

32-bit Arm® Cortex®-M3 FM3 Microcontroller

The MB9B300B Series are a highly integrated 32-bit microcontroller that target for high-performance and cost-sensitive embedded control applications.

The MB9B300B Series are based on the Arm[®] Cortex[®]-M3 Processor and on-chip Flash memory and SRAM, and peripheral functions, including Motor Control Timers, ADCs and Communication Interfaces (USB, UART, CSIO, I²C, LIN).

The products which are described in this datasheet are placed into TYPE0 product categories in FM3 Family Peripheral Manual.

Features

32-bit Arm® Cortex®-M3 Core

- Processor version: r2p0
- ■Up to 80 MHz Frequency Operation
- Memory Protection Unit (MPU): improve the reliability of an embedded system
- Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 48 peripheral interrupts and 16 priority levels
- ■24-bit System timer (Sys Tick): System timer for OS task management

On-chip Memories

[Flash memory]

- Up to 512 KB
- Read cycle: 0 wait-cycle @ up to 60 MHz, 2 wait-cycle^[1] above
 - [1]: Instruction pre-fetch buffer is included. So when CPU access continuously, it becomes 0 wait-cycle
- Security function for code protection

[SRAM]

This series contain a total of up to 64 KB on-chip SRAM. This is composed of two independent SRAM (SRAM0, SRAM1). SRAM0 is connected to I-code bus and D-code bus of Cortex-M3 core. SRAM1 is connected to System bus.

■SRAM0: Up to 32 KB ■SRAM1: Up to 32 KB

USB Interface

The USB interface is composed of Device and Host. PLL for USB is built-in, USB clock can be generated by multiplication of Main clock.

[USB Device]

- ■USB2.0 Full-Speed supported
- ■Max 6 EndPoint supported
 - □ EndPoint 0 is control transfer
 - □ EndPoint 1 5 can be selected bulk-transfer or interrupt-transfer
 - □ Endpoint1-5 is comprised Double Buffers.

[USB host]

- ■USB2.0 Full/Low-speed supported
- Bulk-transfer and interrupt-transfer and Isochronous-transfer support
- ■USB Device connected/dis-connected automatically detect
- ■IN/OUT token handshake packet automatically
- ■Max 256-byte packet-length supported
- ■Wake-up function supported

Multi-function Serial Interface (Max. 8 channels)

- ■4 channels with 16steps × 9bit FIFO (ch.4-ch.7), 4 channels without FIFO (ch.0-ch.3)
- Operation mode is selectable from the followings for each channel.
 - □ UART
 - □ CSIO
- □ I²C

[UART]

- ■Full-duplex double buffer
- Selection with or without parity supported
- ■Built-in dedicated baud rate generator
- ■External clock available as a serial clock
- Hardware Flow control: Automatically control the transmission by CTS/RTS (only ch.4)
- Various error detect functions available (parity errors, framing errors, and overrun errors)

[CSIO]

- ■Full-duplex double buffer
- ■Built-in dedicated baud rate generator
- ■Overrun error detect function available

[LIN]

- ■LIN protocol Rev.2.1 supported
- ■Full duplex double buffer
- Master/Slave mode supported
- ■LIN break field generate (can be changed 13-16 bit length)
- ■LIN break delimiter generate (can be changed 1- 4 bit length)
- Various error detect functions available (parity errors, framing errors, and overrun errors)

[I²C]

Standard-mode (Max.100 kbps) / Fast-mode (Max 400 kbps) supported

External Bus Interface

- Supports SRAM, NOR& NAND Flash device
- ■Up to 8 chip selects
- ■8-/16-bit Data width
- ■Up to 25-bit Address bit
- Maximum area size: Up to 256 MB

DMA Controller (8 channels)

DMA Controller has an independent bus for CPU, so CPU and DMA Controller can process simultaneously.

- ■8 independently configured and operated channels
- Transfer can be started by software or request from the builtin peripherals
- Transfer address area: 32 bit (4GB)
- Transfer mode: Block transfer/Burst transfer/Demand transfer
- Transfer data type: byte/half-word/word
- Transfer block count: 1 to 16 ■ Number of transfers: 1 to 65536

A/D Converter (Max. 16 channels)

[12-bit A/D Converter]

- ■Successive Approximation Register type
- ■Built-in 3unit
- ■Conversion time: 1.0 µs @ 5 V
- Priority conversion available (priority at 2 levels)
- Scanning conversion mode
- ■Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for Priority conversion: 4steps)

Base Timer (Max. 8 channels)

Operation mode is selectable from the followings for each channel.

- ■16-bit PWM timer
- ■16-bit PPG timer
- ■16-/32-bit reload timer
- ■16-/32-bit PWC timer

Multi-function Timer (Max. 2 units)

The Multi-function timer is composed of the following blocks.

- ■16-bit free-run timer × 3ch/unit
- ■Input capture × 4ch/unit
- ■Output compare × 6ch/unit
- ■A/D activation compare × 3ch/unit
- ■Waveform generator × 3ch/unit
- ■16-bit PPG timer × 3ch/unit

The following function can be used to achieve the motor control.

- ■PWM signal output function
- ■DC chopper waveform output function
- ■Dead time function
- ■Input capture function
- ■A/D convertor activate function
- ■DTIF (Motor emergency stop) interrupt function

Quadrature Position/Revolution Counter (QPRC) (Max. 2 units)

The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. Moreover, it is possible to use up/down counter.

- ■The detection edge of the three external event input pins AIN, BIN and ZIN is configurable.
- ■16-bit position counter
- ■16-bit revolution counter
- ■Two 16-bit compare registers

Dual Timer (Two 32/16-bit Down Counter)

The Dual Timer consists of two programmable 32/16-bit down counters.

Operation mode is selectable from the followings for each channel.

- ■Free-running
- ■Periodic (=Reload)
- ■One-shot

Watch Counter

The Watch counter is used for wake up from sleep mode. Interval timer: up to 64 s (Max.) @ Sub Clock: 32.768 kHz

Watch dog Timer (2 channels)

A watchdog timer can generate interrupts or a reset when a time-out value is reached.

This series consists of two different watchdogs, a "Hardware" watchdog and a "Software" watchdog.

"Hardware" watchdog timer is clocked by the built-in lowspeed CR oscillator. Therefore, "Hardware" watchdog is active in any low-power consumption modes except STOP mode.

External Interrupt Controller Unit

- ■Up to 16 external vectors
- ■Include one non-maskable interrupt(NMI)

General Purpose I/O Port

This series can use its pins as general-purpose I/O ports when they are not used for external bus or peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated.

- Capable of pull-up control per pin
- Capable of reading pin level directly
- ■Built-in the port relocate function
- ■Up to 100 high-speed general-purpose I/O Ports @ 120pin Package

CRC (Cyclic Redundancy Check) Accelerator

The CRC accelerator helps a verify data transmission or storage integrity.

CCITT CRC16 and IEEE-802.3 CRC32 are supported.

- ■CCITT CRC16 Generator Polynomial: 0x1021
- ■IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7

Clock and Reset

[Clocks]

Five clock sources (2 ext. osc, 2 CR osc, and Main PLL) that are dynamically selectable.

■ Main Clock : 4 MHz to 48 MHz

■Sub Clock : 32.768 kHz

■Built-in high-speed CR Clock : 4 MHz
■Built-in low-speed CR Clock : 100 kHz

■Main PLL Clock

[Resets]

- ■Reset requests from INITX pins
- ■Power-on reset
- ■Software reset
- ■Watchdog timers reset
- ■Low-voltage detector reset
- ■Clock supervisor reset

Clock Super Visor (CSV)

Clocks generated by CR oscillators are used to supervise abnormality of the external clocks.

- External OSC clock failure (clock stop) is detected, reset is asserted.
- External OSC frequency anomaly is detected, interrupt or reset is asserted.

Low Voltage Detector (LVD)

This series include 2-stage monitoring of voltage on the VCC. When the voltage falls below the voltage has been set, Low Voltage Detector generates an interrupt or reset.

- ■LVD1: error reporting via interrupt
- ■LVD2: auto-reset operation

Low-Power Consumption Mode

Three low-power consumption modes supported.

- ■SLEEP
- **■**TIMER
- **■**STOP

Debug

- Serial Wire JTAG Debug Port (SWJ-DP)
- Embedded Trace Macrocells (ETM) provide comprehensive debug and trace facilities.

Power Supply

Two Power Supplies

■VCC = 2.7 V to 5.5 V: Correspond to the wide

range voltage.

■USBVCC = 3.0 V to 3.6 V: for USB I/O voltage, when

USB is used.

= 2.7 V to 5.5 V: when GPIO is used.[1]

Contents

1. Product Lineup	
2. Packages	7
3. Pin Assignment	8
4. List of Pin Functions	11
5. I/O Circuit Type	38
6. Handling Precautions	42
6.1 Precautions for Product Design	42
6.2 Precautions for Package Mounting	43
6.3 Precautions for Use Environment	44
7. Handling Devices	45
8. Block Diagram	47
9. Memory Size	48
10. Memory Map	48
11. Pin Status in Each CPU State	51
12. Electrical Characteristics	55
12.1 Absolute Maximum Ratings	55
12.2 Recommended Operating Conditions	57
12.3 DC Characteristics	58
12.3.1 Current Rating	58
12.3.2 Pin Characteristics	60
12.4 AC Characteristics	61
12.4.1 Main Clock Input Characteristics	61
12.4.2 Sub Clock Input Characteristics	62
12.4.3 Built-in CR Oscillation Characteristics	63
12.4.4 Operating Conditions of Main and USB PLL (In the case of using main clock for input of PLL)	64
12.4.5 Operating Conditions of Main PLL (In the case of using built-in high speed CR)	
12.4.6 Reset Input Characteristics	
12.4.7 Power-on Reset Timing	
12.4.8 External Bus Timing	67
12.4.9 Base Timer Input Timing	
12.4.10 CSIO/UART Timing	
12.4.11 External Input Timing	
12.4.12 Quadrature Position/Revolution Counter timing	
12.4.13 I ² C Timing	83
12.4.14 ETM Timing	84
12.4.15 JTAG Timing	
12.5 12-bit A/D Converter	86
12.6 USB Characteristics	89
12.7 Low-Voltage Detection Characteristics	93
12.7.1 Low-Voltage Detection Reset	93
12.7.2 Interrupt of Low-Voltage Detection	
12.8 Flash Memory Write/Erase Characteristics	
12.8.1 Write / Erase time	
12.8.2 Erase/write cycles and data hold time	
12.9 Return Time from Low-Power Consumption Mode	
12.9.1 Return Factor: Interrupt	
12.9.2 Return Factor: Reset	

13. Example of Characteristic	99
14. Ordering Information	101
15. Package Dimensions	102
16. Errata	105
16.1 Part Numbers Affected	105
16.2 Qualification Status	
16.3 Errata Summary	105
16.4 Errata Detail	105
16.4.1 Timer and stop mode issue	105
16.4.2 USB HOST issue	106
16.4.3 Gap Between Watch Counter Value and Real Time at Return in Timer Mode	106
17. Major Changes	108
Document History	110
Sales, Solutions, and Legal Information	

1. Product Lineup

Memory Size

Product device	MB9BF304NB/RB	MB9BF305NB/RB	MB9BF306NB/RB
On-chip Flash memory	256 KB	384 KB	512 KB
On-chip SRAM	32 KB	48 KB	64 KB

Function

Product device			MB9BF304NB MB9BF305NB MB9BF306NB	MB9BF304RB MB9BF305RB MB9BF306RB	
Pin cou	ınt		100	120	
0.01.1	ODLI		Cortex-M3	<u> </u>	
CPU	Freq.		80 MHz		
Power s	supply voltage range		2.7 V to 5.5 V		
) (Device/Host)		1 ch		
DMAC			8 ch		
Externa	al Bus Interface		Addr: 25-bit (Max.) Data:8-/16-bit CS: 5 (Max.) Support: SRAM, NOR Flash	Addr: 25-bit (Max.) Data:8-/16-bit CS: 8 (Max.) Support: SRAM, NOR & NAND Flash	
Multi-function Serial Interface (UART/CSIO/LIN/I ² C)			8 ch (Max.)		
Base Ti (PWC/	imer Reload timer/PWM/PPG)		8 ch (Max.)		
MF- Timer	A/D activation compare Input capture Free-run timer Output compare Waveform generator PPG	3 ch. 4 ch. 3 ch. 6 ch. 3 ch. 3 ch.	2 units (Max.)		
QPRC	•		2 ch (Max.)		
Dual Tir	mer		1 unit		
Watch (Counter		1 unit		
CRC A	ccelerator		Yes		
Watchd	log timer		1ch(SW) + 1ch(HW)		
Externa	al Interrupts		16 pins (Max.) + NMI × 1		
I/O port	ts		80 pins (Max.)	100 pins (Max.)	
	/D converter	·	16 ch (3 units)		
	Clock Super Visor)		Yes		
LVD (Low Voltage Detector)		2 ch			
Built-in	CP High-speed		4 MHz		
Duiit-in	Low-speed		100 kHz		
Debug	Function		SWJ-DP/ETM		

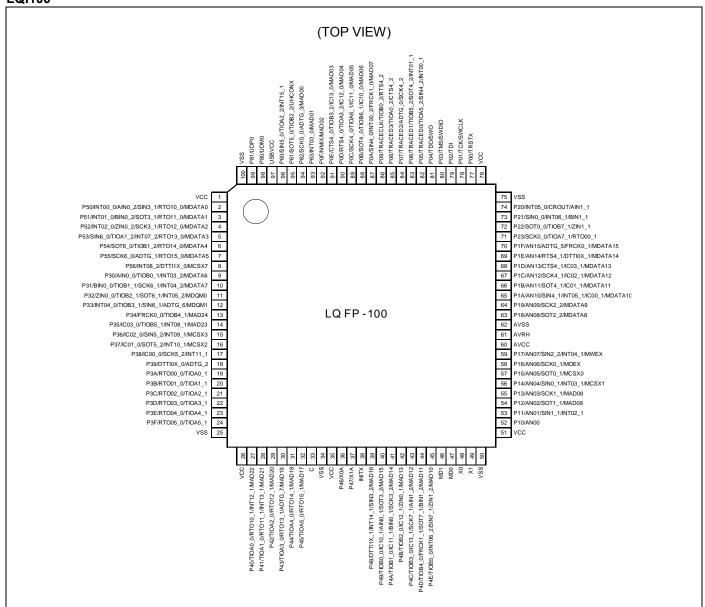
Note:

All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.
 It is necessary to use the port relocate function of the General I/O port according to your function use.
 See "12. Electrical Characteristics 12.4. AC Characteristics 12.4.3. Built-in CR Oscillation Characteristics" for accuracy of built-in CR.

