load	L	Χ	See ⁽¹⁾		Н	See (1)	External pull-up
Negative output voltage	Inductive loads turn-off	L	Х	Se	e ⁽¹⁾	< 0 V	See ⁽¹⁾	

Table 11: MultiSense multiplexer addressing

				MultiSense output					
SEn	SEL ₁	SEL ₀	MUX channel	Normal mode	Overload	OFF-state diag. (1)	Negative output		
L	Χ	Χ		Hi-Z					
Н	L	L	Channel 0 diagnostic	Isense = 1/K * I _{OUT0}	Vsense = Vsenseh	Vsense = Vsenseh	Hi-Z		
Н	L	Н	Channel 1 diagnostic	Isense = 1/K * Iout1	Vsense = Vsenseh	Vsense = Vsenseh	Hi-Z		
Н	Н	L	T _{CHIP} Sense	V _{SENSE} = V _{SENSE_TC}					
Н	Н	Н	Vcc Sense	Vsense = Vsense_vcc					

Notes:

⁽¹⁾In case the output channel corresponding to the selected MUX channel is latched off while the relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic.

Example 1: FR = 1; $IN_0 = 0$; $OUT_0 = L$ (latched); MUX channel = channel 0 diagnostic; MUX channel = channel 0.

Example 2: FR = 1; $IN_0 = 0$; $OUT_0 = Iatched$, $V_{OUT_0} > V_{OL}$; MUX channel = channel 0 diagnostic; Mutisense = V_{SENSEH}

⁽¹⁾Refer to Table 11: "MultiSense multiplexer addressing"

2.4 Waveforms

Figure 8: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD)

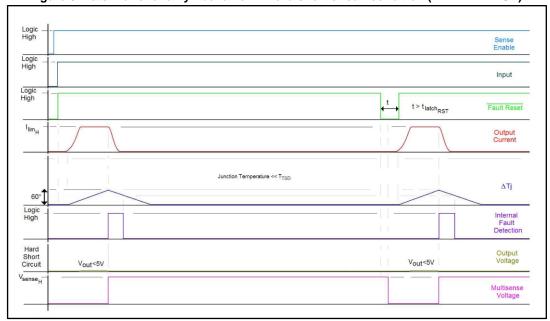
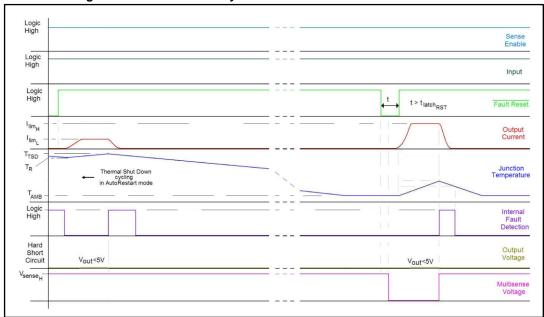



Figure 9: Latch functionality - behavior in hard short circuit condition

Downloaded from Arrow.com.

Figure 10: Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off)

