

Pinout Table

Pin Name	Type	Pin #	Descriptions			
SRC_DIV#	Input	1	3.3V LVTTL input for selecting input frequency divide by 2, active LOW.			
SRC & SRC#	Input	4, 5	0.7V Differential SRC input from PI6C410 clock synthesizer			
OE [0:7]	Input	6, 7, 14, 15, 35, 36, 43, 44	3.3V LVTTL input for enabling outputs, active HIGH.			
	_		3.3V LVTTL input for inverting the OE, SRC_STOP# and PWRDWN# pins.			
OE_INV	Input	40	When 0 = same stage			
			When 1 = OE[0:7], SRC_STOP#, PWRDWN# inverted.			
OUT[0:7] & OUT[0:7]#	Output	8, 9, 12, 13, 16 17, 20, 21, 29, 30, 33, 34, 37, 38, 41, 42	0.7V Differential outputs			
PLL/BYPASS#	Input	22	3.3V LVTTL input for selecting fan-out of PLL operation.			
SCLK	Input	23	SMBus compatible SCLOCK input			
SDA	I/O	24	SMBus compatible SDATA			
$I_{_{ m REF}}$	Input	46	External resistor connection to set the differential output current			
SRC_STOP#	Input	27	3.3V LVTTL input for SRC stop, active LOW			
PLL_BW#	Input	28	3.3V LVTTL input for selecting the PLL bandwidth			
PWRDWN#	Input	26	3.3V LVTTL input for Power Down operation, active LOW			
LOCK	Output	45	3.3V LVTTL output, transition high when PLL lock is achieved (Latched output)			
V _{DD}	Power	2, 11, 19, 31, 39	3.3V Power Supply for Outputs			
V _{ss}	Ground	3, 10, 18, 25, 32	Ground for Outputs			
$ m V_{SS_A}$	Ground	47	Ground for PLL			
$V_{_{\mathrm{DD_A}}}$	Power	48	3.3V Power Supply for PLL			

Serial Data Interface (SMBus)

This part is a slave only SMBus device that supports indexed block read and indexed block write protocol using a single 7-bit address and read/write bit as shown below.

Address assignment

A6	A5	A4	A3	A2	A1	A0	W/R
1	1	0	1	1	1	0	0/1

Data Write Protocol(1)

1 bit	7 bits	1	1	8 bits	1	8 bits	1	8 bits	1	8 bits	1	1 bit
Start bit	Slave Addr	W	Ack	Register offset	Ack	Byte Count = N	Ack	Data Byte Offset	Ack	Data Byte N - 1	Ack	Stop bit

Note:

^{1.} Register offset for indicating the starting register for indexed block write and indexed block read. Byte Count in write mode cannot be 0.

Data Read Protocol(2)

	1 bit	7 bits	1	1	8 bits	1	1	7 bits	1	1	8 bits	1	8 bits	1	8 bits	1	1 bit
,	Start bit	Slave Addr	W	Ack	Register offset	Ack	Repeat Start	Slave Addr	R	Ack	Byte Count = N	Ack	Data Byte Offset	Ack	Data Byte N - 1	Not Ack	Stop bit

Note:

Data Byte 0: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Pin
	SRC_DIV#				
0	0 = Divide by 2	RW	1 = x1	OUT[0:7], OUT[0:7]#	NA
	1 = Normal				
	PLL/BYPASS#				
1	0 = Fanout	RW	1 = PLL	OUT[0:7], OUT[0:7]#	NA
	1 = PLL				
	PLL Bandwidth				
2	0 = HIGH Bandwidth,	RW	1 = Low	OUT[0:7], OUT[0:7]#	NA
	1 = LOW Bandwidth				
3	RESERVED				
4	RESERVED				
5	RESERVED				
	SRC_STOP#				
6	0 = Driven when stopped	RW	0 = Driven when stopped	OUT[0:7], OUT[0:7]#	
	1 = Tristate				
	PWRDWN#				
7	0 = Driven when stopped	RW	0 = Driven when stopped	OUT[0:7], OUT[0:7]#	NA
	1 = Tristate				

^{1.} Register offset for indicating the starting register for indexed block write and indexed block read.

