
UC2842/3/4/5-UC3842/3/4/5

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vi	Supply Voltage (low impedance source)	30	V
Vi	Supply Voltage (li < 30mA)	Self Limiting	
Ιo	Output Current	±1	А
Eo	Output Energy (capacitive load)	5	μJ
	Analog Inputs (pins 2, 3)	– 0.3 to 6.3	V
	Error Amplifier Output Sink Current	10	mA
P _{tot}	Power Dissipation at $T_{amb} \le 50 \text{ °C}$ (minidip, DIP-14)	1	W
Ptot	Power Dissipation at Tamb \leq 25 °C (SO14)	725	mW
T _{stg}	Storage Temperature Range	– 65 to 150	°C
TL	Lead Temperature (soldering 10s)	300	°C

 * All voltages are with respect to pin 5, all currents are positive into the specified terminal.

PIN CONNECTIONS (top views)

ORDERING NUMBERS

Туре	Minidip	SO14
UC2842	UC2842N	UC2842D
UC3843	UC2843N	UC2843D
UC2844	UC2844N	UC2844D
UC2845	UC2845N	UC2845D
UC3842	UC3842N	UC3842D
UC3843	UC3843N	UC3843D
UC3844	UC3844N	UC3844D
UC3845	UC3845N	UC3845D

THERMAL DATA

Symbol	Description	Minidip	SO14	Unit
$R_{thj-amb}$	Thermal Resistance Junction-ambient. max.	100	165	°C

57

2/11

UC2842/3/4/5-UC3842/3/4/5

 $\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \text{ (Unless otherwise stated, these specifications apply for -25 } \leq T_{amb} \leq 85^{\circ}\text{C} \text{ for UC2824X}; 0 \leq T_{amb} \leq 70^{\circ}\text{C} \text{ for UC384X}; V_i = 15\text{V} \text{ (note 5)}; \text{ } \text{R}_{\text{T}} = 10\text{K}; \text{C}_{\text{T}} = 3.3\text{nF} \text{)} \end{array}$

0	Demonstra	Toot Conditions		IC284	x	UC384X			Ilnit
Symbol	I Parameter Lest Conditions		1	. Min. Typ. Max			Unit		
		REFERENCE SECTION							
V_{REF}	Output Voltage	$T_j = 25^{\circ}C I_o = 1mA$	4.95	5.00	5.05	4.90	5.00	5.10	V
ΔV_{REF}	Line Regulation	$12V \leq V_i \leq 25V$		6	20		6	20	mV
ΔV_{REF}	Load Regulation	$1 \le I_o \le 20 mA$		6	25		6	25	mV
$\Delta V_{REF} / \Delta T$	Temperature Stability	(Note 2)		0.2	0.4		0.2	0.4	mV/ºC
	Total Output Variant	Line, Load, Temperature (2)	4.9		5.1	4.82		5.18	V
e _N	Output Noise Voltage	$\begin{array}{l} 10 Hz \leq f \leq \mbox{ 10 KHz } T_{j} = 25^{\circ} C \\ (2) \end{array}$		50			50		μV
	Long Term Stability	T _{amb} = 125°C, 1000Hrs (2)		5	25		5	25	mV
I _{SC}	Output Short Circuit		-30	-100	-180	-30	-100	-180	mA
	<u>.</u>	OSCILLATOR SECTION	-			-			-
fs	Initial Accuracy	$T_j = 25^{\circ}C$ (6)	47	52	57	47	52	57	KHz
	Voltage Stability	$12 \le V_i \le 25V$		0.2	1		0.2	1	%
	Temperature Stability	$T_{MIN} \le T_{amb} \le T_{MAX}$ (2)		5			5		%
V ₄	Amplitude	V _{PIN4} Peak to Peak		1.7			1.7		V
		ERROR AMP SECTION							
V ₂	Input Voltage	V _{PIN1} = 2.5V	2.45	2.50	2.55	2.42	2.50	2.58	V
I _b	Input Bias Current			-0.3	-1		-0.3	-2	μΑ
	A _{VOL}	$2 \le V_o \le 4V$	65	90		65	90		dB
В	Unity Gain Bandwidth	(2)	0.7	1		0.7	1		MHz
SVR	Supply Voltage Rejection	$12V \le V_i \le 25V$	60	70		60	70		dB
lo	Output Sink Current	V _{PIN2} = 2.7V V _{PIN1} = 1.1V	2	6		2	6		V
Ι _ο	Output Source Current	V _{PIN2} = 2.3V V _{PIN1} = 5V	-0.5	-0.8		-0.5	-0.8		mA
	V _{OUT} High	$V_{PIN2} = 2.3V;$ $R_L = 15K\Omega$ to Ground	5	6		5	6		V
	V _{OUT} Low	$V_{PIN2} = 2.7V;$ $R_L = 15K\Omega$ to Pin 8		0.7	1.1		0.7	1.1	V
		CURRENT SENSE SECTION	DN N						
Gv	Gain	(3 & 4)	2.85	3	3.15	2.8	3	3.2	V/V
V ₃	Maximum Input Signal	V _{PIN1} = 5V (3)	0.9	1	1.1	0.9	1	1.1	V
SVR	Supply Voltage Rejection	$12 \le V_i \le 25V$ (3)		70			70		dB
I _b	Input Bias Current			-2	-10		-2	-10	μA
	Delay to Output			150	300		150	300	ns
		OUTPUT SECTION							
I _{OL}	Output Low Level	I _{SINK} = 20mA		0.1	0.4		0.1	0.4	V
		I _{SINK} = 200mA		1.5	2.2		1.5	2.2	V
I _{ОН}	Output High Level	ISOURCE = 20mA	13	13.5		13	13.5		V
		I _{SOURCE} = 200mA	12	13.5		12	13.5		V
t _r	Rise Time	$T_j = 25^{\circ}C$ $C_L = 1nF$ (2)		50	150		50	150	ns
t _f	Fall Time	$T_{j} = 25^{\circ}C$ $C_{L} = 1nF$ (2)		50	150		50	150	ns