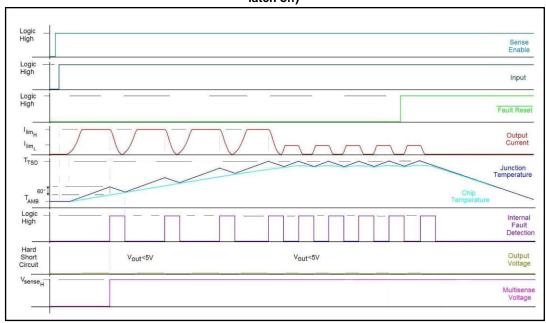
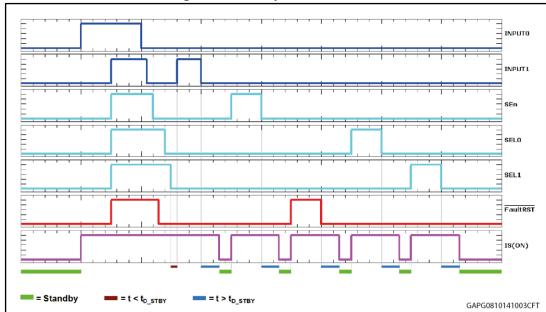
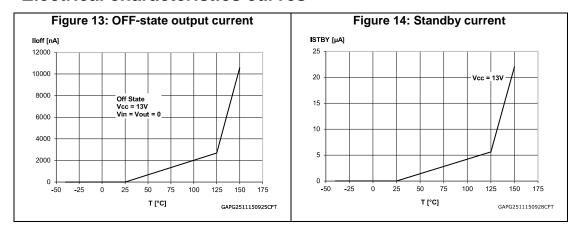
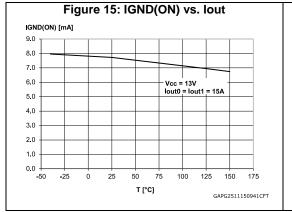



Figure 11: Standby mode activation





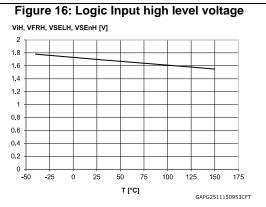
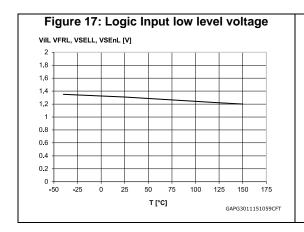
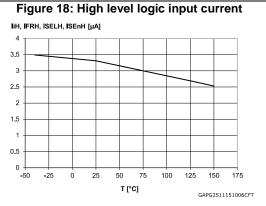
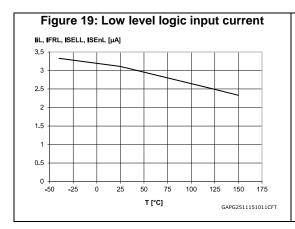

Normal Operation INx = LowINx = High**AND** OR FaultRST = Low FaultRST = High $t > t_{D_STBY}$ AND OR SEn = LowSEn = High**AND** OR SELx = LowSELx = HighStand-by Mode