Data Byte 1: Control Register

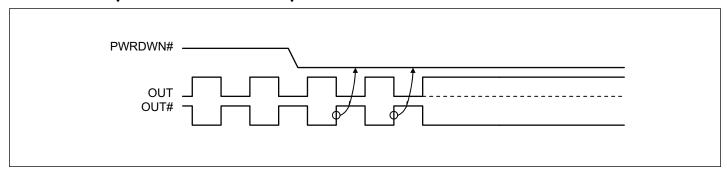
Bit	Descriptions	Type	Power Up Condition	Output(s) Affected	Pin
0		RW	1 = Enabled	OUT0, OUT0#	NA
1		RW	1 = Enabled	OUT1, OUT1#	NA
2	OUTPUTS enable 1 = Enabled 0 = Disabled	RW	1 = Enabled	OUT2, OUT2#	NA
3		RW	1 = Enabled	OUT3, OUT3#	NA
4		RW	1 = Enabled	OUT4, OUT4#	NA
5		RW	1 = Enabled	OUT5, OUT5#	NA
6		RW	1 = Enabled	OUT6, OUT6#	NA
7		RW	1 = Enabled	OUT7, OUT7#	NA

Data Byte 2: Control Register

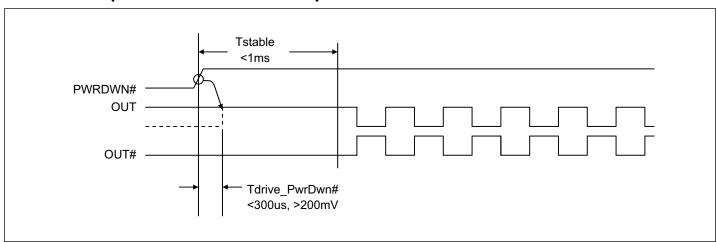
Bit	Descriptions	Type	Power Up Condition	Output(s) Affected	Pin
0		RW	0 = Free running	OUT0, OUT0#	NA
1		RW	0 = Free running	OUT1, OUT1#	NA
2	Allow control of OUTPUTS with	RW	0 = Free running	OUT2, OUT2#	NA
3	assertion of SRC_STOP#	RW	0 = Free running	OUT3, OUT3#	NA
4	0 = Free running	RW	0 = Free running	OUT4, OUT4#	NA
5	1 = Stopped with SRC_Stop#	RW	0 = Free running	OUT5, OUT5#	NA
6		RW	0 = Free running	OUT6, OUT6#	NA
7		RW	0 = Free running	OUT7, OUT7#	NA

Data Byte 3: Control Register

Bit	Descriptions	Type	Power Up Condition	Output(s) Affected	Pin
0		RW			
1		RW			
2	RESERVED	RW			
3		RW			
4		RW			
5		RW			
6		RW			
7		RW			


Data Byte 4: Pericom ID Register

Bit	Descriptions	Type	Power Up Condition	Output(s) Affected	Pin
0		R	0	NA	NA
1		R	0	NA	NA
2		R	0	NA	NA
3	Pericom ID	R	0	NA	NA
4		R	0	NA	NA
5		R	1	NA	NA
6		R	0	NA	NA
7		R	0	NA	NA


Functionality

PWRDWN#	OUT	OUT#	SRC_Stop#	OUT	OUT#
1	Normal	Normal	1	Normal	Normal
0	$I_{REF} \times 2$ or Float	LOW	0	$I_{REF} \times 6$ or Float	LOW

Power Down (PWRDWN# assertion)

Power Down (PWRDWN# De-assertion)

Current-mode output buffer characteristics of OUT[0:7], OUT[0:7]#

Differential Clock Buffer Characteristics

Symbol	Minimum	Maximum
R _o	3000Ω	N/A
R _{os}	unspecified	unspecified
V _{out}	N/A	850mV

Current Accuracy

Symbol	Conditions	Configuration	Load	Min.	Max.
I_{OUT}	$V_{DD} = 3.30 \pm 5\%$	$R_{REF} = 475\Omega \ 1\%$ $I_{REF} = 2.32 \text{mA}$	Nominal test load for given configuration	-12% I _{nominal}	+12% I _{NOMINAL}

Note:

1. I_{NOMINAL} refers to the expected current based on the configuration of the device.

Differential Clock Output Current

Board Target Trace/Term Z	Reference R, Iref = $V_{DD}/(3xRr)$	Output Current	V _{он} @ Z
100Ω	$R_{REF} = 475\Omega \ 1\%,$	I 6 I	0.71/ 0.50
(100Ω differential ≈ 15% coupling ratio)	$I_{REE} = 2.32 \text{mA}$	$I_{OH} = 6 \times I_{REF}$	0.7V @ 50