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	l	UC284X			UC384X			
		Test conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	
	UNDER-VOLTAGE LOCKOUT SECTION									
	Start Threshold	X842/4	15	16	17	14.5	16	17.5	V	
		X843/5	7.8	8.4	9.0	7.8	8.4	9	V	
	Min Operating Voltage	X842/4	9	10	11	8.5	10	11.5	V	
	After Turn-on	X843/5	7.0	7.6	8.2	7.0	7.6	8.2	V	
PWM SECTION										
	Maximum Duty Cycle	X842/3	93	97	100	93	97	100	%	
		X844/5	46	48	50	47	48	50	%	
	Minimum Duty Cycle				0			0	%	
TOTAL STANDBY CURRENT										
l _{st}	Start-up Current			0.5	1		0.5	1	mA	
li	Operating Supply Current	$V_{PIN2} = V_{PIN3} = 0V$		11	20		11	20	mA	
Viz	Zener Voltage	l _i = 25mA		34			34		V	

Notes : 2. These parameters, although guaranteed, are not 100% tested in production. 3. Parameter measured at trip point of latch with $V_{PIN2} = 0$.

$$A = \frac{\Delta VPIN1}{\Delta V}; 0 \le VPIN3 \le 0.8 V$$

 ΔV_{PIN3}

A VPIN3
Adjust V_i above the start threshold before setting at 15 V.
Output frequency equals oscillator frequency for the UC3842 and UC3843. Output frequency is one half oscillator frequency for the UC3844 and UC3845.

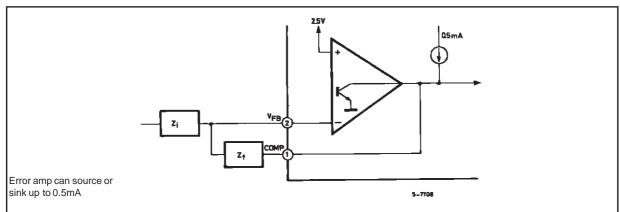
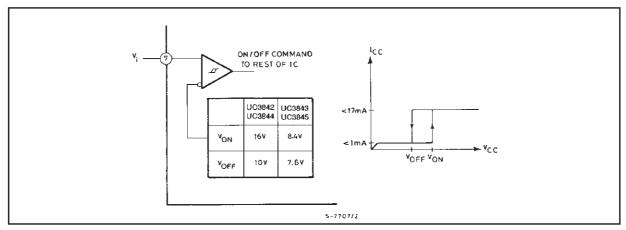
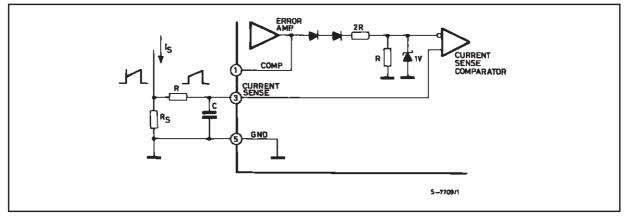




Figure 2 : Under Voltage Lockout.

During Under-Voltage Lockout, the output driver is biased to sink minor amounts of current. Pin 6 should be shunted to ground with a bleeder resistor to prevent activating the power switch with extraneous leakage currents.

