ABSOLUTE MAXIMUM RATINGS | Power Dissipation | Internally Limited | |--------------------------------------|--------------------| | Lead Temp. (Soldering, 5 Seconds) | | | Storage Temperature Range | 65°C to +150°C | | Operating Junction Temperature Range | 40°C to +125°C | | Input Supply Voltage | | | Feedback Input Voltage1.5V to + | -26V | |----------------------------------|------| | Shutdown Input Voltage0.3V to + | -26V | | Error Comparator Output0.3V to + | -26V | | ESD Bating 2kV | Min | # **ELECTRICAL CHARACTERISTICS** Electrical characteristics at $V_{IN} = V_O + 1V$, $I_O = 1$ mA, $C_{OUT} = 2.2\mu$ F, $T_A = 25$ °C, unless otherwise specified. The \blacklozenge denotes the specifications wich apply over full operating tempeture range -40°C to +85°C, unless noted. | PARAMETER | CONDITIONS
(Note 2) | MIN | TYP | MAX | | UNITS | |-------------------------------|-------------------------------------|-------|-------|-------|----------|---------------| | 3.3V Version | , | | | | 1 | | | Output Voltage | | 3.267 | 3.3 | 3.333 | | V | | | 1mA ≤ I _L ≤ 400mA | 3.217 | 3.3 | 3.382 | • | | | 5.0V Version | - | - | | - | <u> </u> | | | Output Voltage | | 4.950 | 5.0 | 5.050 | | V | | | 1mA ≤ I _L ≤ 400mA | 4.880 | 5.0 | 5.120 | • | | | All Voltage Options | | • | | | • | | | Output Voltage | | 20 | | 100 | • | ppm/°C | | Temperature Coefficient | (Note1) | | | | | | | Line Regulation (Note 3) | 6V ≤ V _{IN} ≤ 20V (Note 4) | | 1.5 | 20 | * | mV | | Load Regulation (Note 3) | I _L =1 to 400mA | | 6 | 20 | | mV | | | | | | 30 | • | | | Dropout Voltage (Note5) | I _L =1mA | | 60 | 100 | | mV | | | | | | 150 | • | | | | I _L =400mA | | 360 | 450 | | | | | | | | 700 | • | | | Ground Current | I _L =1mA | | 100 | 200 | | μΑ | | | | | | 300 | • | | | | I _L =150mA | | 2 | 4 | | mA | | | | | | 6 | • | | | | I _L =300mA | | 4 | 8 | | | | | | | | 12 | • | | | | I _L =400mA | | 8 | 15 | | | | | | | | 25 | * | | | Current Limit | V _{OUT} =0 | | 330 | 800 | * | mA | | Thermal Regulation | | | 0.05 | 0.2 | | %/W | | Output Noise, 10Hz to 100kHz, | C _L =2.2μF | | 400 | | | μV_{RMS} | | I _L =100mA | C _L =33μF | | 260 | | | | | PSRR at 100KHz | | | 31 | | | dB | | I _L =100mA | C _L =10μF | | | | | | | Adjustable 8 Pin Version of | only | | | | • | | | Reference Voltage | | 1.210 | 1.235 | 1.260 | | V | | Reference Voltage | Over Temperature | 1.185 | | 1.285 | | V | | Feedback Pin Bias Current | | | 20 | 40 | | nA | | | | | | 60 | * | | | Reference Voltage Temp. | | | 20 | | | ppm/°C | | Coefficient | | | | | | | Date: 3/14/06 #### **ELECTRICAL CHARACTERISTICS: Continued** Electrical characteristics at $V_{IN} = V_0 + 1V$, $I_0 = 1 \text{mA}$, $C_{OUT} = 2.2 \mu\text{F}$, $T_A = 25 ^{\circ}\text{C}$, unless otherwise specified. \spadesuit applies over the full operating temperature range. | PARAMETER | CONDITIONS (Note 2) | MIN | ТҮР | MAX | * | UNITS | |---|--|----------|---------------------------------------|-------------------------|-------------|-------| | Feedback Pin Bieas Current
