ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted) | | Characteristic | Symbol | Min | Тур | Max | Unit | | |---|--|------------------|-------------|----------------------|---------------|------|--| | OFF CHARACTERISTICS | S (Note 2) | | 1 | , ,, | | J | | | Collector–Emitter Sustain
(I _C = 10 mA, I _B = 0) | V _{CEO(sus)} | 400 | - | - | Vdc | | | | Collector Cutoff Current
(V _{CEV} = Rated Value,
(V _{CEV} = Rated Value, | I _{CEV} | _
_ | -
- | 1
5 | mAdc | | | | Emitter Cutoff Current
(V _{EB} = 9 Vdc, I _C = 0) | I _{EBO} | - | - | 1 | mAdc | | | | SECOND BREAKDOWN | | • | | | | | | | Second Breakdown Colle | ector Current with base forward biased | I _{S/b} | - | 5 | See Figure 11 | | | | Clamped Inductive SOA | RBSOA | _ | S | See Figure | 12 | | | | ON CHARACTERISTICS | (Note 2) | • | • | • | | | | | DC Current Gain
(I _C = 1 Adc, V _{CE} = 5 V
(I _C = 2 Adc, V _{CE} = 5 V | h _{FE} | 10
8 | _
_ | 60
40 | _ | | | | Collector–Emitter Satura
($I_C = 1$ Adc, $I_B = 0.2$ Add, $I_C = 2$ Adc, $I_B = 0.5$ Add, $I_C = 4$ Adc, $I_B = 1$ Add, $I_C = 2$ Adc, $I_B = 0.5$ Add, $I_C = 2$ Adc, $I_C = 0.5$ Add, $ | V _{CE(sat)} | -
-
- | | 0.5
0.6
1
1 | Vdc | | | | Base-Emitter Saturation
($I_C = 1 \text{ Adc}$, $I_B = 0.2 \text{ Add}$)
($I_C = 2 \text{ Adc}$, $I_B = 0.5 \text{ Add}$)
($I_C = 2 \text{ Adc}$, $I_B = 0.5 \text{ Add}$) | V _{BE(sat)} | -
-
- | -
-
- | 1.2
1.6
1.5 | Vdc | | | | DYNAMIC CHARACTER | ISTICS | - 1 | | | | • | | | Current-Gain - Bandwid
(I _C = 500 mAdc, V _{CE} = | f _T | 4 | - | _ | MHz | | | | Output Capacitance
(V _{CB} = 10 Vdc, I _E = 0, | C _{ob} | - | 65 | - | pF | | | | SWITCHING CHARACTE | ERISTICS | l | I. | ·L | ı | l | | | Resistive Load (Table 2 |) | | | | | | | | Delay Time | | t _d | _ | 0.025 | 0.1 | μs | | | Rise Time | (V _{CC} = 125 Vdc, I _C = 2 A, | t _r | _ | 0.3 | 0.7 | μs | | | Storage Time | - I _{B1} = I _{B2} = 0.4 A, t _p = 25 μs,
 Duty Cycle ≤ 1%) | t _s | _ | 1.7 | 4 | μs | | | Fall Time | | t _f | _ | 0.4 | 0.9 | μs | | | Inductive Load, Clampo | ed (Table 2, Figure 13) | I | l | 1 | 1 | 1 | | | Voltage Storage Time | | t _{sv} | _ | 0.9 | 4 | μs | | | Crossover Time | (I _C = 2 A, V _{clamp} = 300 Vdc, | t _c | - | 0.32 | 0.9 | μs | | | Fall Time | $I_{B1} = 0.4 \text{ A}, V_{BE(off)} = 5 \text{ Vdc}, T_{C} = 100^{\circ}\text{C})$ | t _{fi} | _ | 0.16 | _ | μs | | | | 1 | i | ı | 1 | 1 | 1 | | ^{2.} Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%. Figure 1. DC Current Gain Figure 2. Collector Saturation Region Figure 3. Base-Emitter Voltage Figure 4. Collector-Emitter Saturation Voltage Figure 5. Collector Cutoff Region Figure 6. Capacitance Figure 7. Inductive Switching Measurements **Table 1. Typical Inductive Switching Performance** | I _C | T _C | t _{sv} | t _{rv} | t _{fi} | t _{ti} | t _c | |----------------|----------------|-----------------|-----------------|-----------------|-----------------|----------------| | AMP | °C | ns | ns | ns | ns | ns | | 2 | 25 | 600 | 70 | 100 | 80 | 180 | | | 100 | 900 | 110 | 240 | 130 | 320 | | 3 | 25 | 650 | 60 | 140 | 60 | 200 | | | 100 | 950 | 100 | 330 | 100 | 350 | | 4 | 25 | 550 | 70 | 160 | 100 | 220 | | | 100 | 850 | 110 | 350 | 160 | 390 | NOTE: All Data recorded in the inductive Switching Circuit In Table 2. ### **SWITCHING TIMES NOTE** In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. t_{sv} = Voltage Storage Time, 90% I_{B1} to 10% V_{clamp} t_{rv} = Voltage Rise Time, 10-90% V_{clamp} t_{fi} = Current Fall Time, 90-10% I_C t_{ti} = Current Tail, 10-2% I_C t_c = Crossover Time, 10% V_{clamp} to 10% I_C An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222: $$P_{SWT} = 1/2 V_{CC}I_{C}(t_{c})f$$ In general, $t_{rv} + t_{fi} \approx t_c$. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25° C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (t_c and t_{sv}) which are guaranteed at 100° C. ## **RESISTIVE SWITCHING PERFORMANCE** Figure 8. Turn-On Time Figure 9. Turn-Off Time **Table 2. Test Conditions for Dynamic Performance** Figure 10. Typical Thermal Response $[Z_{\theta JC}(t)]$ ### SAFE OPERATING AREA INFORMATION The Safe Operating Area Figures 11 and 12 are specified ratings for these devices under the test conditions shown. Figure 11. Forward Bias Safe Operating Area # FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 11 is based on $T_C = 25^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25^{\circ}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 11 may be found at any case temperature by using the appropriate curve on Figure 13. $T_{J(pk)}$ may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. Figure 12. Reverse Bias Switching Safe Operating Area #### **REVERSE BIAS** For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current conditions during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 12 gives the complete RBSOA characteristics. Figure 13. Forward Bias Power Derating SWITCHMODE is a trademark of Semiconductor Components Industries. LLC. DATE 05 NOV 2019 #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009. - 2. CONTROLLING DIMENSION: INCHES - 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. #### 4. MAX WIDTH FOR F102 DEVICE = 1.35MM | | INCH | IES | MILLIMI | ETERS | |-----|-------|-------|---------|-------| | DIM | MIN. | MAX. | MIN. | MAX. | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | В | 0.380 | 0.415 | 9.66 | 10.53 | | С | 0.160 | 0.190 | 4.07 | 4.83 | | D | 0.025 | 0.038 | 0.64 | 0.96 | | F | 0.142 | 0.161 | 3.60 | 4.09 | | G | 0.095 | 0.105 | 2.42 | 2.66 | | Н | 0.110 | 0.161 | 2.80 | 4.10 | | J | 0.014 | 0.024 | 0.36 | 0.61 | | К | 0.500 | 0.562 | 12.70 | 14.27 | | L | 0.045 | 0.060 | 1.15 | 1.52 | | N | 0.190 | 0.210 | 4.83 | 5.33 | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | R | 0.080 | 0.110 | 2.04 | 2.79 | | S | 0.045 | 0.055 | 1.15 | 1.41 | | Т | 0.235 | 0.255 | 5.97 | 6.47 | | U | 0.000 | 0.050 | 0.00 | 1.27 | | V | 0.045 | | 1.15 | | | Z | | 0.080 | | 2.04 | | STYLE 1: | | STYLE 2: | | STYLE 3: | | STYLE 4: | | |----------|-----------|-----------|-----------|-----------|---------|----------|--------------------| | PIN 1. | BASE | PIN 1. | BASE | PIN 1. | CATHODE | PIN 1. | MAIN TERMINAL 1 | | 2. | COLLECTOR | 2. | EMITTER | 2. | ANODE | 2. | MAIN TERMINAL 2 | | 3. | EMITTER | 3. | COLLECTOR | 3. | GATE | 3. | GATE | | 4. | COLLECTOR | 4. | EMITTER | 4. | ANODE | 4. | MAIN TERMINAL 2 | | STYLE 5: | | STYLE 6: | | STYLE 7: | | STYLE 8: | | | PIN 1. | GATE | PIN 1. | ANODE | PIN 1. | CATHODE | PIN 1. | CATHODE | | 2. | DRAIN | 2. | CATHODE | 2. | ANODE | 2. | ANODE | | 3. | SOURCE | 3. | ANODE | 3. | CATHODE | 3. | EXTERNAL TRIP/DELA | | 4. | DRAIN | 4. | CATHODE | 4. | ANODE | 4. | ANODE | | STYLE 9: | | STYLE 10: | | STYLE 11: | | STYLE 12 | : | | PIN 1. | GATE | PIN 1. | GATE | PIN 1. | DRAIN | PIN 1. | MAIN TERMINAL 1 | | 2. | COLLECTOR | 2. | SOURCE | 2. | SOURCE | 2. | MAIN TERMINAL 2 | | 3. | EMITTER | 3. | DRAIN | 3. | GATE | 3. | GATE | | 4. | COLLECTOR | 4. | SOURCE | 4. | SOURCE | 4. | NOT CONNECTED | | DOCUMENT NUMBER: | 98ASB42148B | Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-------------|--|-------------|--|--| | DESCRIPTION: | TO-220 | | PAGE 1 OF 1 | | | ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and seven any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages ## PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative \Diamond