2. Packages

Package	roduct name MB9BF304NB MB9BF305NB MB9BF306NB	MB9BF304RB MB9BF305RB MB9BF306RB
LQFP: LQI100 (0.5 mm pitch)	0	-
LQFP: LQM120 (0.5 mm pitch)	-	0
FBGA: LBC112 (0.8 mm pitch)	O	-

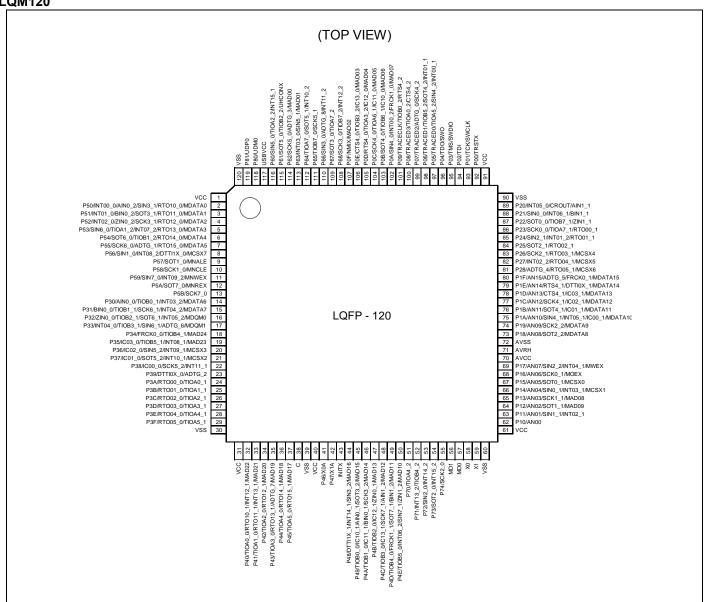
O: Supported


Note:

Refer to "15. Package Dimensions" for detailed information on each package.

3. Pin Assignment

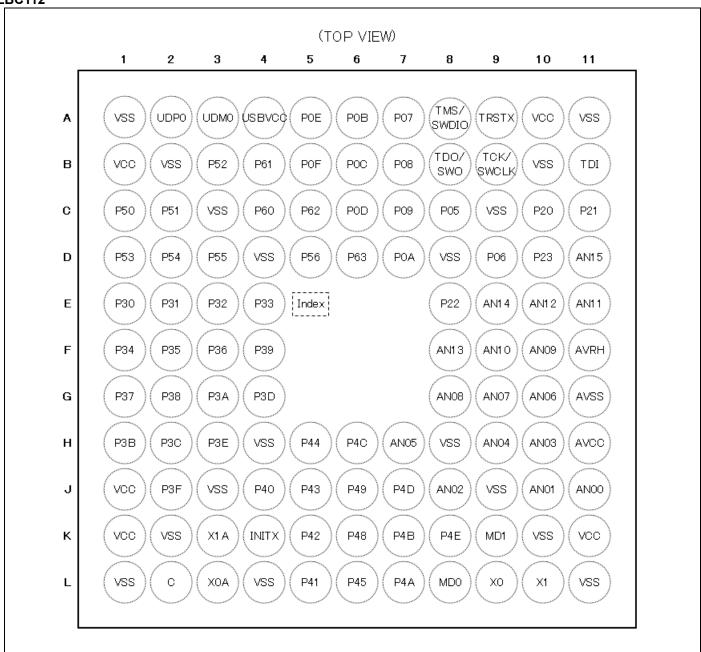
LQI100



Note:

 The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

LQM120



Note:

 The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

LBC112

Note:

 The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

4. List of Pin Functions

List of pin numbers

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

	Pin no.		Din name	I/O circuit	Pin state	
LQFP-100	BGA-112	LQFP-120	Pin name	type	type	
1	B1	1	VCC	-	<u>.</u>	
			P50			
			INT00_0			
			AIN0_2			
2	C1	2	SIN3_1	E	Н	
			RTO10_0			
			(PPG10_0)			
			MDATA0			
			P51			
			INT01_0			
			BIN0_2			
3	C2	3	SOT3_1	E	Н	
			(SDA3_1) RTO11_0			
			(PPG10_0)			
			MDATA1			
		4	P52		н	
			INT02_0			
			ZIN0_2			
4	B3		SCK3_1	E		
4	D3		(SCL3_1)			
			RTO12_0			
			(PPG12_0)			
			MDATA2			
			P53			
			SIN6_0			
_	D4	_	TIOA1_2		1	
5	D1	5	INT07_2	E	Н	
			RTO13_0 (PPG12_0)			
			MDATA3			
			P54			
		D2 6	SOT6_0			
			(SDA6_0)			
6	D2		TIOB1_2	E	1	
			RTO14_0			
			(PPG14_0)			
				MDATA4	\neg	

	Pin no.		Pin name	I/O circuit	Pin state
LQFP-100	BGA-112	LQFP-120	Pin name	type	type
			P55		
			SCK6_0		
			(SCL6_0)		
7	D3	7	ADTG_1	E	1
			RTO15_0 (PPG14_0)		
			MDATA5		
			P56		
			SIN1_0 (120pin only)		
8	D5	8	INT08_2	E	Н
			DTTI1X_0		
			MCSX7		
			P57		1
-	-	9	SOT1_0 (SDA1_0)	E	
			MNALE		
			P58		ı
-	-	10	SCK1_0 (SCL1_0)	E	
			MNCLE		
			P59		н
			SIN7_0		
-	-	11	INT09_2	E	
			MNWEX		
			P5A		
-	-	12	SOT7_0 (SDA7_0)	E	1
			MNREX		
			P5B		
-	-	13	SCK7_0 (SCL7_0)	E	1
			P30		
9 E1			AINO_0	E	Н
	E1	14	TIOB0_1		
			INT03_2		
			MDATA6	 	

	Pin no.		Din name	I/O circuit	Pin state
LQFP-100	BGA-112	LQFP-120	Pin name	type	type
			P31		
			BINO_0		
) E2		TIOB1_1		
10		15	SCK6_1	E	Н
		(SCL6_1)			
		INT04_2			
			MDATA7		
			P32		
			ZIN0_0		
			TIOB2_1		
11	E3	16	SOT6_1	E	Н
			(SDA6_1)		
			INT05_2		
			MDQM0		
			P33		
			INT04_0		н
12	E4	17	TIOB3_1	— Е	
		''	SIN6_1		
			ADTG_6		
			MDQM1		
		18	P34	E	I
13	F1		FRCK0_0		
13			TIOB4_1		
			MAD24		
			P35		н
			IC03_0		
14	F2	19	TIOB5_1	E	
			INT08_1		
			MAD23		
			P36		
			IC02_0		
15	F3	20	SIN5_2	E	н
			INT09_1		
			MCSX3		
			P37		
			IC01_0		н
40			SOT5_2	 _	
16 G1	G1	21	(SDA5_2)	E	
			INT10_1		
			MCSX2		
			P38		
			IC00_0		
17	G2	22	SCK5_2	E	Н
52			(SCL5_2)		
		INT11_1			

	Pin no.		Pin name	I/O circuit	Pin state
LQFP-100	BGA-112	LQFP-120	- Pin name	type	type
			P39		
18	F4	23	DTTI0X_0	E	1
			ADTG_2		
			P3A		
19	G3	24	RTO00_0 (PPG00_0)	G	1
			TIOA0_1		
-	B2	-	VSS	-	
			P3B		
20	H1	25	RTO01_0 (PPG00_0)	G	1
			TIOA1_1		
			P3C		
21	H2	26	RTO02_0 (PPG02_0)	G	1
			TIOA2_1		
			P3D	G	1
22	G4	27	RTO03_0 (PPG02_0)		
			TIOA3_1		
			P3E		I
23	H3	28	RTO04_0 (PPG04_0)	G	
			TIOA4_1		
			P3F		
24	J2	J2 29	RTO05_0 (PPG04_0)	G	1
			TIOA5_1		
25	L1	30	VSS	-	
26	J1	31	VCC	-	
			P40		
			TIOA0_0		
27	J4	32	RTO10_1 (PPG10_1)	G	н
			INT12_1		
			MAD22		
			P41		
			TIOA1_0	G	
28	L5	L5 33	RTO11_1 (PPG10_1)		Н
			INT13_1		
			MAD21		

	Pin no.		Din nama	I/O circuit	Pin state
LQFP-100	BGA-112	LQFP-120	Pin name	type	type
			P42		
			TIOA2_0		
29	K5	34	RTO12_1	G	1
			(PPG12_1)		
		MAD20			
	J5 35	P43			
			TIOA3_0		
30		RTO13_1	G	1	
			(PPG12_1)		
			ADTG_7		
			MAD19		
-	K2	-	VSS	-	
-	J3	-	VSS	-	
-	H4	-	VSS	-	T
			P44		
			TIOA4_0		1
31	H5 36	36	RTO14_1	G	
			(PPG14_1)		
			MAD18		
		P45			
		37	TIOA5_0	G	1
32	L6		RTO15_1		
			(PPG14_1)		
			MAD17		
33	L2	38	С	-	
34	L4	39	VSS	-	
35	K1	40	VCC	-	
			P46	_	1
36	L3	41	X0A	D	M
			P47	_	
37	K3	42	X1A	D	N
38	K4	43	INITX	В	С
			P48		
			DTTI1X_1		
39	K6	44	INT14_1	E	н
55	S NO	**		=	Н
			SIN3_2		
			MAD16		
40 J6			P49	E	
			TIOB0_0		
			IC10_1		
	J6	J6 45	AIN0_1		1
			SOT3_2		
			(SDA3_2)		
			MAD15		

	Pin no.		Pin name	I/O circuit	Pin state
LQFP-100	BGA-112	LQFP-120	- Pin name	type	type
			P4A		
			TIOB1_0		
			IC11_1		
41	L7	46	BIN0_1	E	1
			SCK3_2		
			(SCL3_2)		
			MAD14		
			P4B		
			TIOB2_0		
42	K7	47	IC12_1	E	1
			ZIN0_1		
			MAD13		
			P4C		
			TIOB3_0		1
			IC13_1		
43	H6	48	SCK7_1	E	
			(SCL7_1)		
			AIN1_2		
			MAD12		
			P4D		1
			TIOB4_0		
			FRCK1_1		
44	J7	49	SOT7_1	E	
			(SDA7_1)		
			BIN1_2		
			MAD11		
			P4E		
			TIOB5_0		
45	140	50	INT06_2	_	н
45	K8	50	SIN7_1	E	
			ZIN1_2		
			MAD10		
			P70		
-	-	51	TIOA4_2	—— E	1
			P71		
_	_	52	INT13_2	E	
-	1	52			Н
			TIOB4_2		
			P72		
-	-	53	SIN2_0	E	Н
			INT14_2		

	Pin no.		Pin name	I/O circuit	Pin state
LQFP-100	BGA-112	LQFP-120	Pin name	type	type
			P73		
_	_	54	SOT2_0	E	н
			(SDA2_0)		1
			INT15_2		
		55	P74	E	1
-	-	55	SCK2_0 (SCL2_0)		'
46	K9	56	MD1	С	D
47	L8	57	MD0	С	D
48	L9	58	X0	Α	A
49	L10	59	X1	Α	В
50	L11	60	VSS	-	•
51	K11	61	VCC	-	
			P10	_	К
52	J11	62	AN00	F F	
			P11		L
	3 J10	63	AN01	F	
53			SIN1_1		
			INT02_1		
-	K10	-	VSS	-	
-	J9	-	VSS	-	
			P12		
			AN02		К
54	J8	64	SOT1_1	F	
			(SDA1_1)		
			MAD09		
			P13 AN03		К
55	H10	65	SCK1_1	F	
			(SCL1_1)	·	
			MAD08		
			P14		
			AN04	F	
56	H9	66	SIN0_1		L
			INT03_1		
			MCSX1		
			P15		
57	H7	67	AN05 SOT0_1	F F	l k
JI	117	07	(SDA0_1)	'	K
			MCSX0		

