Contents STGW19NC60W

Contents

1	Electrical ratings			
2	Electric	cal characteristics	4	
	2.1	Electrical characteristics (curves)	6	
3	Test cir	cuits	9	
4	Packag	e information	10	
	4.1	TO-247 package information	10	
5	Revisio	n history	12	

STGW19NC60W Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	600	V
lc ⁽¹⁾	Continuous collector current at T _C = 25 °C	42	Α
lc ⁽¹⁾	Continuous collector current at T _C = 100 °C	23	Α
I _{CL} ⁽²⁾	Turn-off latching current	30	Α
V _{GE}	Gate-emitter voltage	±20	V
Ртот	Total dissipation at T _C = 25 °C	140	W
T _{stg}	Storage temperature range		°C
TJ	Operating junction temperature range	- 55 to 150	

Notes:

⁽¹⁾Calculated according to the iterative formula:

$$I_C(T_C) = \frac{T_{JMAX} - T_C}{R_{THJ-C} \times V_{CESAT(MAX)}(T_{J(max)} \times I_C(T_C))}$$

 $^{(2)}V_{CLAMP}$ = 80% (V_{CES}), V_{GE} = 15 V, R_G = 10 Ω , T_J = 150 °C

Table 3: Thermal data

Symbol	Parameter		Unit
R _{thj-case}	R _{thj-case} Thermal resistance junction-case max		
R _{thj-amb}	R _{thj-amb} Thermal resistance junction-ambient max		°C/W

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 4: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	V _{GE} = 0 V, I _C = 1 mA	600			٧
VCE(sat)	Collector-emitter saturation	V _{GE} = 15 V, I _C = 12 A		2.1	2.5	
	voltage	V _{GE} = 15 V, I _C = 12 A, T _J = 125 °C		1.8		V
$V_{GE(th)}$	Gate threshold voltage	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	3.75		5.75	V
I _{CES}		V _{GE} = 0 V, V _{CE} = 600 V			150	μΑ
	Collector cut-off current	V _{GE} = 0 V, V _{CE} = 600 V, T _C =125 °C ⁽¹⁾			1	mA
I _{GES}	Gate-emitter leakage current	V _{CE} = 0 V, V _{GE} = ± 20 V			±100	nΑ
g fs	Forward transconductance	V _{CE} = 15 V, I _C = 12 A		10		S

Notes:

Table 5: Dynamic

Table 6. Dynamic						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance		-	1180	1	
Coes	Output capacitance	Output capacitance V _{CE} = 25 V, f = 1 MHz,		130	-	pF
Cres	Reverse transfer capacitance	V _{GE} = 0 V	1	26	1	Pi.
Qg	Total gate charge $V_{CE} = 390 \text{ V}, I_{C} = 12 \text{ A},$		ı	53	1	
Qge	Gate-emitter charge	V _{GE} = 15 V (see <i>Figure 16: "Gate charge</i>	-	10	-	nC
Qgc	Gate-collector charge	test circuit")	-	21	-	

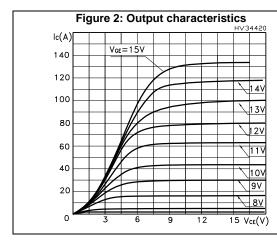
⁽¹⁾Defined by design, not subject to production test.

Table 6: Switching on/off (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{CC} = 390 V, I _C = 12 A,	-	25	-	ns
tr	Current rise time	V_{GE} = 15 V, R _G = 10 Ω (see Figure 17: "Switching	-	7	1	ns
(di/dt) _{on}	Turn-on current slope	waveform")		1600	-	A/µs
t _{d(on)}	Turn-on delay time	V _{CC} = 390 V, I _C = 12 A,	-	25	1	ns
tr	Current rise time	V_{GE} = 15 V, R _G = 10 Ω , T _C = 125°C (see <i>Figure 17: "Switching waveform"</i>)		8	1	ns
(di/dt) _{on}	Turn-on current slope			1400	-	A/µs
$t_r(V_{off})$	Off voltage rise time	V _{CC} = 390 V, I _C = 12 A,	-	22	-	ns
t _d (off)	Turn-off delay time	V_{GE} = 15 V, R _G = 10 Ω (see Figure 17: "Switching	-	90	-	ns
t _f	Current fall time	waveform")	-	43	-	ns
$t_r(V_{off})$	Off voltage rise time	V _{CC} = 390 V, I _C = 12 A,	-	47	1	ns
t _d (off)	Turn-off delay time	V_{GE} = 15 V, R_{G} = 10 Ω, T_{C} = 125°C (see <i>Figure 17:</i>	1	127	1	ns
t f	Current fall time	"Switching waveform")	-	77	-	ns

Table 7: Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} (1)	Turn-on switching energy		-	81	1	μJ
E _{off} ⁽²⁾	Turn-off switching energy	$V_{CC} = 390 \text{ V}, I_C = 12 \text{ A},$	-	125	1	μJ
Ets	Total switching energy	R _G = 10 Ω, V _{GE} = 15 V (see <i>Figure 17: "Switching</i>	-	206	1	μJ
E _{on} (1)	Turn-on switching energy	waveform")	-	161	-	μJ
E _{off} ⁽²⁾	Turn-off switching energy		-	255	1	μJ
Ets	Total switching energy	$V_{CC} = 390 \text{ V, } I_{C} = 12 \text{ A,}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V,}$		416	-	μJ


Notes:

47/

 $^{^{(1)}\}mbox{Including}$ the reverse recovery of the external diode. The diode is the same of the co-packed STGW19NC60WD.