Figure 3 : Current Sense Circuit .

Peak current (i_s) is determined by the formula

A small RC filter may be required to suppress switch transients.

Figure 4.

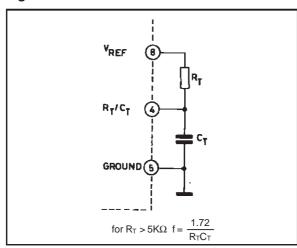


Figure 6 : Timing Resistance vs. Frequency.

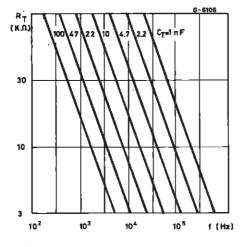
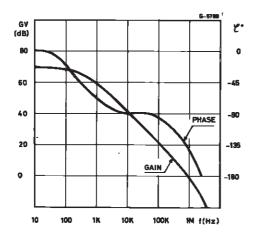
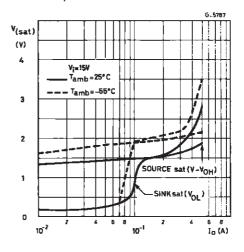
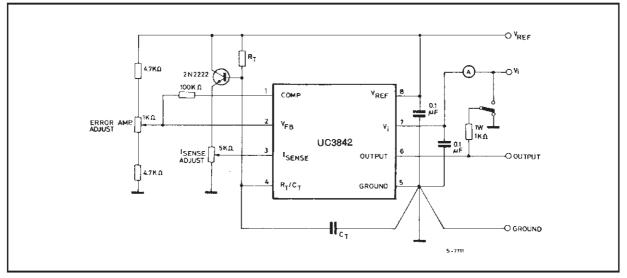



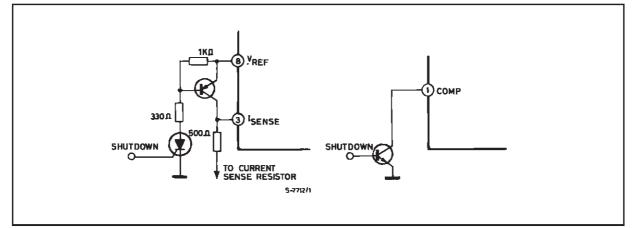
Figure 8 : Error Amplifier Open-loop Frequency Response.

Figure 5 : Deadtime vs. $C_T (R_T > 5K\Omega)$.



Figure 7 : Output Saturation Characteristics.


Figure 9 : Open Loop Test Circuit.

High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close

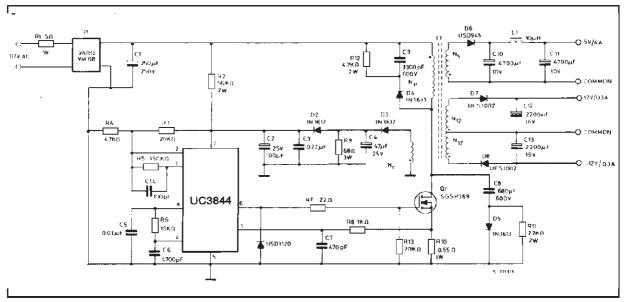
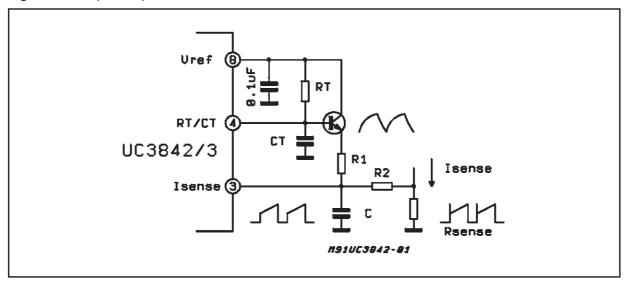

to pin 5 in a single point ground. The transistor and 5 K Ω potentiometerare used to sample the oscillator waveform and apply an adjustable ramp to pin 3.

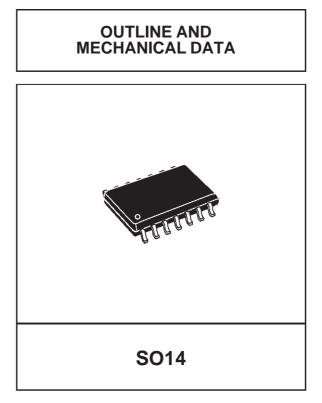
Figure 10 : Shutdown Techniques.