	Pin no.		Din nome	I/O circuit	Pin state					
LQFP-100	BGA-112	LQFP-120	Pin name	type	type					
			P16							
			AN06							
58	G10	68	SCK0_1	F	K					
			(SCL0_1)							
			MOEX							
			P17							
			AN07							
59	G9	69	SIN2_2	F	L					
			INT04_1							
			MWEX							
60	H11	70	AVCC	-						
61	F11	71	AVRH	-						
62	G11	72	AVSS	-						
			P18							
			AN08							
63	G8	G8	G8	73	SOT2_2	F	К			
			(SDA2_2)							
			MDATA8							
	F10		P19							
		F10 -1	AN09							
64		F10	F10	F10	F10	F10	F10	74	SCK2_2	F
			(SCL2_2)							
			MDATA9							
			P1A	F	L					
			AN10							
65	F9	75	SIN4_1							
			INT05_1							
			IC00_1 MDATA10							
	H8	-	VSS							
-	ПО	-	P1B							
			AN11							
			SOT4_1							
66	E11	76	(SDA4_1)	F	К					
			IC01_1							
			MDATA11							
			P1C							
			AN12							
			SCK4_1							
67	E10	77	(SCL4_1)	F	K					
			IC02_1							
			MDATA12							

	Pin no.		Pin name	I/O circuit	Pin state					
LQFP-100	BGA-112	LQFP-120	Fill flaille	type	type					
			P1D							
			AN13							
68	F8	78	CTS4_1	F	К					
			IC03_1							
			MDATA13							
			P1E							
			AN14							
69	E9	79	RTS4_1	F	K					
			DTTI0X_1							
			MDATA14							
			P1F							
			AN15							
70	D11	80	ADTG_5	F	K					
			FRCK0_1							
			MDATA15							
			P28							
			ADTG_4							
-	-	- 81	RTO05_1 (PPG04_1)	E	1					
			MCSX6							
								P27		
			INT02_2	E	н					
-	-	82	RTO04_1 (PPG04_1)							
			MCSX5							
			P26							
			SCK2_1 (SCL2_1)	_						
-	-	83	RTO03_1 (PPG02_1)	E						
			MCSX4							
			P25							
-	-	84	SOT2_1 (SDA2_1)	E	1					
			RTO02_1 (PPG02_1)							
-	B10	-	VSS	-	-					
-	C9	-	VSS	-						
			P24							
			SIN2_1		.					
-	-	85	INT01_2	E	Н					
			RTO01_1 (PPG00_1)							

	Pin no.		Pin name	I/O circuit	Pin state		
LQFP-100	BGA-112	LQFP-120	Fill flattle	type	type		
				P23			
				SCK0_0			
71	D10	86	(SCL0_0)	— Е	1		
			TIOA7_1				
			RTO00_1 (PPG00_1)				
			P22				
72	E8	87	SOT0_0 (SDA0_0)	E	1		
			TIOB7_1				
			ZIN1_1				
			P21				
			SINO_0				
73	C11	88	INT06_1	—— E	Н		
			BIN1_1				
			P20		+		
	C10	C10	C10 89		INT05_0	E	
74				89	CROUT		Н
			AIN1_1				
75	A11	90	VSS				
76	A10	91	VCC	-			
	Alu	91	P00				
77	A9	92	TRSTX	E	E		
			P01				
78	В9	93	TCK	E	E		
			SWCLK				
79	B11	94	P02	E	E		
79	БП	94	TDI				
			P03				
80	A8	95	TMS	E	E		
			SWDIO				
04	D0		P04		-		
81	B8	96	TDO	E	E		
	_		SWO				
			P05 TRACED0				
82	C8	97	TIOA5_2	E	F		
02		31	SIN4_2		'		
			INT00_1				
_	D8	_	VSS	_	1		
	_~						

Pin no.			Pin name	I/O circuit	Pin state							
LQFP-100	BGA-112	LQFP-120	Fill flame	type	type							
			P06									
			TRACED1									
83	D9	98	TIOB5_2	Е	F							
00	D9	90	SOT4_2		'							
			(SDA4_2)									
			INT01_1									
			P07									
			TRACED2									
84	A7	99	ADTG_0	E	G							
			SCK4_2 (SCL4_2)									
			P08									
05	D7	400	TRACED3									
85	B7	100	TIOA0_2	E	G							
			CTS4_2									
					P09							
		C7 TRACECLK TIOB0_2 RTS4 2	TRACECLK	E								
86	C7		TIOB0_2		G							
			RTS4_2									
							P0A					
			SIN4_0									
87	D7	D7	D7	D7	D7	D7	D7	D7	102	INT00_2	E	н
			132	FRCK1_0								
			MAD07									
			P0B									
			SOT4_0									
			(SDA4_0)	_								
88	A6	103	TIOB6_1	E	1							
			IC10_0									
			MAD06									
			P0C									
			SCK4_0									
89	B6	104	(SCL4_0)	Е	1							
00			TIOA6_1									
			IC11_0									
			MAD05									
			POD PTS4 0									
90	C6	105	RTS4_0 TIOA3_2	E								
50		103	IC12_0		1							
				MAD04								

	Pin no.		Din nama	I/O circuit	Pin state
LQFP-100	BGA-112	LQFP-120	Pin name	type	typet
			P0E		
			CTS4_0		
91	A5	106	TIOB3_2	E	1
			IC13_0		
			MAD03		
-	D4	-	VSS	-	•
-	C3	-	VSS	-	
			P0F		
92	B5	107	NMIX	E	J
			MAD02		
-			P68		
			SCK3_0		
-	-	108	(SCL3_0)	E	Н
			TIOB7_2		
			INT12_2		
			P67		
	_	109	SOT3_0	E	1
-	-	109	(SDA3_0)		
			TIOA7_2		
			P66		
_	_	110	SIN3_0	E	н
-		- 110	ADTG_8		''
			INT11_2		
			P65		
		111	TIOB7_0	E	1
-	-	111	SCK5_1		
			(SCL5_1)		
			P64		
			TIOA7_0		
-	-	112	SOT5_1	E	Н
			(SDA5_1)		
			INT10_2		
			P63		
93	D6	113	INT03_0	E	н
			MAD01		''
-	-		SIN5_1		
			P62		
			SCK5_0		
94	C5	114	(SCL5_0)	E	1
			ADTG_3		
			MAD00		
			P61		
			SOT5_0		
95	B4	115	(SDA5_0)	E	1
			TIOB2_2		
			UHCONX		

	Pin no.		Pin no.		Pin no.		Pin name	I/O circuit	Pin state
LQFP-100	BGA-112	LQFP-120	- Pin name	type	type				
			P60						
00	04	110	SIN5_0						
96	C4 116	110	TIOA2_2	E	H				
			INT15_1						
97	A4	117	USBVCC	-					
98	A 2	110	P80	Н					
90	A3	118	UDM0	П	0				
99	A2	119	P81	Н					
99	A2	119	UDP0	П	0				
100	A1	120	VSS	-					

List of pin functions

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

Madala	D:	Formation		Pin No.	
Module	Pin name	Function	LQFP-100	BGA-112	LQFP-120
ADC	ADTG_0		84	A7	99
	ADTG_1		7	D3	7
	ADTG_2		18	F4	23
	ADTG_3		94	C5	114
	ADTG_4	A/D converter external trigger input pin.	-	-	81
	ADTG_5	7	70	D11	80
	ADTG_6		12	E4	17
	ADTG_7		30	J5	35
	ADTG_8		-	-	110
	AN00		52	J11	62
	AN01		53	J10	63
	AN02		54	J8	64
	AN03		55	H10	65
	AN04		56	H9	66
	AN05		57	H7	67
	AN06	7	58	G10	68
	AN07	A/D converter analog input pin.	59	G9	69
	AN08	ANxx describes ADC ch.xx.	63	G8	73
	AN09		64	F10	74
	AN10		65	F9	75
	AN11		66	E11	76
	AN12	7	67	E10	77
	AN13		68	F8	78
	AN14		69	E9	79
	AN15		70	D11	80
Base Timer	TIOA0_0		27	J4	32
0	TIOA0 1	Base timer ch.0 TIOA pin.	19	G3	24
	TIOA0_2	7	85	B7	100
	TIOB0_0		40	J6	45
	TIOB0_1	Base timer ch.0 TIOB pin.	9	E1	14
	TIOB0_2	7	86	C7	101
Base Timer	TIOA1_0		28	L5	33
1	TIOA1_1	Base timer ch.1 TIOA pin.	20	H1	25
	TIOA1_2	7	5	D1	5
	TIOB1_0		41	L7	46
	TIOB1_1	Base timer ch.1 TIOB pin.	10	E2	15
	TIOB1 2	7	6	D2	6
Base Timer	TIOA2_0		29	K5	34
2	TIOA2_1	Base timer ch.2 TIOA pin.	21	H2	26
	TIOA2 2	<u> </u>	96	C4	116
	TIOB2_0		42	K7	47
	TIOB2_1	Base timer ch.2 TIOB pin.	11	E3	16
	TIOB2_2		95	B4	115

Module	Din nama	Pin name Function		Pin No.			
Wodule	Pin name	Function	LQFP-100	BGA-112	LQFP-120		
Base Timer	TIOA3_0		30	J5	35		
3	TIOA3_1	Base timer ch.3 TIOA pin.	22	G4	27		
	TIOA3_2		90	C6	105		
	TIOB3_0		43	H6	48		
	TIOB3_1	Base timer ch.3 TIOB pin.	12	E4	17		
	TIOB3_2		91 A5	A5	106		
Base Timer	TIOA4_0		31	H5	36		
4	TIOA4_1	Base timer ch.4 TIOA pin.	23	H3	28		
	TIOA4_2		-	-	51		
	TIOB4_0		44	J7	49		
	TIOB4_1	Base timer ch.4 TIOB pin.	13	F1	18		
	TIOB4_2		-	-	52		
Base Timer	TIOA5_0		32	L6	37		
5	TIOA5_1	Base timer ch.5 TIOA pin.	24	J2	29		
	TIOA5_2	<u> </u>	82	C8	97		
	TIOB5_0		45	K8	50		
	TIOB5_1	Base timer ch.5 TIOB pin.	14	F2	19		
	TIOB5_2	<u> </u>	83	D9	98		
Base Timer	TIOA6_1	Base timer ch.6 TIOA pin.	89	B6	104		
6	TIOB6_1	Base timer ch.6 TIOB pin.	88	A6	103		
Base Timer	TIOA7_0		-	-	112		
7	TIOA7_1	Base timer ch.7 TIOA pin.	71	D10	86		
	TIOA7_2		-	-	109		
	TIOB7_0		-	-	111		
	TIOB7_1	Base timer ch.7 TIOB pin.	72	E8	87		
	TIOB7_2	<u> </u>	-	-	108		
Debugger	SWCLK	Serial wire debug interface clock input.	78	B9	93		
	SWDIO	Serial wire debug interface data input / output.	80	A8	95		
	SWO	Serial wire viewer output.	81	B8	96		
	TCK	JTAG test clock input.	78	B9	93		
	TDI	JTAG test data input.	79	B11	94		
	TDO	JTAG debug data output.	81	B8	96		
	TMS	JTAG test mode state input/output.	80	A8	95		
	TRACECLK	Trace CLK output of ETM.	86	C7	101		
	TRACED0		82	C8	97		
	TRACED1	Town data autout of FTM	83	D9	98		
	TRACED2	Trace data output of ETM.	84	A7	99		
	TRACED3		85	B7	100		
	TRSTX	JTAG test reset Input.	77	A9	92		
	1						

Module	Pin name	Function		Pin No.	
wodule	Pin name	Function	LQFP-100	BGA-112	LQFP-120
External	MAD00		94	C5	114
Bus	MAD01		93	D6	113
	MAD02		92	B5	107
	MAD03		91	A5	106
	MAD04		90	C6	105
	MAD05		89	B6	104
	MAD06		88	A6	103
	MAD07		87	D7	102
	MAD08		55	H10	65
	MAD09		54	J8	64
	MAD10		45	K8	50
	MAD11		44	J7	49
	MAD12	External bus interface address bus.	43	H6	48
	MAD13		42	K7	47
	MAD14		41	L7	46
	MAD15		40	J6	45
	MAD16		39	K6	44
	MAD17		32	L6	37
	MAD18		31	H5	36
	MAD19		30	J5	35
	MAD20		29	K5	34
	MAD21		28	L5	33
	MAD22		27	J4	32
	MAD23		14	F2	19
	MAD24		13	F1	18
	MCSX0		57	H7	67
	MCSX1		56	H9	66
	MCSX2		16	G1	21
	MCSX3	External bus interface chip coloct output nin	15	F3	20
	MCSX4	External bus interface chip select output pin.	-	-	83
	MCSX5		-	-	82
	MCSX6		-	-	81
	MCSX7		8	D5	8
	MDATA0		2	C1	2
	MDATA1		3	C2	3
	MDATA2		4	B3	4
	MDATA3		5	D1	5
	MDATA4		6	D2	6
	MDATA5		7	D3	7
	MDATA6		9	E1	14
	MDATA7	External hua interface data hua	10	E2	15
	MDATA8	External bus interface data bus.	63	G8	73
	MDATA9		64	F10	74
	MDATA10		65	F9	75
	MDATA11		66	E11	76
	MDATA12		67	E10	77
	MDATA13		68	F8	78
	MDATA14		69	E9	79
	MDATA15		70	D11	80
	MDQM0	Futured has interfered by the war all advantages of	11	E3	16
	MDQM1	External bus interface byte mask signal output.	12	E4	17