Temperature Coefficient | | | 0.1 | | | nA/°C | | Output Leakage Current | V _{0H} =20V | | 0.01 | 1 2 | • | μΑ | | Output Low Voltage | V _{IN} =4.5V
I _{0L} =400μA | | 150 | 250
400 | • | mV | | Upper Threshold Voltage | (Note 6) | 40
25 | 60 | | | mV | | Lower Threshold Voltage | (Note 6) | | 75 | 95
140 | • | mV | | Hysteresis | (Note 6) | | 15 | | | mV | | Input Logic Voltage | Low (Regulator ON)
High (Regulator OFF) | | 1.3 | 0.7
2.0 | * | V | | Shutdown Pin Input Current | VS=2.4V
VS=26V | | 30
450 | 50
100
600
750 | * | μΑ | | Regulator Output Current in Shutdown | (Note 7) | 10
20 | 3 | | • | μΑ | | Thermal Resistance Theta Junction-Ambient θJA | TO-220-3
TO-263-3
TO-263-5
NSOIC-8
SOT-223 | | 29.4
31.4
31.2
128.4
62.3 | | *
*
* | °C/W | | | TO-252 | | 50 | | • | | **Note 1:** Output or reference voltage temperature coefficients defined as the worst case voltage change divided by the total temperature range. **Note 2:** Unless otherwise specified all limits are guaranteed for $T_j = 25$ °C, $V_{IN} = 6V$, $I_L = 1$ mA and $C_L = 2.2\mu$ F. Additional conditions for the 8-pin versions are feedback tied to 5V/3.3V tap and output tied to output sense ($V_{OUT} = 5V$) and $V_{SHUTDOWN} \le 0.8V$. **Note 3:** Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation. **Note 4:** Line regulation for the SPX2945 is tested at 150°C for $I_L = 1$ mA. For $T_J = 125$ °C, line regulation is guaranteed by design. Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured at 1V differential at very low values of programmed output voltage, the minimum input supply voltage of 2V (2.3V over temperature) must be taken into account. **Note 6:** Comparator thresholds are expressed in terms of a voltage differential at the feedback terminal below the nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain = V_{OUT}/V_{REF} = (R1 + R2)/R2. For example, at a programmed output voltage of 5V, the Error output is guaranteed to go low when the output drops by 95 mV x 5V/1.235 = 384 mV. Thresholds remain constant as a percent of V_{OUT} as V_{OUT} is varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed. Note 7: $V_{SHUTDOWN} \ge 2V$, $V_{IN} \le 26V$, $V_{OUT} = 0$, Feedback pin tied to 5V/3.3V Tap. ### **APPLICATION INFORMATION** # **External Capacitors** The stability of the SPX2945 requires a $2.2\mu F$ or greater capacitor between output and ground. Oscillation could occur without this capacitor. Most types of tantalum or aluminum electrolytic works fine here. For operations of below -25°C solid tantalum is recommended since the many aluminum types have electrolytes that freeze at about -30°C. The ESR of about 5Ω or less and resonant frequency above 500kHz are the most important parameters in the value of the capacitor. The capacitor value can be increased without limit. At lower values of output current, less output capacitance is required for stability. For the currents below 10mA the value of the capacitor can be reduced to $0.5\mu F$ and $0.15\mu F$ for 1mA. More output capacitance needed for the 8-pin version at voltages below 5V since it runs the error amplifier at lower gain. At worst case $4.7\mu F$ or