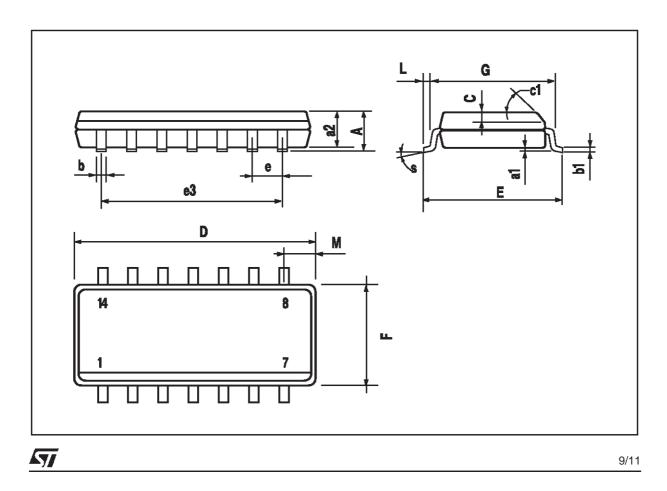
Shutdown of the UC2842 can be accomplished by two methods; either raise pin 3 above 1V or pull pin 1 below a voltage two diode drops above ground. Either method cause the output of the PWM comparator to be high (refer to block diagram). The PWM latch is reset dominant so that the output will remain low until the next clock cycle after the shutdown condition at pins 1 and/or 3 is removed. In one example, an externally latched shutdown may be accomplished by adding an SCR which will be reset by cycling V_i below the lower UVLO threshold. At this point the reference turns off, allowing the SCR to reset.



Power Supply Specifications

- 1. Input Voltage:
- 95 VAC to 130 VAC (50 Hz/60 Hz)
- 2. Line Isolation : 3750 V
- 3. Switching Frequency: 40 KHz
- 4. Efficiency @ Full Load: 70 %
- Figure 12 : Slope Compensation.

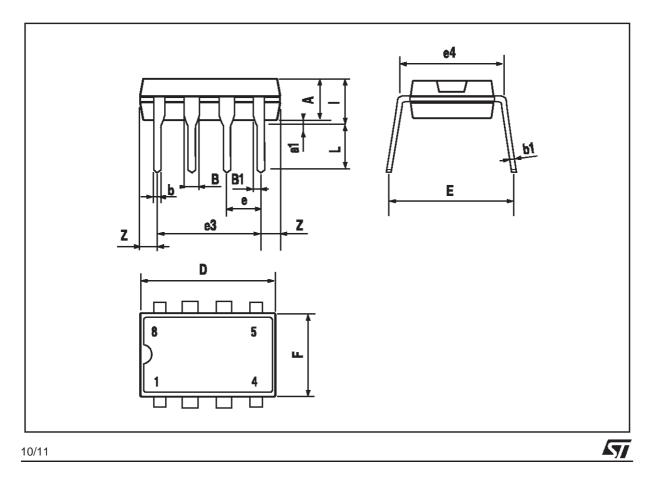

- 5. Output Voltage:
 - A. + 5 V, ± 5 % : 1 A to 4 A load Ripple voltage: 50 mV P-P Max.
 - B. + 12 V, ± 3 % : 0.1 A to 0.3 A load Ripple voltage: 100 mV P-P Max.
 - $C. 12 V, \pm 3 \%$: 0.1 A to 0.3 A load Ripple voltage: 100 mV P-P Max.


A fraction of the oscillator ramp can be resistively summed with the current sense signal to provide slope compensation for converters requiring duty cycles over 50 %.

Note that capacitor, C, forms a filter with R2 to supress the leading edge switch spikes.

DIM.		mm			inch			
	MIN	TYP.	MAX	MIN	TYP	MAX		
A			1.75			0.069		
a1	0.1		0.25	0.004		0.009		
a2			1.6			0.063		
b	0.35		0.46	0.014		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.020			
c1			45° (typ.)				
D (1)	8.55		8.75	0.336		0.344		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		7.62			0.300			
F (1)	3.8		4	0.150		0.157		
G	4.6		5.3	0.181		0.209		
L	0.4		1.27	0.016		0.050		
М			0.68			0.027		
S	8° (max.)							




(1) D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch).

UC2842/3/4/5-UC3842/3/4/5

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A		3.3			0.130	
a1	0.7			0.028		
В	1.39		1.65	0.055		0.065
B1	0.91		1.04	0.036		0.041
b		0.5			0.020	
b1	0.38		0.5	0.015		0.020
D			9.8			0.386
E		8.8			0.346	
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			7.1			0.280
I			4.8			0.189
L		3.3			0.130	
Z	0.44		1.6	0.017		0.063

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics © 1998 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. http://www.st.com