Page 27 of 112

Module	Pin name	Eurotion	Pin No.		
wodule	Pin name	Function	LQFP-100	BGA-112	LQFP-120
External Bus	MNALE	External bus interface ALE signal to control NAND Flash output pin.	-	-	9
	MNCLE	External bus interface CLE signal to control NAND Flash output pin.	-	-	10
	MNREX	External bus interface read enable signal to control NAND Flash.	-	-	12
	MNWEX	External bus interface write enable signal to control NAND Flash.	-	-	11
	MOEX	External bus interface read enable signal for SRAM.	58	G10	68
	MWEX	External bus interface write enable signal for SRAM.	59	G9	69

Madada	D:	Formation		Pin No.	
Module	Pin name	Function	LQFP-100	BGA-112	LQFP-120
External	INT00 0		2	C1	2
Interrupt	INT00_1	External interrupt request 00 input pin.	82	C8	97
·	INT00 2	7	87	D7	102
	INT01 0	External interrupt request 01 input pin.	3	C2	3
	INT01 1		83	D9	98
	INT01 2		-	-	85
	INT02 0		4	B3	4
	INT02 1	External interrupt request 02 input pin.	53	J10	63
	INT02 2	7	-	-	82
	INT03 0	External interrupt request 03 input pin.	93	D6	113
	INT03_1		56	H9	66
	INT03 2		9	E1	14
	INT04 0		12	E4	17
	INT04 1	External interrupt request 04 input pin.	59	G9	69
	INT04 2	7 ' ' ' '	10	E2	15
	INT05 0	External interrupt request 05 input pin.	74	C10	89
	INT05 1		65	F9	75
	INT05 2		11	E3	16
	INT06 1	External interrupt request 06 input pin.	73	C11	88
	INT06 2		45	K8	50
	INT07_2	External interrupt request 07 input pin.	5	D1	5
	INT08_1		14	F2	19
	INT08_2	External interrupt request 08 input pin.	8	D5	8
	INT09_1	Fortament intermed to a more of 00 in more in	15	F3	20
	INT09_2	External interrupt request 09 input pin.	-	-	11
	INT10_1	Fortamed Intermed measured 40 in medicin	16	G1	21
	INT10_2	External interrupt request 10 input pin.	-	-	112
	INT11_1	Futamed interment required 44 input pin	17	G2	22
	INT11_2	External interrupt request 11 input pin.	-	-	110
	INT12_1	Futamal interment required 40 input pin	27	J4	32
	INT12_2	External interrupt request 12 input pin.	-	-	108
	INT13_1	Futamal interment request 42 input pin	28	L5	33
	INT13_2	External interrupt request 13 input pin.	-	-	52
	INT14_1	External interrupt request 44 input pir	39	K6	44
	INT14_2	External interrupt request 14 input pin.	-	-	53
	INT15_1	External interrupt request 45 input pic	96	C4	116
	INT15_2	External interrupt request 15 input pin.	-	-	54
	NMIX	Non-Maskable Interrupt input.	92	B5	107

Madula	Din nome	Function		Pin No.	
Module	Pin name	Function	LQFP-100	BGA-112	LQFP-120
GPIO	P00		77	A9	92
	P01		78	B9	93
	P02	7	79	B11	94
	P03	-	80	A8	95
	P04	7	81	B8	96
	P05	7	82	C8	97
	P06	7	83	D9	98
	P07		84	A7	99
	P08	General-purpose I/O port 0.	85	B7	100
	P09	7	86	C7	101
	P0A	7	87	D7	102
	P0B	7	88	A6	103
	POC	7	89	B6	104
	P0D	7	90	C6	105
	P0E		91	A5	106
	P0F		92	B5	107
	P10		52	J11	62
	P11		53	J10	63
	P12		54	J8	64
	P13		55	H10	65
	P14		56	H9	66
	P15		57	H7	67
	P16		58	G10	68
	P17	7	59	G9	69
	P18	General-purpose I/O port 1.	63	G8	73
	P19		64	F10	74
	P1A		65	F9	75
	P1B		66	E11	76
	P1C	7	67	E10	77
	P1D	7	68	F8	78
	P1E	7	69	E9	79
	P1F	7	70	D11	80
	P20		74	C10	89
	P21	7	73	C11	88
	P22	7	72	E8	87
	P23	7	71	D10	86
	P24	General-purpose I/O port 2.	-	-	85
	P25	7 ' ' '	-	-	84
	P26	7	-	-	83
	P27	7	-	-	82
	P28	7	-	_	81

Module	Pin name	Function		Pin No.	<u> </u>
		Function	LQFP-100	BGA-112	LQFP-120
GPIO	P30		9	E1	14
	P31		10	E2	15
	P32	7	11	E3	16
	P33		12	E4	17
	P34		13	F1	18
	P35		14	F2	19
	P36		15	F3	20
	P37	0	16	G1	21
	P38	General-purpose I/O port 3.	17	G2	22
	P39		18	F4	23
	P3A		19	G3	24
	P3B		20	H1	25
	P3C	7	21	H2	26
	P3D	7	22	G4	27
	P3E	7	23	H3	28
	P3F		24	J2	29
	P40	General-purpose I/O port 4.	27	J4	32
	P41		28	L5	33
	P42		29	K5	34
	P43		30	J5	35
	P44		31	H5	36
	P45		32	L6	37
	P46		36	L3	41
	P47		37	K3	42
	P48		39	K6	44
	P49		40	J6	45
	P4A		41	L7	46
	P4B		42	K7	47
	P4C		43	H6	48
	P4D		44	J7	49
	P4E		45	K8	50
	P50		2	C1	2
	P51	7	3	C2	3
	P52	7	4	B3	4
	P53	7	5	D1	5
	P54	7	6	D2	6
	P55	T	7	D3	7
	P56	General-purpose I/O port 5.	8	D5	8
	P57	7	-	-	9
	P58	7	-	-	10
	P59	7	-	-	11
	P5A	7	-	-	12
	P5B	7	_	_	13

Module	Pin name Function		Pin No.		
		Function	LQFP-100	BGA-112	LQFP-120
GPIO	P60		96	C4	116
	P61		95	B4	115
	P62		94	C5	114
	P63		93	D6	113
	P64	General-purpose I/O port 6.	-	-	112
	P65		-	-	111
	P66		-	-	110
	P67		-	-	109
	P68		-	-	108
	P70		-	-	51
	P71		-	-	52
	P72		-	-	53
	P73		-	_	54
	P74		-	_	55
	P80		98	A3	118
	P81	General-purpose I/O port 8.	99	A2	119
Multi Function	SINO_0		73	C11	88
Serial	SIN0_1	Multifunction serial interface ch.0 input pin.	56	H9	66
0	31110_1		30	119	00
·	SOT0_0 (SDA0_0)	Multifunction serial interface ch.0 output pin. This pin operates as SOT0 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA0	72	E8	87
	SOT0_1 (SDA0_1)	when it is used in an I ² C (operation mode 4).	57	H7	67
	SCK0_0 (SCL0_0)	Multifunction serial interface ch.0 clock I/O pin. This pin operates as SCK0 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL0 when it is used in an	71	D10	86
	SCK0_1 (SCL0_1)	I ² C (operation mode 4).	58	G10	68
Multi Function	SIN1_0	Multifunction serial interface ch.1 input pin.	-	-	8
Serial	SIN1_1	Multifunction serial interface ch. Finput pin.	53	J10	63
1	SOT1_0 (SDA1_0)	Multifunction serial interface ch.1 output pin. This pin operates as SOT1 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA1	-	-	9
	SOT1_1 (SDA1_1)	when it is used in an I ² C (operation mode 4).	54	J8	64
	SCK1_0 (SCL1_0)	Multifunction serial interface ch.1 clock I/O pin. This pin operates as SCK1 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL1 when it is used in an	-	-	10
	SCK1_1 (SCL1_1)	I ² C (operation mode 4).	55	H10	65
Multi Function	SIN2_0		-	-	53
Serial	SIN2_1	Multifunction serial interface ch.2 input pin.	-	-	85
2	SIN2_2		59	G9	69
	SOT2_0 (SDA2_0)	Multifunction serial interface ch.2 output pin.	-	-	54
	SOT2_1 (SDA2_1)	This pin operates as SOT2 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA2 when it is used in an I ² C (operation mode 4).	-	-	84
	SOT2_2 (SDA2_2)		63	G8	73
	SCK2_0 (SCL2_0)	Multifunction serial interface ch.2 clock I/O pin.	-	-	55
	SCK2_1 (SCL2_1)	This pin operates as SCK2 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL2 when it is used in an	-	-	83
	SCK2_2 (SCL2_2)	I ² C (operation mode 4).	64	F10	74

Module	Pin name	Function	Pin No.		
			LQFP-100	BGA-112	LQFP-120
Multi Function Serial 3	SIN3_0	Multifunction serial interface ch.3 input pin.	-	-	110
	SIN3_1		2	C1	2
	SIN3 2		39	K6	44
	SOT3_0			110	
	(SDA3_0)	Multifunction serial interface ch.3 output pin.	-	-	109
	SOT3_1	This pin operates as SOT3 when it is used in a	2	00	2
	(SDA3_1)	UART/CSIO/LIN (operation modes 0 to 3) and as SDA3	3	C2	3
	SOT3_2	when it is used in an I ² C (operation mode 4).	40	J6	45
	(SDA3_2)		70	30	40
	SCK3_0		_	_	108
	(SCL3_0)	Multifunction serial interface ch.3 clock I/O pin.			100
	SCK3_1	This pin operates as SCK3 when it is used in a UART/CSIO	4	B3	4
	(SCL3_1) SCK3_2	(operation modes 0 to 2) and as SCL3 when it is used in an I ² C (operation mode 4).			
	(SCL3_2)	1 C (operation mode 4).	41	L7	46
Multi Function	SIN4_0		87	D7	102
Serial	SIN4 1	Multifunction serial interface ch.4 input pin. Multifunction serial interface ch.4 output pin. This pin operates as SOT4 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA4 when it is used in an I ² C (operation mode 4).	65	F9	75
4	SIN4_2		82	C8	97
	SOT4_0				
	(SDA4_0)		88	A6	103
	SOT4_1		66	E11	76
	(SDA4_1)		00	EII	70
	SOT4_2		83	D9	98
	(SDA4_2)		00	20	00
	SCK4_0	Multifunction serial interface ch.4 clock I/O pin. This pin operates as SCK4 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL4 when it is used in an I ² C (operation mode 4).	89	B6	104
	(SCL4_0)				
	SCK4_1		67	E10	77
	(SCL4_1) SCK4_2				
	(SCL4_2)		84	A7	99
	RTS4 0		90	C6	105
	RTS4_1	Multifunction serial interface ch.4 RTS output pin.	69	E9	79
	RTS4_2		86	C7	101
	CTS4_0		91	A5	106
	CTS4 1	Multifunction serial interface ch.4 CTS input pin.	68	F8	78
	CTS4_2		85	B7	100
Multi Function	SIN5_0	Multifunction serial interface ch.5 input pin.	96	C4	116
Serial	SIN5_1		-	-	113
5	SIN5_2		15	F3	20
	SOT5_0		95	B4	115
	(SDA5_0)	Multifunction serial interface ch.5 output pin.			110
	SOT5_1	This pin operates as SOT5 when it is used in a	-	_	112
	(SDA5_1)	UART/CSIO/LIN (operation modes 0 to 3) and as SDA5			
	SOT5_2 (SDA5 2)	when it is used in an I ² C (operation mode 4).	16	G1	21
	SCK5_0				
	(SCL5_0)	Multifunction serial interface ch.5 clock I/O pin.	94	C5	114
	SCK5_1	This pin operates as SCK5 when it is used in a UART/CSIO			144
	(SCL5_1)	(operation modes 0 to 2) and as SCL5 when it is used in an	-	-	111
	SCK5_2	I ² C (operation mode 4).	17	C2	22
	(SCL5_2)	,	17	G2	22

Module	Pin name	Function	Pin No.		
		Function	LQFP-100	BGA-112	LQFP-120
Multi Function	SIN6_0	Multifunction and distantance to Observation	5	D1	5
Serial	SIN6_1	Multifunction serial interface ch.6 input pin.	12	E4	17
6	SOT6_0 (SDA6_0)	Multifunction serial interface ch.6 output pin. This pin operates as SOT6 when it is used in a	6	D2	6
	SOT6_1 (SDA6_1)	UART/CSIO/LIN (operation modes 0 to 3) and as SDA6 when it is used in an I ² C (operation mode 4).	11	E3	16
	SCK6_0 (SCL6_0)	Multifunction serial interface ch.6 clock I/O pin. This pin operates as SCK6 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCI 6 when it is used in an	7	D3	7
	SCK6_1 (SCL6_1)		10	E2	15
Multi Function	SIN7_0	Multifunction serial interface ch.7 input pin. Multifunction serial interface ch.7 output pin. This pin operates as SOT7 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA7	-	-	11
Serial	SIN7_1		45	K8	50
7	SOT7_0 (SDA7_0)		-	-	12
	SOT7_1 (SDA7_1)		44	J7	49
	SCK7_0 (SCL7_0)	Multifunction serial interface ch.7 clock I/O pin. This pin operates as SCK7 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL7 when it is used in an I ² C (operation mode 4).	-	-	13
	SCK7_1 (SCL7_1)		43	H6	48