14-0189 6 www.pericom.com P-0.1 03/27/13

Absolute Maximum Ratings(1) (Over operating free-air temperature range)

Symbol	Parameters	Min.	Max.	Units
$V_{_{\mathrm{DD_A}}}$	3.3V Core Supply Voltage	-0.5	4.6	
V _{DD}	3.3V I/O Supply Voltage	-0.5	4.6	V
$V_{_{\mathrm{IH}}}$	Input HIGH Voltage		4.6	•
$V_{_{\mathrm{IL}}}$	Input LOW Voltage	-0.5		
Ts	Storage Temperature	-65	150	°C
V _{ESD}	ESD Protection	2000		V

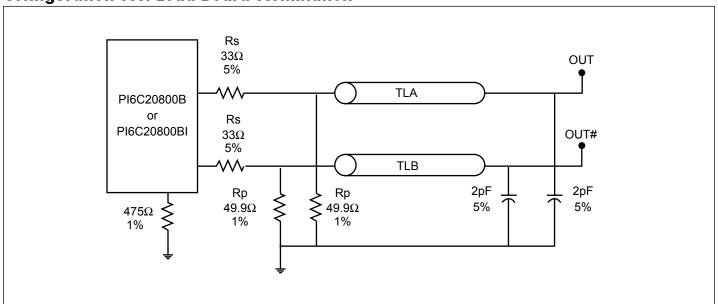
Note

DC Electrical Characteristics (VDD = 3.3±5%, VDD_A = 3.3±5%)

Symbol	Parameters	Condition	Min.	Max.	Units	
$V_{_{\mathrm{DD_A}}}$	3.3V Core Supply Voltage		3.135	3.465		
V _{DD}	3.3V I/O Supply Voltage		3.135	3.465	V	
V _{IH}	3.3V Input HIGH Voltage		2.0	$V_{DD} + 0.3$	V	
$V_{_{ m IL}}$	3.3V Input LOW Voltage		$V_{SS} - 0.3$	0.8		
$I_{_{IK}}$	Input Leakage Current	$0 < V_{IN} < V_{DD}$	-5	+5	μΑ	
V _{OH}	3.3V Output HIGH Voltage	$I_{OH} = -1 \text{mA}$	2.4		V	
V _{OL}	3.3V Output LOW Voltage	$I_{OL} = 1 \text{mA}$		0.4	V	
		$I_{OH} = 6 \times I_{REF},$	12.2		A	
I_{OH}	Output HIGH Current	$I_{REF} = 2.32 \text{mA}$		15.6	mA	
$C_{_{\mathrm{IN}}}$	Logic Input Pin Capacitance		1.5	5	ъE	
C _{OUT}	Output Pin Capacitance			6	pF	
L_{PIN}	Pin Inductance			7	nН	
$I_{_{ m DD}}$	Power Supply Current	$V_{\rm DD} = 3.465 \text{V}, \ F_{\rm CPU} = 100 \text{MHz}$		250		
I _{ss}	Power Down Current	22 3.0		80	mA	
I _{ss}	Power Down Current	Tristate outputs		12		
т	Ambient Temperature	Commercial (PI6C20800B)	0	70	°C	
T _A	Ambient Temperature	Industrial (PI6C20800BI)	-40	85		

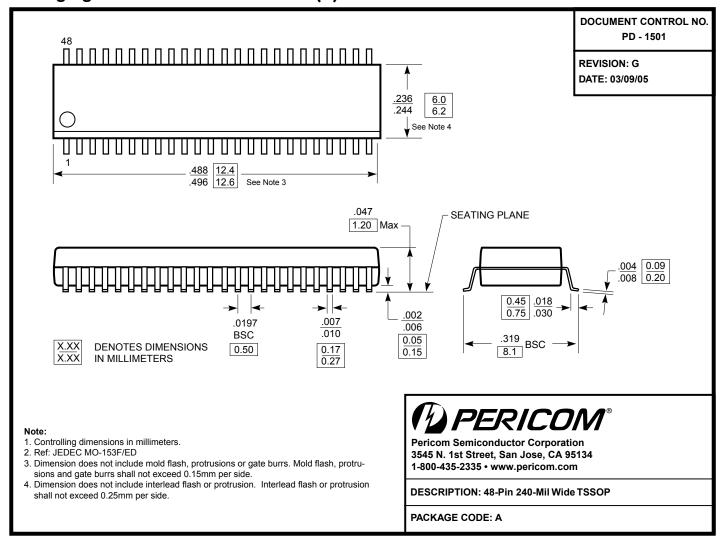
^{1.} Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