greater must be used for the condition of 250mA load at 1.23V output. The SPX2945, unlike other low dropout regulators will remain stable and in regulation with no load in addition to the internal voltage divider. This feature is especially important in applications like CMOS RAM keep-alive. If there is more than 10 inches of wire between the input and the AC filter capacitor, or if a battery is used as the input, then a $0.1\mu F$ tantalum or aluminum electrolytic capacitor should be placed from the input to the ground. Instability can occur if there is stray capacitance to the SPX2945 feedback terminal (pin7). This could cause more problems when using a higher value of external resistors to set the output voltage. This problem can be fixed by adding a 100pF capacitor between output and feedback and increasing the output capacitor to at least $3.3\mu F$. # **Error Detection Comparator Output** The Comparator produces a logic low output whenever the SPX2945 output falls out of regulation by more than around 5%. This is around 60mV offset divided by the 1.235 reference voltage. This trip level remains 5% below normal regardless of the programmed output voltage of the regulator. Figure 1 shows the timing diagram depicting the ERROR signal and the regulator output voltage as the SPX2945 input is ramped up and down. The ERROR signal becomes low at around 1.3V input, and goes high around 5V input (input voltage at which $V_{OUT} = 4.75$). Since the SPX2945's dropout voltage is load dependent, the input voltage trip point (around 5V) will vary with the load current. The output voltage trip point (approx. 4.75V) does not vary with load. The error comparator has an open-collector output, which requires an external pull-up resistor. Depending on the system requirements the resistor may be returned to 5V output or other supply voltage. In determining the value of this resistor, note that the output is rated to sink $400\mu A$; this value adds to battery drain in a low battery condition. Suggested values range from 100K to $1M\Omega$. If the output is unused this resistor is not required. # Programming the Output Voltage of SPX2945 The SPX2945 may be pin-strapped for 5V or 3.3V using its internal voltage divider by tying Pin 1 (output) to Pin 2 (sense) and Pin 7 (feedback) to Pin 6 (5V/3.3V Tap). Also, it may be programmed for any output voltage between its 1.235V reference and its 20V maximum rating. As seen in Figure 2, an external pair of resistors is required. Refer to the below equation for the programming of the output voltage:: $$V_{OUT} = V_{REF} x (1 + R_{1}/R_{2}) + I_{FB}R_{1}$$ The V_{REF} is 1.235 and I_{FB} is the feedback bias current, nominally -20nÅ. The minimum recommended load current of 1 μ A forces an upper limit of 1.2 M Ω on value of R_2 . If no load is presented the I_{FB} produces an error of typically 2% in V_{OUT} , which may be eliminated at room temperature by trimming R_1 . To improve the accuracy choose the value of $R_2 = 100k$; this reduces the error by 0.17% and increases the resistor program current by $12\mu A$. Since