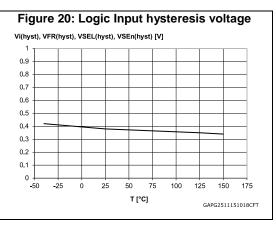
Figure 12: Standby state diagram

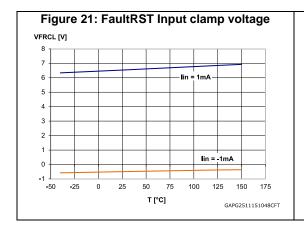
2.5 Electrical characteristics curves

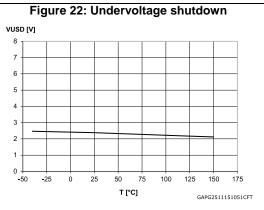


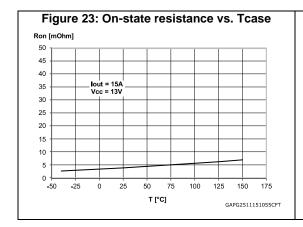


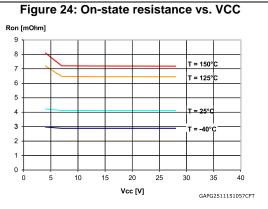


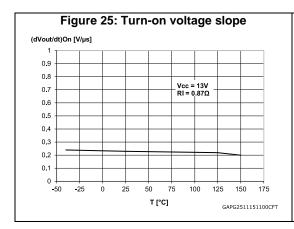

 $\overline{\mathbf{A}}$

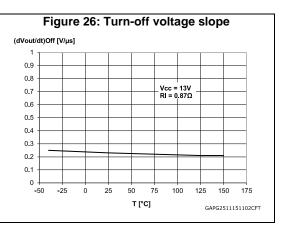

22/47

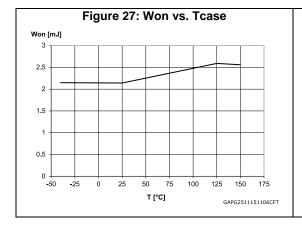


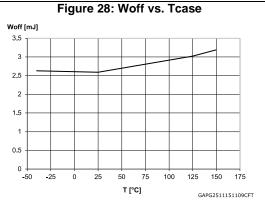


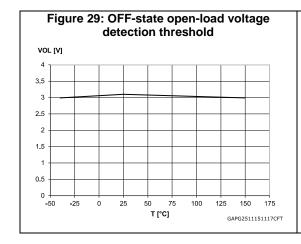


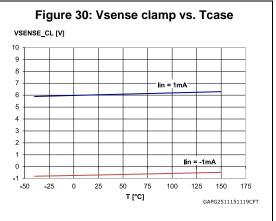


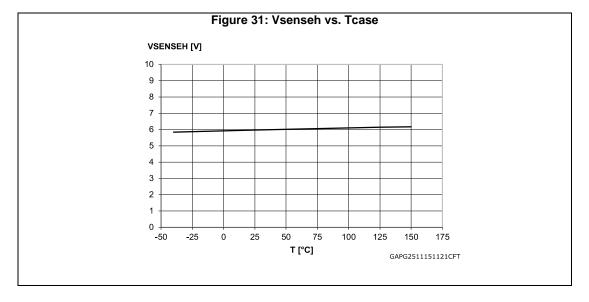












Downloaded from Arrow.com.

Protections VND7004AY

3 Protections

3.1 Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of 60 K. According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue.

3.2 Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FaultRST pin, the device switches on again as soon as its junction temperature drops to T_{RS} (FaultRST = Low) or remains off (FaultRST = High).

3.3 Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, I_{LIMH}, by operating the output power MOSFET in the active region.

3.4 Negative voltage clamp

In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG}, allowing the inductor energy to be dissipated without damaging the device.

4 Application information

Figure 32: Application diagram

4.1 GND protection network against reverse battery

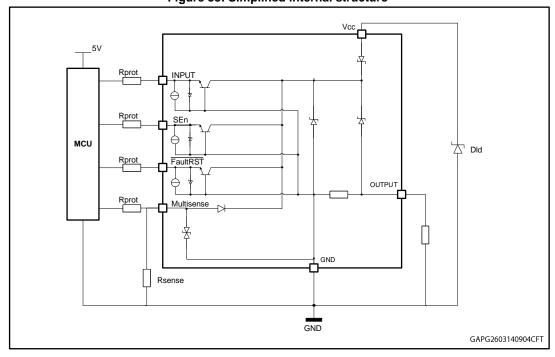


Figure 33: Simplified internal structure

The device does not need any external components to protect the internal logic in case of a reverse battery condition. The protection is provided by internal structures.

577

DocID027772 Rev 11

27/47

In addition, due to the fact that the output MOSFET turns on even in reverse battery mode, thus providing the same low ohmic path as in regular operating conditions, no additional power dissipation has to be considered.

4.2 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V_{CC} pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in *Table 12: "ISO 7637-2 - electrical transient conduction along supply line"*.

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through $V_{\rm CC}$ and GND terminals.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Table 12: ISO 7637-2 - electrical transient conduction along supply line

Test Pulse 2011(E)	Test pulse severity level with Status II functional performance status		Minimum number of pulses or test time	Burst cycle / pulse repetition time		Pulse duration and pulse generator internal impedance
	Level	Us ⁽¹⁾	time	min	max	
1	III	-112 V	500 pulses	0.5 s		2 ms, 10 Ω
2a ⁽³⁾	III	+55 V	500 pulses	0.2 s	5 s	50 μs, 2 Ω
3a	IV	-220 V	1h	90 ms	100 ms	0.1 μs, 50 Ω
3b	IV	+150 V	1h	90 ms	100 ms	0.1 μs, 50 Ω
4 (2)	IV	-7 V	1 pulse			100 ms, 0.01 Ω
Load dump according to ISO 16750-2:		2010				
Test B ⁽³⁾		40 V	5 pulse	1 min		400 ms, 2 Ω

Notes:

4.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line both to prevent the microcontroller I/O pins from latching-up and to protect the HSD inputs.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

57/

⁽¹⁾Us is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.