Module	Pin name	Function	Pin No.		
wodule		Function	LQFP-100	BGA-112	LQFP-120
Multi Function	DTTI0X_0	Input signal controlling wave form generator outputs	18	F4	23
Timer	DTTI0X_1	RTO00 to RTO05 of multi-function timer 0.	69	E9	79
0	FRCK0_0	→ 16-bit tree-run timer ch Ω external clock innut nin	13	F1	18
	FRCK0_1		70	D11	80
	IC00_0		17	G2	22
	IC00_1		65	F9	75
	IC01_0		16	G1	21
	IC01_1	16-bit input capture ch.0 input pin of multi-function timer 0.	66	E11	76
	IC02_0	ICxx describes channel number.	15	F3	20
	IC02_1		67	E10	77
	IC03_0		14	F2	19
	IC03_1	1	68	F8	78
	RTO00_0 (PPG00_0)	Wave form generator output of multi-function timer 0. This pin operates as PPG00 when it is used in PPG 0 output modes.	19	G3	24
	RTO00_1 (PPG00_1)		71	D10	86
	RTO01_0 (PPG00_0)	Wave form generator output of multi-function timer 0. This pin operates as PPG00 when it is used in PPG 0 output modes.	20	H1	25
	RTO01_1 (PPG00_1)		-	-	85
	RTO02_0 (PPG02_0)	Wave form generator output of multi-function timer 0. This pin operates as PPG02 when it is used in PPG 0 output modes.	21	H2	26
	RTO02_1 (PPG02_1)		-	-	84
	RTO03_0 (PPG02_0)	Wave form generator output of multi-function timer 0. This pin operates as PPG02 when it is used in PPG 0 output modes.	22	G4	27
	RTO03_1 (PPG02_1)		-	-	83
	RTO04_0 (PPG04_0)	Wave form generator output of multi-function timer 0. This pin operates as PPG04 when it is used in PPG 0 output modes.	23	НЗ	28
	RTO04_1 (PPG04_1)		-	-	82
	RTO05_0 (PPG04_0)	Wave form generator output of multi-function timer 0. This pin operates as PPG04 when it is used in PPG 0 output modes.	24	J2	29
	RTO05_1 (PPG04_1)		-	-	81

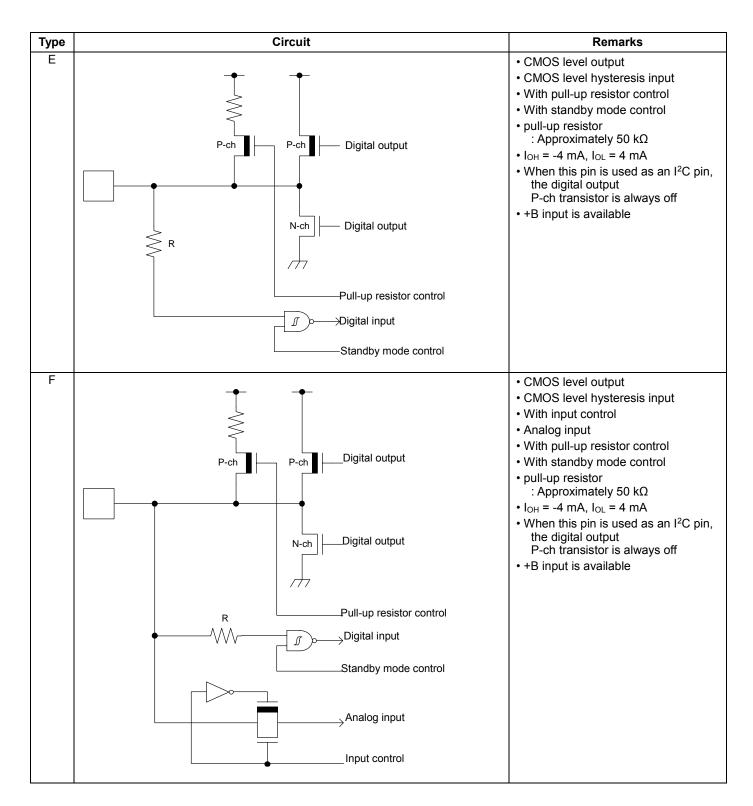
Module	Pin name	Function	Pin No.		
Module		Function	LQFP-100	BGA-112	LQFP-120
Multi Function	DTTI1X_0	Input signal controlling wave form generator outputs RTO10	8	D5	8
Timer	DTTI1X_1	to RTO15 of multi-function timer 1.	39	K6	44
1	FRCK1_0	1 16-bit trac-run timar ch 1 avtarnal clack innut nin	87	D7	102
	FRCK1_1		44	J7	49
	IC10_0		88	A6	103
	IC10_1		40	J6	45
	IC11_0		89	B6	104
	IC11_1	16-bit input capture ch.0 input pin of multi-function timer 1.	41	L7	46
	IC12_0	ICxx describes channel number.	90	C6	105
	IC12_1		42	K7	47
	IC13_0		91	A5	106
	IC13_1		43	H6	48
	RTO10_0 (PPG10_0)	Wave form generator output of multi-function timer 1. This pin operates as PPG10 when it is used in PPG 1 output modes.	2	C1	2
	RTO10_1 (PPG10_1)		27	J4	32
	RTO11_0 (PPG10_0)	Wave form generator output of multi-function timer 1. This pin operates as PPG10 when it is used in PPG 1 output modes.	3	C2	3
	RTO11_1 (PPG10_1)		28	L5	33
	RTO12_0 (PPG12_0)	Wave form generator output of multi-function timer 1. This pin operates as PPG12 when it is used in PPG 1 output modes.	4	В3	4
	RTO12_1 (PPG12_1)		29	K5	34
	RTO13_0 (PPG12_0)	Wave form generator output of multi-function timer 1. This pin operates as PPG12 when it is used in PPG 1 output modes.	5	D1	5
	RTO13_1 (PPG12_1)		30	J5	35
	RTO14_0 (PPG14_0)	Wave form generator output of multi-function timer 1. This pin operates as PPG14 when it is used in PPG 1 output modes.	6	D2	6
	RTO14_1 (PPG14_1)		31	H5	36
	RTO15_0 (PPG14_0)	Wave form generator output of multi-function timer 1. This pin operates as PPG14 when it is used in PPG 1 output modes.	7	D3	7
	RTO15_1 (PPG14_1)		32	L6	37

Module	Pin name	Function		Pin No.		
		Function	LQFP-100	BGA-112	LQFP-120	
Quadrature	AIN0_0		9	E1	14	
Position/	AIN0_1	QPRC ch.0 AIN input pin.	40	J6	45	
Revolution Counter	AIN0_2	7	2	C1	2	
0	BIN0_0		10	E2	15	
	BIN0_1	QPRC ch.0 BIN input pin.	41	L7	46	
	BIN0_2		3	C2	3	
	ZIN0_0	QPRC ch.0 ZIN input pin.	11	E3	16	
	ZIN0_1		42	K7	47	
	ZIN0_2		4	B3	4	
Quadrature	AIN1_1	QPRC ch.1 AIN input pin.	74	C10	89	
Position/	AIN1_2		43	H6	48	
Revolution Counter	BIN1_1		73	C11	88	
1	BIN1_2	QPRC ch.1 BIN input pin.	44	J7	49	
	ZIN1_1	0000 1 1 5001	72	E8	87	
	ZIN1_2	QPRC ch.1 ZIN input pin.	45	K8	50	
USB	UDM0	USB Device / HOST D – pin.	98	A3	118	
	UDP0	USB Device / HOST D + pin.	99	A2	119	
	UHCONX	USB external pull-up control pin.	95	B4	115	

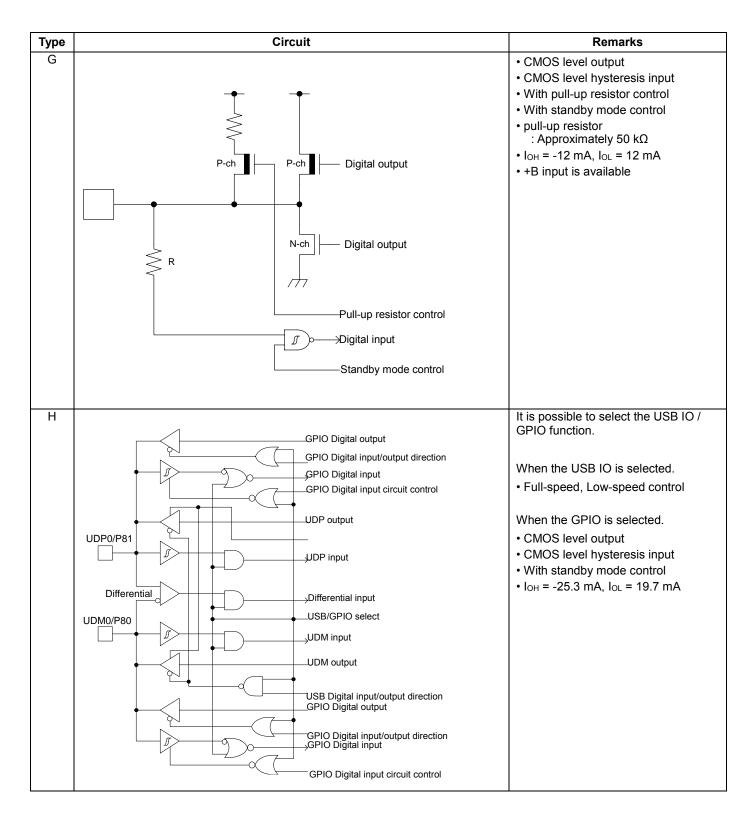
Madula	Din name	Eunation		Pin No.	
Module	Pin name	Function	LQFP-100	BGA-112	LQFP-120
Reset	INITX	External Reset Input. A reset is valid when INITX=L.	38	K4	43
Mode MD0		Mode 0 pin. During normal operation, MD0=L must be input. During serial programming to flash memory, MD0=H must be input.	47	L8	57
	MD1	Mode 1 pin. Input must always be at the "L" level.	46	K9	56
Power	VCC		1	B1	1
	VCC		26	J1	31
	VCC	Power Pin.	35	K1	40
	VCC		51	K11	61
	VCC		76	A10	91
	USBVCC	3.3V Power supply port for USB I/O.	97	A4	117
GND	VSS		-	B2	-
	VSS		25	L1	30
	VSS		-	K2	-
	VSS		-	J3	-
	VSS		-	H4	-
	VSS		34	L4	39
	VSS		50	L11	60
	VSS		-	K10	-
	VSS	GND Pin.	-	J9	-
	VSS		-	H8	-
	VSS		-	B10	-
	VSS		-	C9	-
	VSS		75	A11	90
	VSS		-	D8	-
	VSS		-	D4	-
	VSS		-	C3	-
	VSS		100	A1	120
Clock	X0	Main clock (oscillation) input pin.	48	L9	58
	X0A	Sub clock (oscillation) input pin.	36	L3	41
	X1	Main clock (oscillation) I/O pin.	49	L10	59
	X1A	Sub clock (oscillation) I/O pin.	37	K3	42
	CROUT	Built-in High-speed CR-osc clock output port.	74	C10	89
Analog	AVCC	A/D converter analog power pin.	60	H11	70
Power	AVRH	A/D converter analog reference voltage input pin.	61	F11	71
Analog GND	AVSS	A/D converter GND pin.	62	G11	72
C-pin	С	Power stabilization capacity pin.	33	L2	38

Note:


While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant
to all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in
other devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP
controller.


5. I/O Circuit Type

Туре	Circuit	Remarks
A	X1 Clock input X0 Standby mode control	 Oscillation feedback resistor Approximately 1 MΩ With Standby mode control
В	Pull-up resistor Digital input	CMOS level hysteresis input pull-up resistor : Approximately 50 kΩ
С	Mode input	CMOS level hysteresis input



6. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

6.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the datasheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

- Preventing Over-Voltage and Over-Current Conditions
 Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device,
 and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at
 the design stage.
- 2. Protection of Output Pins
 - Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device.
 - Therefore, avoid this type of connection.
- Handling of Unused Input Pins
 Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Document Number: 002-05612 Rev. *D October 23, 2017 Page 42 of 112

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

6.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.
 - When you open Dry Package that recommends humidity 40% to 70% relative humidity.
- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ).
 - Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

6.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

- 1. Humidity
 - Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.
- 2. Discharge of Static Electricity
 - When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.
- 3. Corrosive Gases. Dust. or Oil
 - Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
- 4. Radiation, Including Cosmic Radiation
 - Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.
- 5. Smoke, Flame
 - CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

7. Handling Devices

Power supply pins

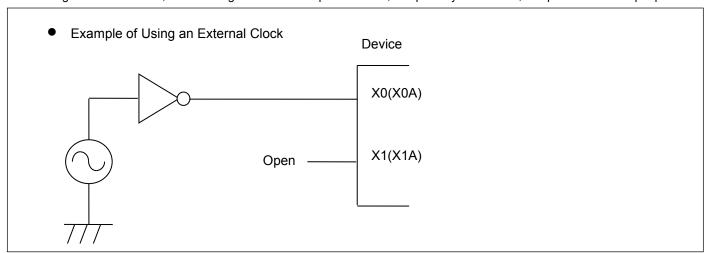
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and GND pin, between AVCC pin and AVSS pin near this device.

Stabilizing power supply voltage

A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/µs when there is a momentary fluctuation on switching the power supply.