AC Switching Characteristics (1,2,3) $(V_{DD} = 3.3 \pm 5\%, V_{DD_A} = 3.3 \pm 5\%)$


Symbol	Parameters			Min	Тур.	Max.	Units	Notes
Г	SRC/SRC# Input Freq	SRC/SRC# Input Frequency PLL Mode				105	MHz	6
F_{in}	SRC/SRC# Input Freq	/SRC# Input Frequency Bypass Mode				400	MHz	6
T_{rise} / T_{fall}	Rise and Fall Time (measured between 0.175V to 0.525V)			175		700	ps	2
$\Delta T_{rise} / \Delta T_{fall}$	Rise and Fall Time Va	riation				125		2
	Input to Output	PLL Mode	PI6C20800B -2	-250		250		
т		PLL Mode	PI6C20800BI	-450		450	ps	
T_{pd}	Propagation Delay	Drymana Mada	PI6C20800B	-7.5		7.5	ns	
		Bypass Mode	PI6C20800BI	-8		8		
T_{skew}	Output-to-Output Sko	Output-to-Output Skew (PI6C20800B)				50		3
	Output-to-Output Skew (PI6C20800BI)					65	ps	3
V_{HIGH}	Voltage HIGH (Measured at 100MHz @ 3.3V) Max. Voltage Min. Voltage			600		900		2
V _{ovs}						1150	mV	
$V_{\scriptscriptstyle UDS}$				-300				
V _{LOW}	Voltage LOW			-150		+150		2
V _{cross}	Absolute crossing poing voltages			250		550		2
$\Delta V_{ m cross}$	Total Variation of V _{cross} over all edges					140		2
T_{DC}	Duty Cycle (Measured at 100 MHz)			45		55	%	3
T _{jcyc-cyc}	Jitter, Cycle-to-cycle (PLL Mode, Measurement for differential waveform)					60	ps	4
	Jitter, Cycle-to-cycle (Jitter, Cycle-to-cycle (BYPASS mode as additive jitter)						
J_{add}	Additive RMS phase j	tter for PCIe 2.0		<0		1	ps	5
$ m J_{add}$		PLL L-BW @ 2M			1.115	3		
	PLL L-BW @ 2M & 4M 1 st H3 PLL L-BW @ 2M & 5M 1 st H3 PLL L-BW @ 2M & 4M 1 st H3 PLL L-BW @ 2M & 4M 1 st H3 PLL L-BW @ 2M & 5M 1 st H3			1.211	3			
				1.116	3			
			M & 4M 1st H3		1.425	3	J	
				0.646	1	ps _		
	PLL H-BW @ 2M & 4M 1st H3 PLL H-BW @ 2M & 5M 1st H3				0.644		1	
					0.646		1	
	PLL H-BW @ 2M & 4M 1st H3				0.579	1		

Notes:

- 1. Test configuration is $R_{_S}$ = 33.2 $\!\Omega,$ Rp = 49.9 $\!\Omega,$ and 2 pF.
- 2. Measurement taken from Single Ended waveform.
- 3. Measurement taken from Differential waveform.
- 4. Measured using M1 timing analyzer from Amherst.
- 5. Additive jitter is calculated from input and output RMS phase jitter by using PCIe 2.0 filter. $(J_{add} = \sqrt{(output\ jitter)^2 (input\ jitter)^2})$
- 6. -0.5% downnspread input



Configuration Test Load Board Termination

Packaging Mechanical: 48-Pin TSSOP (A)

Ordering Information(1,2)

Ordering Code	Package Code	Package Description
PI6C20800BAE	AE	48-pin, 240-mil wide, TSSOP, Pb-Free and Green
PI6C20800BIAE	AE	48-pin, 240-mil wide, TSSOP, Pb-Free and Green (Industrial)

10

Notes:

Downloaded from Arrow.com.

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336

P-0.1