⁽²⁾Test pulse from ISO 7637-2:2004(E).

 $^{^{(3)}}$ With 40 V external suppressor referred to ground (-40°C < T_j < 150 °C).

Equation

 $V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C} - V_{IH} - V_{GND}) / I_{IHmax}$

Calculation example:

For V_{CCpeak} = -150 V; I_{latchup} ≥ 20 mA; V_{OHµC} ≥ 4.5 V

 $7.5 \text{ k}\Omega \leq R_{prot} \leq 140 \text{ k}\Omega.$

Recommended values: $R_{prot} = 15 \text{ k}\Omega$

4.4 Multisense - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (MultiSense) delivering the following signals:

- Current monitor: current mirror of channel output current
- Vcc monitor: voltage propotional to Vcc
- T_{CASE}: voltage propotional to chip temperature

Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in *MultiSense multiplexer* addressing Table.

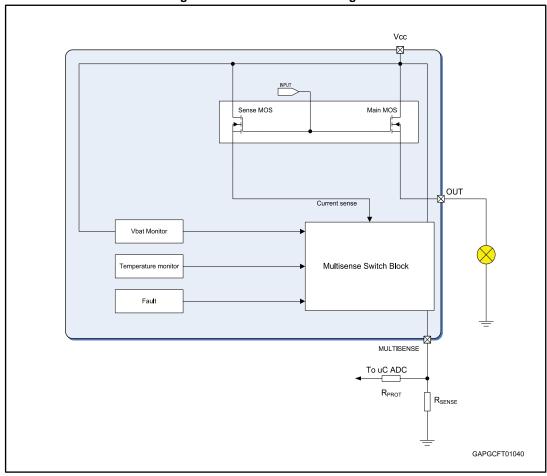



Figure 34: MultiSense and diagnostic - block diagram

57

4.4.1 Principle of Multisense signal generation

Figure 35: MultiSense block diagram

Current monitor

When current mode is selected via MultiSense, this output is capable of providing:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to a known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage V_{SENSEH}

The current delivered by the current sense circuit, I_{SENSE}, can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE}, allowing continuous load monitoring and abnormal condition detection.

Normal operation (channel ON, no fault, SEn active)

While device is operating in normal conditions (no fault intervention), V_{SENSE} calculation can be done using simple equations

Current provided by MultiSense output: $I_{SENSE} = I_{OUT}/K$

Voltage on Rsense: Vsense = Rsense · Isense = Rsense · Iout/K

577

Downloaded from **Arrow.com**.

Where:

- V_{SENSE} is the voltage measurable on R_{SENSE} resistor
- I_{SENSE} is the current provided from MultiSense pin in current output mode
- I_{OUT} is the current flowing through output
- K factor represents the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying the ratio between I_{OUT} and I_{SENSE}.

Failure flag indication

In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin which is switched to a "current limited" voltage source, VSENSEH.

In any case, the current sourced by the MultiSense in this condition is limited to $I_{\mbox{\scriptsize SENSEH}}.$

The typical behavior in case of overload or hard short circuit is shown in *Waveforms* section.