Crystal oscillator circuit


Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation.

Evaluate oscillation of your using crystal oscillator by your mount board.

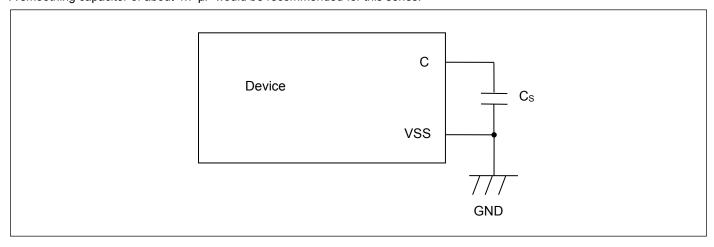
Using an external clock

When using an external clock, the clock signal should be input to the X0,X0A pin only and the X1,X1A pin should be kept open.

Handling when using Multi function serial pin as I²C pin

If it is using multi function serial pin as I²C pins, P-ch transistor of digital output is always disable. However, I²C pins need to keep the electrical characteristic like other pins and not to connect to external I²C bus system with power OFF.

Document Number: 002-05612 Rev. *D October 23, 2017 Page 45 of 112



C Pin

This series contains the regulator. Be sure to connect a smoothing capacitor (C_S) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor.

However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor.

A smoothing capacitor of about 4.7 µF would be recommended for this series.

Mode pins (MD0, MD1)

Connect the MD pin (MD0, MD1) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise.

Notes on power-on

Turn power on/off in the following order or at the same time.

If not using the A/D converter, connect AVCC = VCC and AVSS = VSS.

Turning on: VCC →USBVCC

 $VCC \rightarrow AVCC \rightarrow AVRH$

Turning off: $AVRH \rightarrow AVCC \rightarrow VCC$

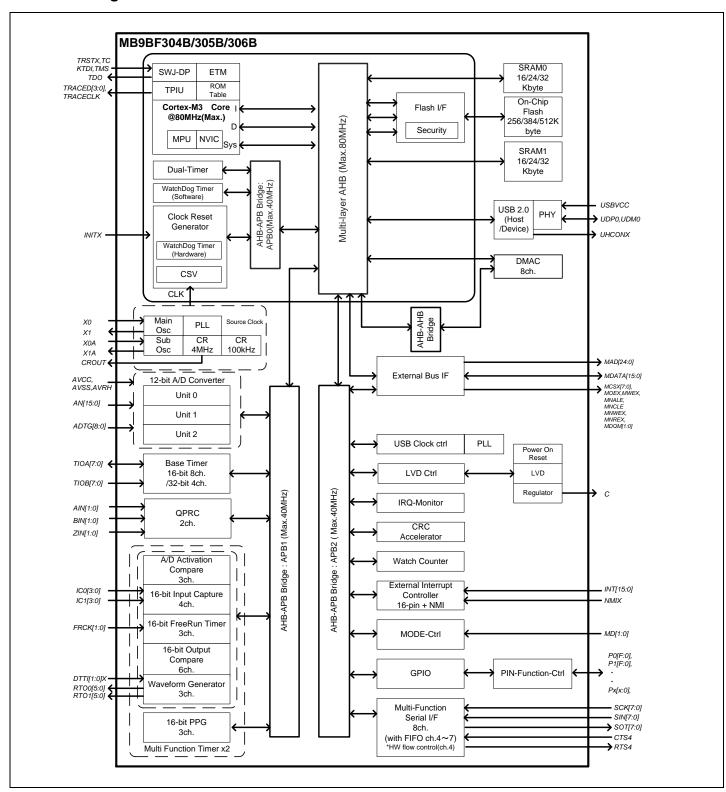
 $\mathsf{USBVCC} \to \mathsf{VCC}$

Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

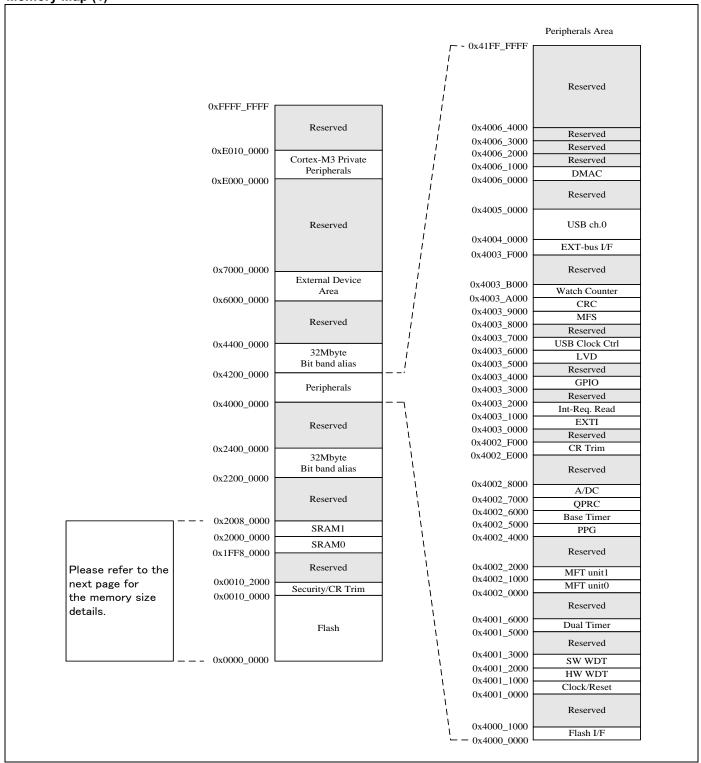
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data.


Differences in features among the products with different memory sizes and between FLASH products and MASK products

The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between FLASH products and MASK products are different because chip layout and memory structures are different.

If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.

8. Block Diagram



9. Memory Size

See "Memory size" in "1. Product Lineup" to confirm the memory size.

10. Memory Map

Memory Map (1)

Memory Map (2)

ME	89BF306NB/RI	B Mi	B9BF305NB/F	RB M	B9BF304NB/F	RB
0x2008_0000		0x2008_0000		0x2008_0000		
	Reserved		Reserved		Reserved	
0x2000_8000	SRAM1 32kbyte	0x2000_6000	SRAM1 24kbyte	0x2000_4000	SRAM1 16kbyte	
0x2000_0000	SRAM0 32Kbyte	0x2000_0000 0x1FFF_A000	SRAM0 24kbyte	0x2000_0000 0x1FFF_C000	SRAM0 16kbyte	
)x1FFF_8000	Reserved		Reserved		Reserved	
0x0010_2000 0x0010_1000 0x0010_0000	CR trimming Security	0x0010_2000 0x0010_1000 0x0010_0000	CR trimming Security	0x0010_2000 0x0010_1000 0x0010_0000	CR trimming Security	
0x0008_0000	Reserved		Reserved		Reserved	
	SA10-15(64KBx6)	0x0006_0000 Flash 512Kbvte	SA10-13(64KBx4)	0x0004_0000 Flash 384Kbyte	SA10-11(64KBx2)	Flash
	SA8-9(48KBx2) SA4-7(8KBx4)	•	SA8-9(48KBx2)	Kbyte	SA8-9(48KBx2)	Flash 256Kbyte

^{*:} See "MB9B500/400/300/100/MB9A100 Series Flash Programming Manual" for sector structure of Flash.

Peripheral Address Map

Start address	End address	Bus	Peripherals
0x4000_0000	0x4000_0FFF	ALIB	Flash Memory I/F register
0x4000_1000	0x4000_FFFF	AHB	Reserved
0x4001_0000	0x4001_0FFF		Clock/Reset Control
0x4001_1000	0x4001_1FFF		Hardware Watchdog timer
0x4001_2000	0x4001_2FFF	ADDO	Software Watchdog timer
0x4001_3000	0x4001_4FFF	APB0	Reserved
0x4001_5000	0x4001_5FFF		Dual-Timer
0x4001_6000	0x4001_FFFF		Reserved
0x4002_0000	0x4002_0FFF		Multi-function timer unit0
0x4002_1000	0x4002_1FFF		Multi-function timer unit1
0x4002_2000	0x4002_3FFF		Reserved
0x4002_4000	0x4002_4FFF		PPG
0x4002_5000	0x4002_5FFF	A DD4	Base Timer
0x4002_6000	0x4002_6FFF	APB1	Quadrature Position/Revolution Counter
0x4002_7000	0x4002_7FFF		A/D Converter
0x4002_8000	0x4002_DFFF		Reserved
0x4002_E000	0x4002_EFFF		Internal CR trimming
0x4002_F000	0x4002_FFFF		Reserved
0x4003_0000	0x4003_0FFF		External Interrupt Controller
0x4003_1000	0x4003_1FFF		Interrupt Request Batch-Read Function
0x4003_2000	0x4003_2FFF		Reserved
0x4003_3000	0x4003_3FFF		GPIO
0x4003_4000	0x4003_4FFF		Reserved
0x4003_5000	0x4003_5FFF		Low Voltage Detector
0x4003_6000	0x4003_6FFF	APB2	USB clock generator
0x4003_7000	0x4003_7FFF		Reserved
0x4003_8000	0x4003_8FFF		Multi-function serial Interface
0x4003_9000	0x4003_9FFF		CRC
0x4003_A000	0x4003_AFFF		Watch Counter
0x4003_B000	0x4003_EFFF		Reserved
0x4003_F000	0x4003_FFFF		External Memory interface
0x4004_0000	0x4004_FFFF		USB ch.0
0x4005_0000	0x4005_FFFF		Reserved
0x4006_0000	0x4006_0FFF		DMAC register
0x4006_1000	0x4006_1FFF	AHB	Reserved
0x4006_2000	0x4006_2FFF		Reserved
0x4006_3000	0x4006_3FFF		Reserved
0x4006_4000	0x41FF_FFFF		Reserved

11. Pin Status in Each CPU State

The terms used for pin status have the following meanings.

■INITX=0

This is the period when the INITX pin is the "L" level.

■INITX=1

This is the period when the INITX pin is the "H" level.

■SPL=0

This is the status that standby pin level setting bit (SPL) in standby mode control register (STB CTL) is set to "0".

■SPL=1

This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to "1".

■Input enabled

Indicates that the input function can be used.

■Internal input fixed at "0"

This is the status that the input function cannot be used. Internal input is fixed at "L".

■Hi-Z

Indicates that the output drive transistor is disabled and the pin is put in the Hi-Z state.

■ Setting disabled

Indicates that the setting is disabled.

■ Maintain previous state

Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained.

■Analog input is enabled

Indicates that the analog input is enabled.

■ Trace output

Indicates that the trace function can be used.

List of Pin Status

Pin status		Power-on reset or low voltage detection state	INITX input state	Device internal reset state	Run mode or sleep mode state	Timer mode or sleep mode state		
type	Function group	supply Power supply stable unstable		Power supply stable	Power supply stable			
		-	INITX=0	INITX=1	INITX=1		X=1	
		-	-	-	-	SPL=0	SPL=1	
Α	Main crystal oscillator input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	
В	Main crystal oscillator output pin	H output/ Internal input fixed at "0"/ or Input enabled	H output/ Internal input fixed at "0"	H output/ Internal input fixed at "0"	Maintain previous state/ H output at oscillation stop*1/ Internal input fixed at "0"	Maintain previous state/ H output at oscillation stop*1/ Internal input fixed at "0"	Maintain previous state/ H output at oscillation stop*1/ Internal input fixed at "0"	
С	INITX input pin	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	
D	Mode input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	
	JTAG selected	Hi-Z	Pull-up/ Input enabled	Pull-up/ Input enabled		Maintain	Maintain previous state	
E	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"	
	Trace selected		Setting	Setting			Trace output	
-	External interrupt enabled selected	Setting disabled	disabled	disabled	Maintain	Maintain	Maintain previous state	
F	GPIO selected, or other than above resource selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled	previous state	previous state	Hi-Z/ Internal input fixed at "0"	
	Trace selected	Setting disabled	Setting disabled	Setting disabled	Matudato	Maturia	Trace output	
G	GPIO selected, or other than above resource selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"	
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled	Maintain	Maintain	Maintain previous state	
Н	GPIO selected, or other than above resource selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"	

Page 53 of 112

Pin status		Power-on reset or low voltage detection state	INITX input state	Device internal reset state	Run mode or sleep mode state		Timer mode or sleep mode state	
type	Function group	Power supply unstable	Power sup	oply stable	Power supply stable	Power supply stable		
		-	INITX=0 INITX=1		INITX=1	INIT	`X=1	
		-	-	-	-	SPL=0	SPL=1	
1	GPIO selected, resource selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"	
	NMIX selected	Setting disabled	Setting disabled	Setting disabled			Maintain previous state	
J	GPIO selected, or other than above resource selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"	
К	Analog input selected	Hi-Z	Hi-Z/ Internal input fixed at "0"/ Analog input enabled					
	GPIO selected, or other than above resource selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"	
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state	
L	Analog input selected	Hi-Z	Hi-Z/ Internal input fixed at "0"/ Analog input enabled					
	GPIO selected, or other than above resource selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"	
М	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"	
	Sub crystal oscillator input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	

Pin status		Power-on reset or low voltage detection state	INITX input state	Device internal reset state	Run mode or sleep mode state		or sleep mode ate
type	Function group	Power supply unstable	Power supply stable		Power supply stable	Power supply stable	
		-	INITX=0	INITX=1	INITX=1		TX=1
		-	-	-	-	SPL=0	SPL=1
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"
N	Sub crystal oscillator output pin	Hi-Z/ Internal input fixed at "0"	Hi-Z/ Internal input fixed at "0"	Hi-Z/ Internal input fixed at "0"	Maintain previous state	Maintain previous state/ Hi-Z at oscillation stop*2/ Internal input fixed at "0"	Maintain previous state/ Hi-Z at oscillation stop*2/ Internal input fixed at "0"
	GPIO selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"
0	USB I/O pin	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Hi-Z at transmission/ Input enabled/ Internal input fixed at "0" at reception	Hi-Z at transmission/ Input enabled/ Internal input fixed at "0" at reception

^{*1:} Oscillation is stopped at sub timer mode, Low speed CR timer mode, and stop mode.