the SPX2945 typically draws $60\,\mu A$ at no load with Pin 2 open-circuited this is a small price to pay. # **Reducing Output Noise** It may be an advantage to reduce the AC noise present at the output. One way is to reduce the regulator bandwidth by increasing the size of the output capacitor. This is the only way that noise can be reduced on the 3 lead SPX2945 but is relatively inefficient, as increasing the capacitor from $1\mu F$ to $220\mu F$ only decreases the noise from $430\mu V$ to $160\mu V$ Vrms for a 100kHz bandwidth at 5V output. Noise could also be reduced fourfold by a bypass capacitor across $R_{_{1}}$, since it reduces the high frequency gain from 4 to unity. Pick $$C_{BYPASS} \cong 1 / 2\pi R_1 \times 200 \text{ Hz}$$ or choose $0.01\mu F.$ When doing this, the output capacitor must be increased to $3.3\mu F$ to maintain stability. These changes reduce the output noise from $430\mu V$ to $100\mu V$ Vrms for a 100kHz bandwidth at 5V output. With the bypass capacitor added, noise no longer scales with output voltage so that improvements are more dramatic at higher output voltages. Figure 1. ERROR Output Timing | 3 F | Pin TO-252 | JEDEC | C TO-252 | Varia | ation AA | | |----------|--|----------|----------|--|------------|-------| | SYMBOL | Dimensions in Inches:
Controlling Dimension | | | Dimensions in Millimeters
Conversion Factor:
1 Inch = 25.40 mm | | | | | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 0.086 | - | 0.094 | 2.18 | - | 2.39 | | A1 | - | - | 0.005 | - | - | 0.13 | | b | 0.025 | - | 0.035 | 0.64 | - | 0.89 | | b2 | 0.030 | - | 0.045 | 0.76 | - | 1.14 | | b3 | 0.195 | - | 0.215 | 4.95 | - | 5.46 | | С | 0.018 | - | 0.024 | 0.46 | - | 0.61 | | c2 | 0.018 | - | 0.035 | 0.46 | - | 0.89 | | D | 0.235 | 0.240 | 0.245 | 5.97 | 6.10 | 6.22 | | D1 | 0.205 | - | - | 5.21 | - | - | | E | 0.250 | - | 0.265 | 6.35 | - | 6.73 | | E1 | 0.170 | - | - | 4.32 | - | - | | е | | .090 BSC | | 2.29 BSC | | | | Н | 0.370 | - | 0.410 | 9.4 | - | 10.41 | | L | 0.055 | 0.060 | 0.070 | 1.4 | 1.52 | 1.78 | | L1 | | .108 REF | | 2.74 REF | | | | L2 | | .020 BSC | | | 0.51 BSC | | | L3 | 0.035 | - | 0.050 | 0.89 | - | 1.27 | | L4 | - | - | 0.040 | - | - | 1.02 | | L5 | 0.045 | - | 0.060 | 1.14 | - | 1.52 | | Ø | 0° | - | 10° | 0° | - | 10° | | ø1 | 0° | - | 15° | 0° | - | 15° | | SIPEX PI | kg Signoff D | ate/Rev: | | JL | Aug4-05/Re | v A | | 3 Pin 1 | 3 Pin TO-220 JEDEC TO-220 Variation AB | | | | | | |---------|--|----------|-------|-------|------------------------------------|-------| | SYMBOL | Dimensions in Inches:
Controlling Dimension | | | Conv | ons in M
version F
ch = 25.4 | | | | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 0.140 | - | 0.190 | 3.56 | - | 4.83 | | A1 | 0.020 | - | 0.055 | 0.51 | - | 1.27 | | A2 | 0.080 | - | 0.115 | 2.03 | - | 2.79 | | b | 0.015 | 0.027 | 0.040 | 0.25 | 0.51 | 1.02 | | b2 | 0.045 | 0.057 | 0.070 | 1.14 | 1.45 | 1.78 | | С | 0.014 | - | 0.024 | 0.25 | - | 0.51 | | D | 0.560 | - | 0.650 | 14.22 | - | 16.51 | | D1 | 0.330 | - | 0.355 | 8.38 | - | 8.89 | | D2 | 0.480 | - | 0.507 | 