100nF/50V _ 100nF GND GND INPUT OUT Logic SEr оит SEL OUTPUT OUT MultiSens GND 10nF/100V GND GND GND GND GND GAPG2603140914CF

Figure 36: Analogue HSD - open-load detection in off-state

57

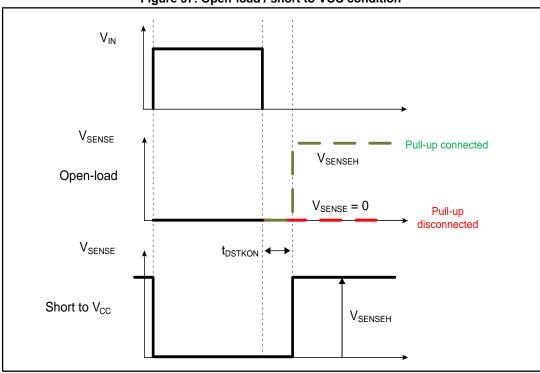


Figure 37: Open-load / short to VCC condition

Table 13: MultiSense pin levels in off-state

Condition	Output	MultiSense	SEn
	V V	Hi-Z	L
Open load	Vout > Vol	V _{SENSEH}	Н
Open-load	V · · · V	Hi-Z	L
	V _{OUT} < V _{OL}	0	Н
Chart to \/	Variation Varia	Hi-Z	L
Short to Vcc	Vout > Vol	Vsenseh	Н
Nominal	V 4 V	Hi-Z	L
inominai	Vout < Vol	0	Н

4.4.2 TCASE and VCC monitor

In this case, MultiSense output operates in voltage mode and output level is referred to device GND. Care must be taken in case a GND network protection is used, because a voltage shift is generated between the device GND and the microcontroller input GND reference.

Figure 38: "GND voltage shift" shows the link between VMEASURED and the real VSENSE signal.

Downloaded from Arrow.com.

Figure 38: GND voltage shift

V_{CC} monitor

Battery monitoring channel provides V_{SENSE} = V_{CC} / 8.

Case temperature monitor

Case temperature monitor is capable of providing information about the actual device temperature. Since a diode is used for temperature sensing, the following equation describes the link between temperature and output V_{SENSE} level:

$$V_{SENSE_TC}(T) = V_{SENSE_TC}(T_0) + dV_{SENSE_TC} / dT * (T - T_0)$$

where dV_{SENSE_TC} / dT ~ typically -5.5 mV/K (for temperature range (-40 °C to 150 °C)).

4.4.3 Short to VCC and OFF-state open-load detection

Short to V_{CC}

A short circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit.

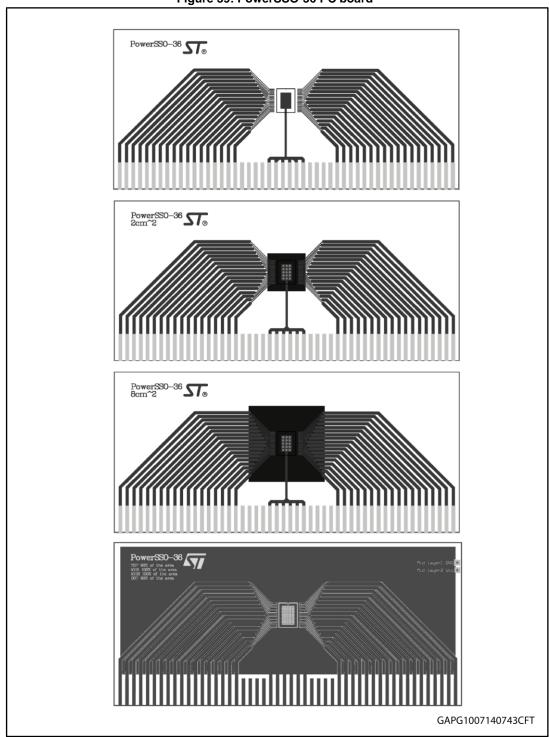
OFF-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU} .

It is preferable that V_{PU} is switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected.