^{*2:} Oscillation is stopped at stop mode.

12. Electrical Characteristics

12.1 Absolute Maximum Ratings

Parameter	Symbol		Rating	Unit	Remarks
	Syllibol	Min	Max	Oilit	Remarks
Power supply voltage*1, *2	Vcc	Vss - 0.5	Vss + 6.5	V	
Power supply voltage (for USB)*1,*3	USBVcc	Vss - 0.5	Vss + 6.5	V	
Analog power supply voltage*1, *4	AVcc	Vss - 0.5	Vss + 6.5	V	
Analog reference voltage*1, *4	AVRH	Vss - 0.5	Vss + 6.5	V	
nput voltage*1	V	Vss - 0.5	Vcc + 0.5 (≤ 6.5V)	V	Except for USB pin
nput voltage	Vı	Vss - 0.5	USBVcc + 0.5 (≤ 6.5V)	V	USB pin
Analog pin input voltage ^{*1}	V _{IA}	Vss - 0.5	AVcc + 0.5 (≤ 6.5V)	V	
Output voltage*1	Vo	Vss - 0.5	Vcc + 0.5 (≤ 6.5V)	V	
Clamp maximum current	I _{CLAMP}	-2	+2	mA	*8
Clamp total maximum current	Σ[I _{CLAMP}]		+20	mA	*8
			10	mA	4 mA type
'L" level maximum output current ^{*5}	I _{OL}	-	20	mA	12 mA type
			39	mA	P80, P81
			4	mA	4 mA type
L" level average output current*6	I _{OLAV}	-	12	mA	12 mA type
			19.7	mA	P80, P81
L" level total maximum output current	ΣI _{OL}	-	100	mA	
L" level total average output current*7	∑I _{OLAV}	-	50	mA	
			- 10	mA	4 mA type
H" level maximum output current*5	I _{OH}	-	- 20	mA	12 mA type
			- 39	mA	P80, P81
			- 4	mA	4 mA type
H" level average output current*6	I _{OHAV}	-	- 12	mA	12 mA type
			- 25.3	mA	P80, P81
H" level total maximum output current	∑I _{OH}	-	- 100	mA	
H" level total average output current*7	∑I _{OHAV}	-	- 50	mA	
Power consumption	P _D	-	800	mW	
Storage temperature	T _{STG}	- 55	+ 150	°C	

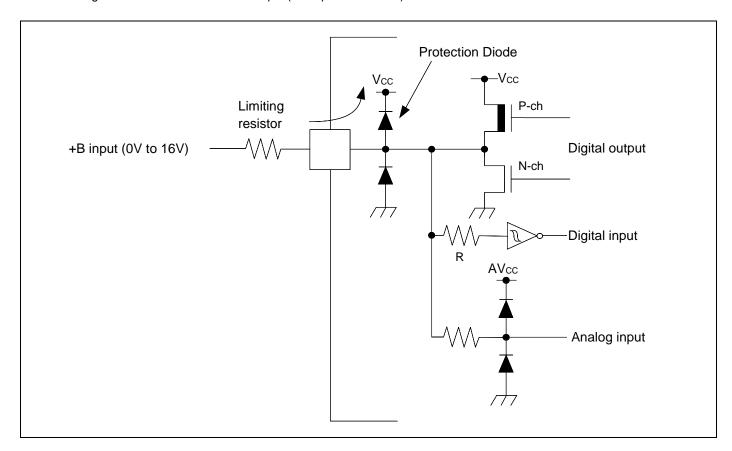
^{*1:} These parameters are based on the condition that Vss = AVss = 0.0 V.

^{*2:} Vcc must not drop below Vss - 0.5 V.

^{*3:} USBVcc must not drop below Vss - 0.5 V.

^{*4:} Be careful not to exceed Vcc + 0.5 V, for example, when the power is turned on.

^{*5:} The maximum output current is the peak value for a single pin.


^{*6:} The average output is the average current for a single pin over a period of 100 ms.

^{*7:} The total average output current is the average current for all pins over a period of 100 ms.

*8

- See "4. List of Pin Functions" and "5. I/O Circuit Type" about +B input available pin.
- Use within recommended operating conditions.
- Use at DC voltage (current) the +B input.
- The +B signal should always be applied a limiting resistance placed between the +B signal and the device.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the device pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the device drive current is low, such as in the low-power consumption modes, the +B input potential may pass through the protective diode and increase the potential at the VCC and AVCC pin, and this may affect other devices.
- Note that if a +B signal is input when the device power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- The following is a recommended circuit example (I/O equivalent circuit).

WARNING:

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess
of absolute maximum ratings. Do not exceed these ratings.

12.2 Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Por	rameter	Symbol	Conditions	\	/alue	Unit	Remarks
Pai	rameter	Symbol	Conditions	Min	Max	Offic	Remarks
Power supply volta	ge	Vcc	-	2.7 *4	5.5	٧	
Power supply voltage for USB		USBVcc -		3.0	3.6 (≤ Vcc)	V	*1
				2.7	5.5 (≤ Vcc)		*2
Analog power supp	oly voltage	AVcc	-	2.7	5.5	V	AVcc = Vcc
Analog reference v	roltage	AVRH	-	2.7	AVcc	V	
Smoothing capacit	or	Cs	-	1	10	μF	For built-in regulator *3
Operating	LQM120	_	When mounted on four-layer PCB	- 40	+ 85	°C	
Temperature	LQI100 LBC112	T _A	When mounted	- 40	+ 85	°C	Icc ≤ 100 mA
			on double-sided single-layer PCB	- 40	+ 70	°C	Icc > 100 mA

^{*1:} When P81/UDP0 and P80/UDM0 pin are used as USB (UDP0, UDM0).

WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the datasheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

^{*2:} When P81/UDP0 and P80/UDM0 pin are used as GPIO (P81, P80).

^{*3:} See "C Pin" in "7. Handling Devices" for the connection of the smoothing capacitor.

^{*4:} In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR (including Main PLL is used) or built-in Low-speed CR is possible to operate only.

12.3 DC Characteristics

12.3.1 Current Rating

(Vcc = AVcc = USBVcc = 2.7 V to 5.5 V, Vss = AVss = 0 V, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$)

_		Pin			Va	lue	J		
Parameter	Symbol	name		Conditions	Typ *3	Max *4	Unit	Remarks	
				CPU: 80 MHz, Peripheral: 40 MHz, FLASH 2 Wait FRWTR.RWT = 10 FSYNDN.SD = 000	96	118	mA	*1, *5	
			PLL RUN mode	CPU: 60 MHz, Peripheral: 30 MHz, FLASH 0 Wait FRWTR.RWT = 00 FSYNDN.SD = 000	76	94	mA	*1, *3	
		VCC		CPU: 80 MHz, Peripheral: 40 MHz, FLASH 5 Wait FRWTR.RWT = 10 FSYNDN.SD = 011	66	82	mA	*1, *5	
RUN mode current	Icc			CPU: 60 MHz, Peripheral: 30 MHz, FLASH 3Wait FRWTR.RWT = 00 FSYNDN.SD = 011	52	65	mA	*3, *5	
			High-speed CR RUN mode	CPU/Peripheral: 4 MHz ⁻² FLASH 0Wait FRWTR.RWT = 00 FSYNDN.SD = 000	6.0	9.2	mA	*1	
			Sub RUN mode	CPU/Peripheral: 32 kHz FLASH 0Wait FRWTR.RWT = 00 FSYNDN.SD = 000	0.2	2.24	mA	*1, *6	
			Low-speed CR RUN mode	CPU/Peripheral: 100 kHz FLASH 0Wait FRWTR.RWT = 00 FSYNDN.SD = 000	0.3	2.36	mA	*1	
			PLL SLEEP mode	Peripheral: 40 MHz	43	54	mA	*1, *5	
SLEEP mode	loce		High-speed CR SLEEP mode	Peripheral: 4 MHz*2	3.5	6.2	mA	*1	
current	Iccs	Sub SLEEP mode	Peripheral: 32 kHz	0.15	2.18	mA	*1, *6		
			Low-speed CR SLEEP mode	Peripheral: 100 kHz	0.22	2.27	mA	*1	

^{*1:} When all ports are fixed.

^{*2:} When setting it to 4 MHz by trimming.

^{*3:} T_A =+25°C, V_{CC} =3.3 V

^{*4:} T_A=+85°C, V_{CC}=5.5 V

^{*5:} When using the crystal oscillator of 4 MHz (Including the current consumption of the oscillation circuit)

^{*6:} When using the crystal oscillator of 32 kHz (Including the current consumption of the oscillation circuit)

(Vcc = AVcc = USBVcc = 2.7 V to 5.5 V, Vss = AVss = 0 V, T_A = -40°C to +85°C)

Dawamatan	Cumphal	Pin		Canditions	Va	lue	11	Remarks
Parameter	Symbol	name	Conditions		Typ *2	Max *3	Unit	Remarks
		Main TIMER mode	Ta = + 25°C, When LVD is off	2.4	2.5	mA	*1, *4	
TIMER	mode current I _{CCT}		Ta = + 85°C, When LVD is off	-	5.4	mA	*1, *4	
current			Sub TIMER mode	Ta = + 25°C, When LVD is off	110	300	μΑ	*1, *5
		VCC		Ta = + 85°C, When LVD is off	-	2.2	mA	*1, *5
STOP			STOD made	Ta = + 25°C, When LVD is off	50	200	μΑ	*1
mode current	Icch		STOP mode	Ta = + 85°C, When LVD is off	-	2	mA	*1

^{*1:} When all ports are fixed.

Low-Voltage Detection Current

 $(V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks	
Parameter	Syllibol	name	Conditions	Тур	Max	Oilit	Remarks	
Low-Voltage detection circuit (LVD) power supply current	Icclvd	vcc	At operation for interrupt	2	10	μΑ	At not detect	

Flash Memory Current

 $(V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks	
Farameter	Symbol	name	Conditions	Тур	Max	Ullit	Remarks	
Flash memory write/erase current	Iccflash	VCC	At Write/Erase	13	24	mA		

A/D Converter Current

 $(V_{CC} = AV_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS} = AV_{RL} = 0 \text{ V}, T_{A} = -40 ^{\circ}\text{C to } + 85 ^{\circ}\text{C})$

Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks	
Parameter	Syllibol	name	Conditions	Тур	Max	Ullit	Remarks	
Davis sounds sound		A) (O)	At 1unit operation	2.3	3.6	mA		
Power supply current I _{CCAD}	ICCAD	AVCC	At stop	0.1	2	μΑ		
Reference power	I _{CCAVRH}	AVRH	At 1unit operation AVRH=5.5V	2.2	3.0	mA		
supply current			At stop	0.03	0.6	μА		

Document Number: 002-05612 Rev. *D October 23, 2017 Page 59 of 112

^{*2:} V_{CC}=3.3 V

^{*3:} V_{CC}=5.5 V

^{*4:} When using the crystal oscillator of 4 MHz (Including the current consumption of the oscillation circuit)

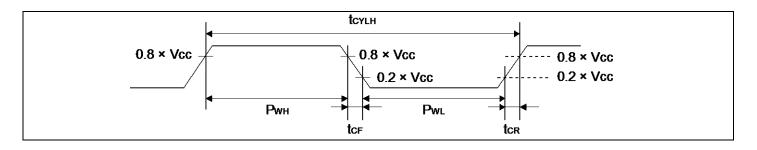
^{*5:} When using the crystal oscillator of 32 kHz (Including the current consumption of the oscillation circuit)

12.3.2 Pin Characteristics

(Vcc = AVcc = 2.7 V to 5.5 V, Vss = AVss = 0 V, T_A = - 40°C to + 85°C)