12.19 | - | 12.70 | | E | 0.380 | - | 0.420 | 9.65 | - | 10.67 | | E1 | 0.270 | - | 0.350 | 6.86 | - | 8.89 | | E2 | - | - | 0.030 | - | - | 0.76 | | е | | .100 BSC | | | 2.54 BS0 | 0 | | e1 | | .200 BSC | | | 5.08 BS0 | 0 | | H1 | 0.230 | - | 0.270 | 5.84 | - | 6.86 | | L | 0.500 | - | 0.580 | 12.70 | - | 14.73 | | L1 | - | - | 0.250 | - | - | 6.35 | | ΦР | 0.139 | - | 0.161 | 3.30 | - | 4.06 | | Q | 0.100 | - | 0.135 | 2.54 | - | 3.30 | | SIPEX F | SIPEX Pkg Signoff Date/Rev: JL Aug4-05 / Rev A | | | | | | | 5 Pin TO-263 JEDEC TO-263 Variation BA | | | | | | | |---|----------|---------------------|---------|--|----------|-------| | | Contro | Inches
Iling Din | nension | Millimeters
Conversion Factor:
1 Inch = 25.40 mm | | | | SYMBOL | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 0.160 | - | 0.190 | 4.06 | - | 4.83 | | A1 | 0.000 | 1 | 0.010 | 0.00 | - | 0.25 | | b | 0.020 | ı | 0.039 | 0.51 | - | 0.99 | | С | 0.015 | - | 0.029 | 0.38 | - | 0.74 | | c2 | 0.045 | - | 0.065 | 11.43 | - | 5.84 | | D | 0.330 | - | 0.380 | 8.38 | - | 9.65 | | D1 | 0.270 | - | - | 6.86 | - | - | | E | 0.380 | - | 0.420 | 9.65 | - | 10.67 | | E1 | 0.245 | - | - | 6.22 | - | - | | е | | .067 BS | O | 17 | 7.02 BSC | ; | | Н | 0.575 | - | 0.625 | 14.61 | - | 15.88 | | L | 0.070 | 1 | 0.110 | 1.78 | - | 2.79 | | L1 | - | - | 0.066 | - | - | 1.68 | | L3 | .010 BSC | | | 2 | .54 BSC | | | 0 | 0° | - | 8° | 0° | - | 8° | | SIPEX Pkg Signoff Date/Rev: JL Jan18-06/Rev A | | | | | | | | | 3 Pin TO- | 263 JEI | 3 Var | iation AA | | | |--------|---------------------------------|---------|-------|--|---------|---------| | SYMBOL | Inches
Controlling Dimension | | | Millimeters
Conversion Factor:
1 Inch = 25.40 mm | | | | | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 0.160 | - | 0.190 | 4.06 | - | 4.83 | | A1 | 0.000 | - | 0.010 | 0.00 | - | 0.25 | | b | 0.020 | - | 0.039 | 0.51 | - | 0.99 | | b2 | 0.045 | - | 0.070 | 1.14 | - | 1.78 | | С | 0.015 | - | 0.029 | 0.38 | - | 0.74 | | c2 | 0.045 | - | 0.065 | 1.14 | - | 1.65 | | D | 0.330 | - | 0.380 | 8.38 | - | 9.65 | | D1 | 0.270 | - | - | 6.86 | - | - | | E | 0.380 | - | 0.420 | 9.65 | - | 10.67 | | E1 | 0.245 | - | - | 6.22 | - | - | | е | .* | 100 BSC | | | 2.54 BS | С | | Н | 0.575 | - | 0.625 | 14.61 | - | 15.88 | | L | 0.070 | - | 0.110 | 1.78 | - | 2.79 | | L1 | - | - | 0.066 | - | - | 1.68 | | L3 | .010 BSC | | | | 0.25 BS | С | | 0 | 0° | - | 8° | 0° | - | 8° | | SIPEX | Pkg Signoff | Date/Re | ev: | JL | Aug5-05 | / Rev A | FRONT VIEW | 3 Pin SOT-223 JEDEC TO-261 Variation AA | | | | | | | |---|--|--------------------------|-------|---|------------|----------| | | Cont | Millimeters rolling Dime | nsion | Inches
Conversion Factor:
1 Inch = 25.40 mm | | | | SYMBOL | MIN | NOM | MAX | MIN | NOM | MAX | | A | - | - | 1.80 | - | - | 0.071 | | A1 | 0.02 | - | 0.10 | 0.001 | - | 0.004 | | A2 | 1.50 | 1.60 | 1.70 | 0.060 | 0.063 | 0.067 | | b | 0.66 | 0.76 | 0.84 | 0.026 | 0.030 | 0.033 | | b2 | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 | | С | 0.23 | 0.30 | 0.35 | 0.010 | 0.012 | 0.014 | | D | 6.30 | 6.50 | 6.70 | 0.248 | 0.256 | 0.264 | | E | 6.70 | 7.00 | 7.30 | 0.264 | 0.276 | 0.287 | | E1 | 3.30 | 3.50 | 3.70 | 0.130 | 0.138 | 0.146 | | е | | 2.30 BASIC | | (| 0.091 BASI | | | e1 | | 4.60 BASIC | | (| 0.182 BASI | <u> </u> | | L | 0.75 | - | - | 0.030 | - | - | | L2 | | 0.25 BASIC | | (| 0.010 BASI | <u> </u> | | Ø | 0° | - | 10° | 0° | - | 10° | | SIPEX | SIPEX Pkg Signoff Date/Rev: JL Aug8-05/Rev A | | | | | | | 8 Pin NSOIC | | | JEDEC MS-012 | | Variation AA | | |-------------|---|-----------|--------------|---|----------------|-------| | SYMBOL | Dimensions in Millimeters:
Controlling Dimension | | | Dimensions in Inches
Conversion Factor:
1 Inch = 25.40 mm | | | | | MIN | NOM | MAX | MIN | NOM | MAX | | A | 1.35 | - | 1.75 | 0.053 | - | 0.069 | | A1 | 0.10 | - | 0.25 | 0.004 | - | 0.010 | | A2 | 1.25 | - | 1.65 | 0.049 | - | 0.065 | | b | 0.31 | - | 0.51 | 0.012 | - | 0.020 | | С | 0.17 | - | 0.25 | 0.007 | - | 0.010 | | E | 6.00 BSC | | | | 0.236 BSC | | | E1 | | 3.90 BSC | | 0.154 BSC | | | | е | | 1.27 BSC | | 0.050 BSC | | | | h | 0.25 | | 0.50 | 0.010 | - | 0.020 | | L | 0.40 | - | 1.27 | 0.016 | 1 | 0.050 | | L1 | 1.04 REF | | | | 0.041 REF | | | L2 | | 0.25 BSC | | | 0.010 BSC | | | R | 0.07 | - | - | 0.003 | 1 | - | | R1 | 0.07 | - | - | 0.003 | ı | - | | Ø | 00 | - | 80 | 00 | 1 | 80 | | ø1 | 50 | - | 15º | 50 | 1 | 15º | | ø2 | 00 | - | - | 00 | - | - | | D | 4.90 BSC 0.193 BSC | | | | | | | SIPEX I | kg Signoff | Date/Rev: | | J | L Aug16-05 / F | Rev A | | Ordering No. | Accuracy | Output Voltage | Packages | |------------------|----------|----------------|---------------| | SPX2945M3-3-3 | 1% | 3.3V | 3-Pin SOT-223 | | SPX2945M3-3-3/TR | 1% | 3.3V | 3-Pin SOT-223 | | SPX2945M3-5-0 | 1% | 5.0V | 3-Pin SOT-223 | | SPX2945M3-5-0/TR | 1% | 5.0V | 3-Pin SOT-223 | | SPX2945S-3-3 | 1% | 3.3V | 8-Pin NSOIC | | SPX2945S-3-3/TR | 1% | 3.3V | 8-Pin NSOIC | | SPX2945S-5-0 | 1% | 5.0V | 8-Pin NSOIC | | SPX2945S-5-0/TR | 1% | 5.0V | 8-Pin NSOIC | | SPX2945R-3-3 | 1% | 3.3V | 3-Pin TO-252 | | SPX2945R-3-3/TR | 1% | 3.3V | 3-Pin TO-252 | | SPX2945R-5-0 | 1% | 5.0V | 3-Pin TO-252 | | SPX2945R-5-0/TR | 1% | 5.0V | 3-Pin TO-252 | | SPX2945T-3-3 | 1% | 3.3V | 3-Pin TO-263 | | SPX2945T-3-3/TR | 1% | 3.3V | 3-Pin TO-263 | | SPX2945T-5-0 | 1% | 5.0V | 3-Pin TO-263 | | SPX2945T-5-0/TR | 1% | 5.0V | 3-Pin TO-263 | | SPX2945T5-3-3 | 1% | 3.3V | 5-Pin TO-263 | | SPX2945T5-3-3/TR | 1% | 3.3V | 5-Pin TO-263 | | SPX2945T5-5-0 | 1% | 5.0V | 5-Pin TO-263 | | SPX2945T5-5-0/TR | 1% | 5.0V | 5-Pin TO-263 | | SPX2945U-3-3 | 1% | 3.3V | 3-Pin TO-220 | | SPX2945U-5-0 | 1% | 5.0V | 3-Pin TO-220 | Available in lead free packaging. To order add "-L" suffix to part number. Example: SPX2954S-5-0/TR = standard; SPX2954S-L-5-0/TR = lead free /TR = Tape and Reel Pack quantity is 500 for TO-263, 2,000 for TO-252, and 2,500 for SOT223 or NSOIC. **Sipex Corporation** Headquarters and Sales Office 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600 Solved By Sipex $_{^{\text{\tiny TM}}}$ Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Date: 3/14/06