 R_{PU} must be selected in order to ensure $V_{OUT} > V_{OLmax}$ in accordance with the following equation:

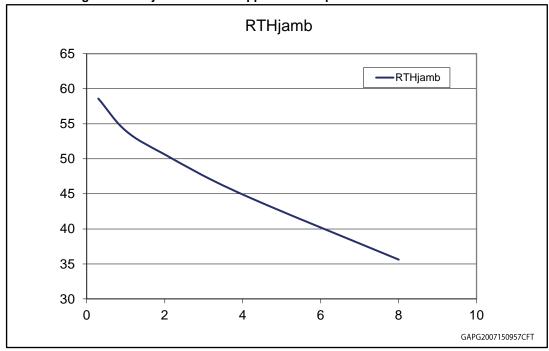
Equation


$$R_{PU} < \frac{V_{PU} - 4}{I_{L(off2)min @ 4V}}$$

5 Package and PCB thermal data

5.1 PowerSSO-36 thermal data

Figure 39: PowerSSO-36 PC board


577

34/47

Table 14: PCB properties

rabio i ii i ez proportios						
Dimension	Value					
Board finish thickness	1.6 mm +/- 10%					
Board dimension	129 mm x 60 mm					
Board Material	FR4					
Copper thickness (top and bottom layers)	0.070 mm					
Copper thickness (inner layers)	0.035 mm					
Thermal vias separation	1.2 mm					
Thermal via diameter	0.3 mm +/- 0.08 mm					
Copper thickness on vias	0.025 mm					
Footprint dimension (top layer)	4.1 mm x 6.5 mm					
Heatsink copper area dimension (bottom layer)	Footprint, 2 cm ² or 8 cm ²					

Figure 40: Rthj-amb vs PCB copper area in open box free air conditions

ZTH (*C/W)

100

— Cu=8 cm2
— Cu=2 cm2
— Cu=foot print
10
— 4Layer

1 10 100 1000

GAPG2007151004CFT

Figure 41: PowerSSO-36 thermal impedance junction ambient single pulse

Equation: pulse calculation formula

 $Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$

where $\delta = t_P/T$

Figure 42: Thermal fitting model for PowerSSO-36

The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Downloaded from Arrow.com.

Table 15: Thermal parameters

Area/island (cm2)	FP	2	8	4L
R1 = R7 (°C/W)	0.01			
R2 = R8 (°C/W)	1.2			
R3 (°C/W)	3.4	3.4	3.4	2.6
R4 (°C/W)	6	6	6	3
R5 (°C/W)	18	14	10	2
R6 (°C/W)	30	26	15	7
C1 = C7 (W·s/°C)	0.0005			
C2 = C8 (W·s/°C)	0.001			
C3 (W·s/°C)	0.1			
C4 (W·s/°C)	0.5	0.8	0.8	1
C5 (W·s/°C)	1	2	3	10
C6 (W·s/°C)	3	5	9	18

6 Maximum demagnetization energy (VCC = 16 V)

100

VND7004AY - Single Pulse
Repetitive pulse Tjstart=125°C
Repetitive pulse Tjstart=125°C
Repetitive pulse Tjstart=125°C

Repetitive pulse Tjstart=125°C

GADG200416136CFT

Figure 43: Maximum turn off current versus inductance

Values are generated with $R_L = 0 \Omega$.

In case of repetitive pulses, T_{jstart} (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

477

VND7004AY Package information

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

7.1 PowerSSO-36 package information

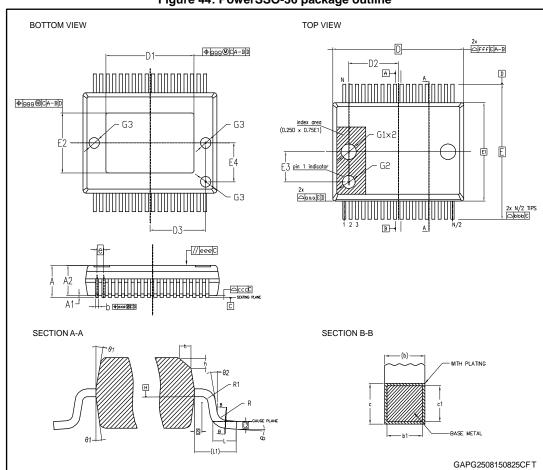


Figure 44: PowerSSO-36 package outline

Table 16: PowerSSO-36 mechanical data

	Dimensions Millimeters		
Ref.			
	Min.	Тур.	Max.
Θ	0°		8°
Θ1	5°		10°
Θ2	0°		
А	2.15		2.45
A1	0.00		0.10