⁽²⁾including the tail of the collector current.

2.2 Electrical characteristics (curves)

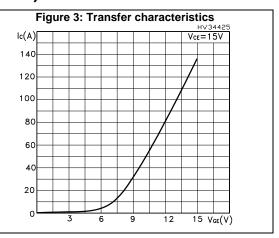


Figure 4: Transconductance

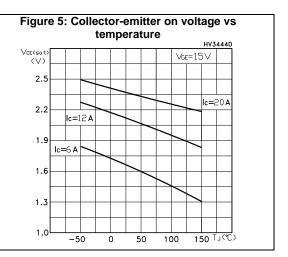
HV34460

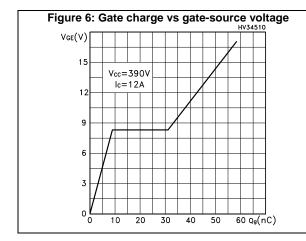
VCE=15V

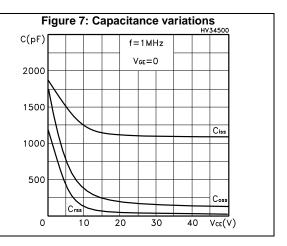
15

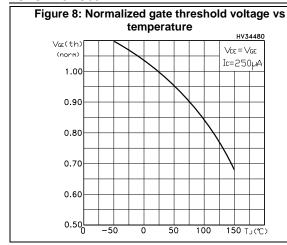
12

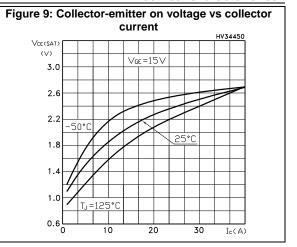
9

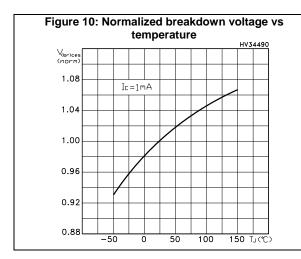

6

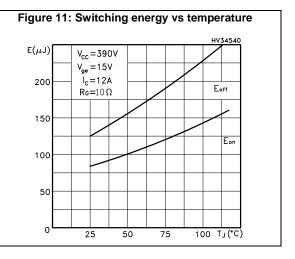

125C

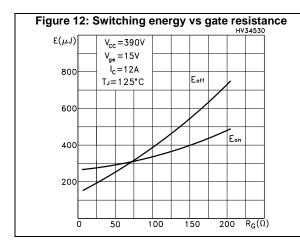

125C

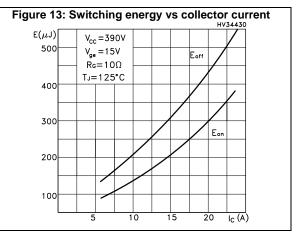

125C

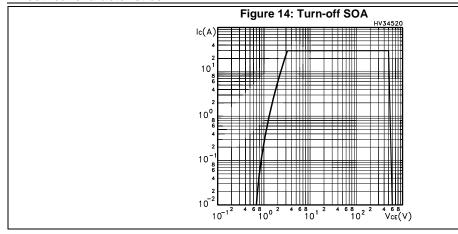

125C



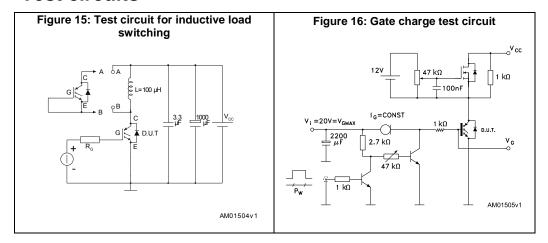


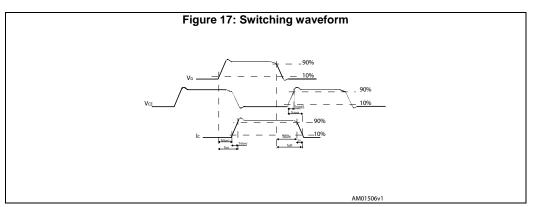






Electrical characteristics


STGW19NC60W



577

STGW19NC60W Test circuits

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-247 package information

HEAT-SINK PLANE

L2

L1

L2

L3

BACK VIEW

0075325_8

Figure 18: TO-247 package outline

10/13 DocID12759 Rev 4

Table 8: TO-247 package mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

Revision history STGW19NC60W

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
04-Oct-2006	1	Initial release.
08-May-2007	2	Modified value on Table 2
20-Nov-2008	3	Inserted packages: D2PAK and TO-247
07-Nov-2016	4	The part numbers STGB19NC60W and STGP19NC60W have been moved to a separate datasheet Modified: Table 2: "Absolute maximum ratings", Table 4: "Static" and Table 7: "Switching energy (inductive load)" Minor text changes

12/13 DocID12759 Rev 4

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