	Dimensions		
Ref.	Millimeters		
	Min.	Тур.	Max.
A2	2.15		2.35
b	0.18		0.32
b1	0.13	0.25	0.30
С	0.23		0.32
c1	0.20	0.20	0.30
D		10.30 BSC	
D1	6.90		7.50
D2		3.65	
D3		4.30	
е		0.50 BSC	
Е	10.30 BSC		
E1	7.50 BSC		
E2	4.30		5.20
E3		2.30	
E4		2.90	
G1		1.20	
G2		1.00	
G3		0.80	
h	0.30		0.40
L	0.55	0.70	0.85
L1	1.40 REF		
L2	0.25 BSC		
N	36		
R	0.30		
R1	0.20		
S	0.25		
	Tolerance of fo	orm and position	
aaa		0.20	
bbb	0.20		
ccc	0.10		
ddd	0.20		
eee		0.10	
fff	0.20		
999	0.15		

VND7004AY Package information

7.2 PowerSSO-36 packing information

Figure 45: PowerSSO-36 reel 13"

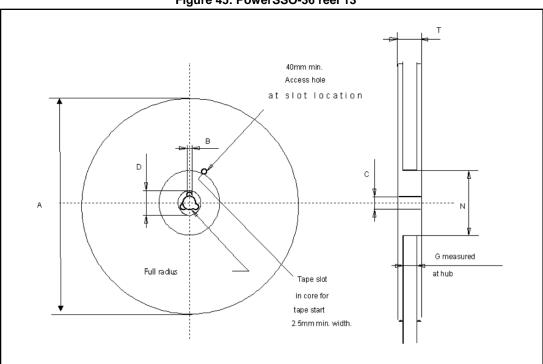


Table 17: Reel dimensions

Description	Value ⁽¹⁾
Base quantity	1000
Bulk quantity	1000
A (max)	330
B (min)	1.5
C (± 0.2)	13
F	20.2
G (+2 / -0)	24.4
N (min)	100
T (max)	30.4

Notes:

⁽¹⁾All dimensions are in mm.

Figure 46: PowerSSO-36 carrier tape

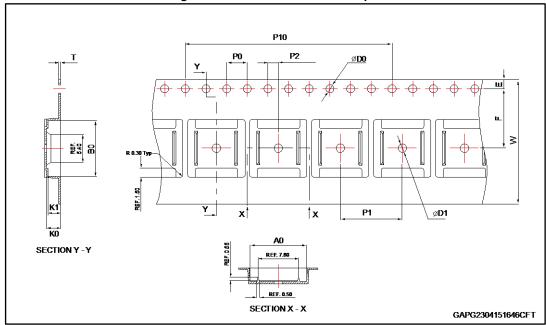
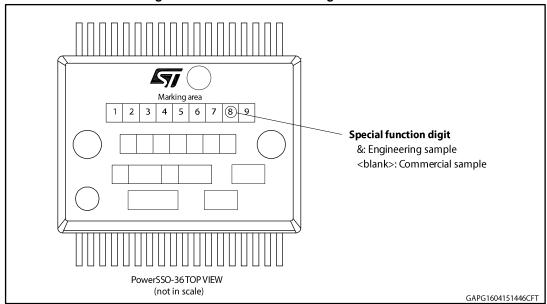


Table 18: PowerSSO-36 carrier tape dimensions

Description	Value ⁽¹⁾
A ₀	10.90 ± 0.10
B ₀	10.80 ± 0.10
K ₀	2.75 ± 0.10
K ₁	2.45 ± 0.10
D ₀	1.50 (+0.10 / -0)
D ₁	1.60 ± 0.10
P ₀	4.00 ± 0.10
P ₁	12.00 ± 0.10
P ₂	2.00 ± 0.10
P ₁₀	40.00 ± 0.20
E	1.75 ± 0.10
F	11.50 ± 0.10
W	24.00 ± 0.30
Т	0.30 ± 0.05

⁽¹⁾All dimensions are in mm.


VND7004AY Package information

Embossed Carrier Punched Carrier 8 mm & 12 mm only Round Sprocket Holes START **END** Top Cover Tape Elongated Sprocket Holes (32 mm tape and wider) −100 mm Min. -- Leader Trailer Components-400 mm Minimum, 160 mm minimum, -Top Cover Tape User direction of feed GAPG2004151511CFT

Figure 47: PowerSSO-36 schematic drawing of leader and trailer tape

7.3 PowerSSO-36 marking information

Figure 48: PowerSSO-36 marking information

Engineering Samples: Parts marked as "&" are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

Commercial Samples: fully qualified parts from ST standard production with no usage restrictions.

Order codes VND7004AY

8 Order codes

Table 19: Device summary

Pookogo	Order codes
Package	Tape and reel
PowerSSO-36	VND7004AYTR

VND7004AY Revision history

9 Revision history

Table 20: Document revision history

Date	Revision	Changes	
23-Apr-2015	1	Initial release.	
		Table 3: "Absolute maximum ratings": ■ -louT: updated value Updated Table 4: "Thermal data" and Table 6: "Switching"	
20-Jul-2015	20-Jul-2015 2	Table 8: "Protections": TR, THYST: added note	
		Table 9: "MultiSense":	
		 K₀, dK₀/K₀: removed rows K_x, dK_x/K_x, I_{OUT_SAT}: updated values 	
		Added Section 5: "Package and PCB thermal data"	
		Updated Figure 1: "Block diagram" Updated Table 1: "Pin functions" Table 3: "Absolute maximum ratings": Isense: updated parameter and value Emax: updated parameter Table 5: "Power section":	
00 1 1 00 1 5		R _{ON_REV} : updated value	
30-Jul-2015	3	Table 9: "MultiSense":	
		Vsense_cl, Vsense_tc, Vsense_vcc: updated test conditions	
		Removed following tables:	
		 Table: Electrical transient requirements (part 1) Table: Electrical transient requirements (part 2) Table: Electrical transient requirements (part 3) 	
		Added Section 4: "Application information"	
02-Dec-2015 4	Table 5: "Power section":		
		• I _{STBY} , I _{L(off)} : updated values	
	4	Updated Table 6: "Switching"	
		Table 9: "MultiSense": K _x , t _{DSENSE2H} : updated values	
		Added Section 2.5: "Electrical characteristics curves"	
		Table 9: "MultiSense":	
27-Jan-2016	5	Isenseo: updated value	

Revision history VND7004AY

Date	Revision	Changes
20-Apr-2016	6	Updated Features list Table 3: "Absolute maximum ratings": • E _{MAX} : updated value Table 9: "MultiSense":
		dKx/Kx, Isense_sat, Iout_sat: added note
	Added Section 6: "Maximum demagnetization energy (VCC = 16 V)"	
26-Apr-2016	7	Updated Figure 1: "Block diagram" and Figure 34: "MultiSense and diagnostic – block diagram"
15-Jul-2016	8	Updated Figure 45: "PowerSSO-36 reel 13""and Table 17: "Reel dimensions"
02-Nov-2016	9	Updated Applications section
16-Dec-2016	10	in <i>Table 6: "Switching"</i> - updated t _{SKEW} Min. Typ. and Max. values
22-Jun-2017	11	Changed the K ₁ minimum value in <i>Table 9: "MultiSense"</i> .

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