	0	D	0 !!!!		Value			
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
"H" level input voltage (hysteresis input)	V _{IHS}	CMOS hysteresis input pin, MD0,1	-	Vcc× 0.8	-	Vcc+ 0.3	V	
"L" level input voltage (hysteresis input)	V _{ILS}	CMOS hysteresis input pin, MD0,1	-	Vss- 0.3	-	Vcc× 0.2	V	
		4mA type	$Vcc \ge 4.5 \text{ V}$ $I_{OH} = -4 \text{ mA}$ $Vcc < 4.5 \text{ V}$ $I_{OH} = -2 \text{ mA}$	Vcc- 0.5	-	Vcc	V	
"H" level output voltage	V _{OH}	12 mA type	$Vcc \ge 4.5 \text{ V}$ I_{OH} = - 12 mA $Vcc < 4.5 \text{ V}$ I_{OH} = - 8 mA	Vcc- 0.5	-	Vcc	V	
P	P80, P81	$Vcc \ge 4.5 \text{ V}$ I_{OH} = - 25.3 mA $Vcc < 4.5 \text{ V}$ I_{OH} = - 13.4 mA	- Vcc- 0.4	-	Vcc	V		
		4mA type	$Vcc \ge 4.5 \text{ V}$ $I_{OL} = 4 \text{ mA}$ $Vcc < 4.5 \text{ V}$ $I_{OL} = 2 \text{ mA}$	- Vss	-	0.4	٧	
"L" level output voltage	V _{OL}	12mA type	$\label{eq:Vcc} \begin{split} &\text{Vcc} \geq 4.5 \text{ V} \\ &\text{I}_{\text{OL}} = 12 \text{ mA} \\ &\text{Vcc} < 4.5 \text{ V} \\ &\text{I}_{\text{OL}} = 8 \text{ mA} \end{split}$	- Vss	-	0.4	V	
		P80, P81	$Vcc \ge 4.5 \text{ V}$ $I_{OL} = 19.7 \text{ mA}$ $Vcc < 4.5 \text{ V}$ $I_{OL} = 11.9 \text{ mA}$	- Vss	-	0.4	V	
Input leak current	I _{IL}	-	-	- 5	-	5	μA	
Pull-up resistance value	R _{PU}	Pull-up pin	Vcc ≥ 4.5 V	25	50	100	kΩ	
		011 11	Vcc < 4.5 V	30	80	200		
Input capacitance	C _{IN}	Other than Vcc, Vss, AVcc, AVss, AVRH	-	-	5	15	pF	

12.4 AC Characteristics

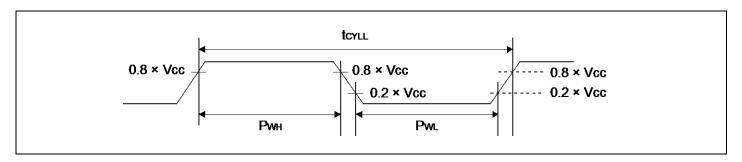

12.4.1 Main Clock Input Characteristics

 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to + 85^{\circ}C)$

		Pin	0	V	alue	11.24	B1
Parameter	Symbol	name	Conditions	Min	Max	Unit	Remarks
			Vcc ≥ 4.5 V	4.5 V 4 48		MHz	When crystal oscillator is
Input frequency	-		Vcc < 4.5 V	4	20	IVITIZ	connected
input frequency	F _{CH}		$Vcc \ge 4.5 V$	4	48	MHz	When using external
			Vcc < 4.5 V	4	20	IVII IZ	clock
Input clock cycle	1.	X0	$Vcc \ge 4.5 V$	20.83	250	no	When using external
input clock cycle	t _{CYLH}	X1	Vcc < 4.5 V	50	250	ns	clock
Input clock pulse width	-		PWH/tCYLH PWL/tCYLH	45	55	%	When using external clock
Input clock rise time and fall time	t _{CF} t _{CR}		-	-	5	ns	When using external clock
	F _{CM}	-	-	-	80	MHz	Master clock
Internal operating	Fcc	-	-	-	80	MHz	Base clock (HCLK/FCLK)
clock*1	F _{CP0}	-	-	-	40	MHz	APB0 bus clock *2
frequency	F _{CP1}	-	-	-	40	MHz	APB1 bus clock *2
	F _{CP2}	-	-	-	40	MHz	APB2 bus clock *2
Internal operating	t _{cycc}	-	-	12.5	-	ns	Base clock (HCLK/FCLK)
clock *1	t _{CYCP0}	-	-	25	-	ns	APB0 bus clock *2
cycle time	t _{CYCP1}	-	-	25	-	ns	APB1 bus clock *2
	t _{CYCP2}	-	-	25	-	ns	APB2 bus clock *2

^{*1:} For more information about each internal operating clock, see "Chapter 2-1: Clock" in "FM3 Family Peripheral Manual".

^{*2:} For about each APB bus which each peripheral is connected to, see "8. Block Diagram" in this datasheet.



12.4.2 Sub Clock Input Characteristics

(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = - 40°C to + 85°C)

Parameter	Symbol	Pin name	Conditions		Value			Remarks	
Farameter	Syllibol		Conditions	Min	Тур	Max	Unit	Remarks	
Input frequency	F _{CL}	X0A X1A	-	-	32.768	-	kHz	When crystal oscillator is connected	
. ,			-	32	-	100	kHz	When using external clock	
Input clock cycle	t _{CYLL}		-	10	-	31.25	μs	When using external clock	
Input clock pulse width	-		P _{WH} /t _{CYLL} P _{WL} /t _{CYLL}	45	-	55	%	When using external clock	

12.4.3 Built-in CR Oscillation Characteristics

Built-in high-speed CR

 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to + 85^{\circ}C)$

Parameter	Symbol	Conditions		Value		Unit	Remarks	
Parameter	Symbol	Conditions	Min	Тур	Max	Ullit		
		T _A = + 25°C	3.92	4	4.08		When trimming *1	
Clock frequency	F _{CRH}	T _A = 0°C to + 70°C	3.84	4	4.16	MHz		
		T _A = - 40°C to + 85°C	3.8	4	4.2			
			3	4	6		When not trimming	
Frequency stability time	t _{CRWT}	-	-	-	50	μs	*2	

^{*1:} In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming.

Built-in low-speed CR

 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to + 85^{\circ}C)$

Parameter	Symbol	Conditions		Value		Unit	Remarks	
	Symbol	Conditions	Min	Тур	Max	5		
Clock frequency	F _{CRL}	-	50	100	150	kHz		

Document Number: 002-05612 Rev. *D October 23, 2017 Page 63 of 112

^{*2:} Frequency stable time is time to stable of the frequency of the High-speed CR clock after the trim value is set. After setting the trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock.

12.4.4 Operating Conditions of Main and USB PLL (In the case of using main clock for input of PLL)

 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to + 85^{\circ}C)$

Parameter	Symbol	Value			Unit	Remarks
Farameter	Symbol	Min	Тур	Max	Onit	Remarks
PLL oscillation stabilization wait time (LOCK UP time) *1	t _{LOCK}	100	-	-	μs	
PLL input clock frequency	f _{PLLI}	4	-	30	MHz	
PLL multiple rate	-	4	-	30	multiple	
PLL macro oscillation clock frequency	f _{PLLO}	60	-	120	MHz	
Main PLL clock frequency *2	F _{CLKPLL}	-	-	80	MHz	
USB clock frequency*3	F _{CLKSPLL}	-	-	48	MHz	After the M frequency division

^{*1:} Time from when the PLL starts operating until the oscillation stabilizes.

12.4.5 Operating Conditions of Main PLL (In the case of using built-in high speed CR)

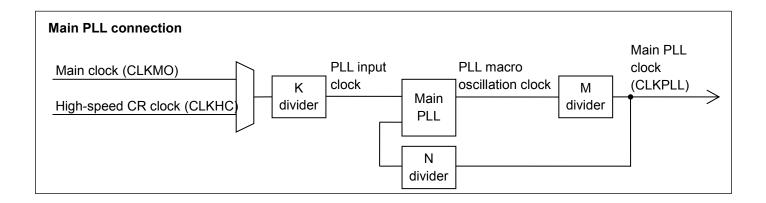
 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

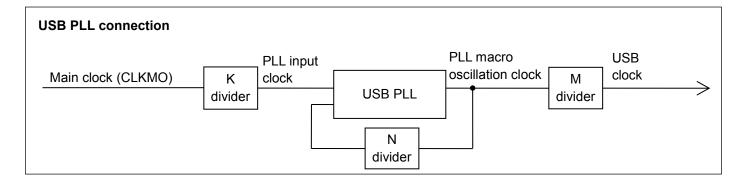
Parameter	Symbol	Value			Unit	Remarks
Farameter	Syllibol	Min	Тур	Max	Onit	Remarks
PLL oscillation stabilization wait time (LOCK UP time) *1	t _{LOCK}	100	-	-	μs	
PLL input clock frequency	f _{PLLI}	3.8	4	4.2	MHz	
PLL multiple rate	-	15	-	28	multiple	
PLL macro oscillation clock frequency	f _{PLLO}	57	-	120	MHz	
Main PLL clock frequency *2	F _{CLKPLL}	-	-	80	MHz	

^{*1:} Time from when the PLL starts operating until the oscillation stabilizes.

Note:

- Make sure to input to the main PLL source clock, the high-speed CR clock (CLKHC) that the frequency has been trimmed.

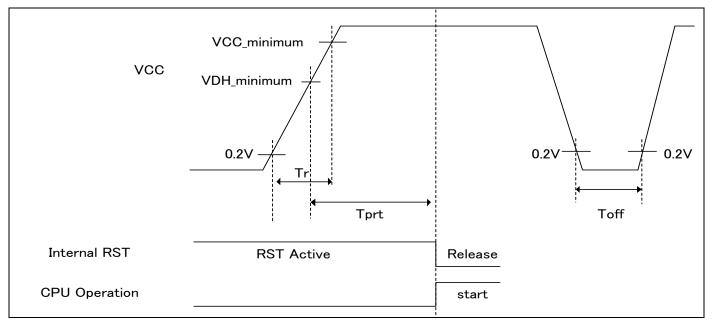

Document Number: 002-05612 Rev. *D October 23, 2017 Page 64 of 112


^{*2:} For more information about Main PLL clock (CLKPLL), see "Chapter 2-1: Clock" in "FM3 Family Peripheral Manual".

^{*3:} For more information about USB clock, see "Chapter 2-2: USB Clock Generation" in "FM3 Family Peripheral Manual Communication Macro Part".

^{*2:} For more information about Main PLL clock (CLKPLL), see "Chapter 2-1: Clock" in "FM3 Family Peripheral Manual".

12.4.6 Reset Input Characteristics


 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to + 85^{\circ}C)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
i didilietei	- Cyllidol		Gorialitionio	Min	Max	O	. toarito
Reset input time	t _{INITX}	INITX	-	500	-	ns	

12.4.7 Power-on Reset Timing

 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to + 85^{\circ}C)$

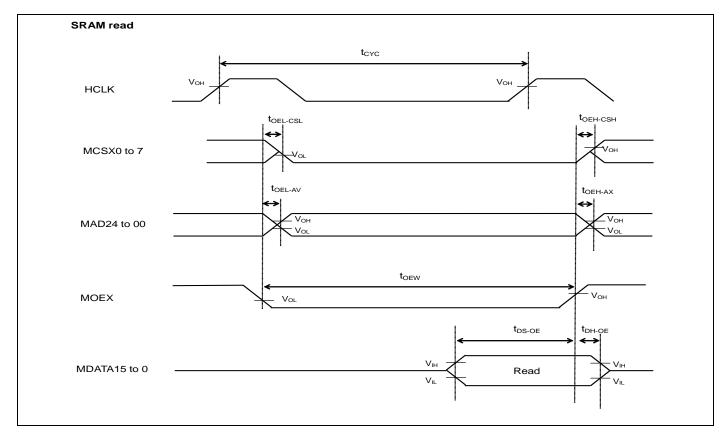
Parameter	Symbol	Pin name	Val	ue	Unit	Remarks
Farameter	Symbol		Min	Max	Oille	Remarks
Power supply rising time	Tr		0	-	ms	
Power supply shut down time	Toff	VCC	1	-	ms	
Time until releasing Power-on reset	Tprt		0.422	0.704	ms	

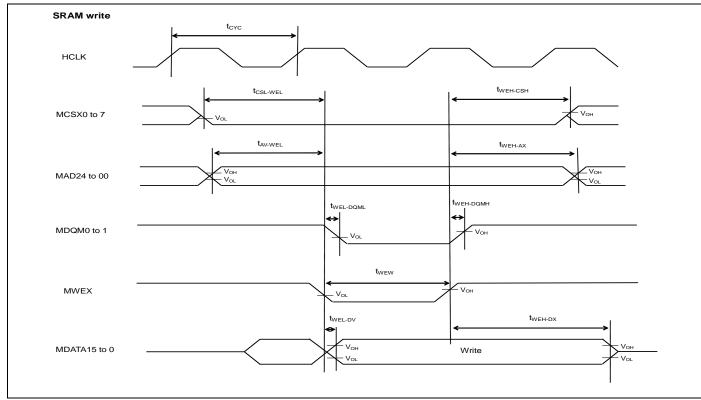
Glossary

VCC_minimum: Minimum Vcc of recommended operating conditions VDH_minimum: Minimum release voltage of Low-Voltage detection reset. See "12.7. Low-Voltage Detection Characteristics"

12.4.8 External Bus Timing

Asynchronous SRAM Mode


 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

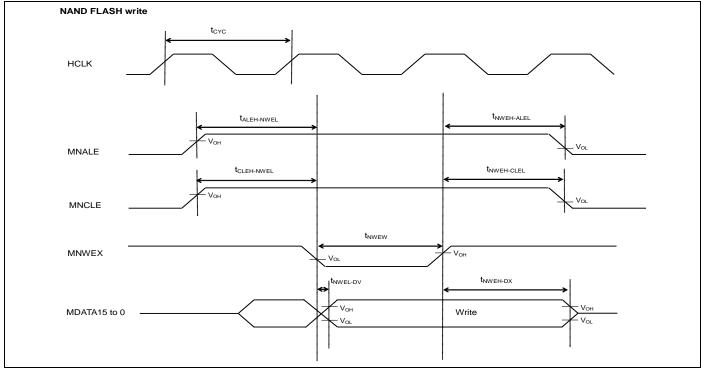

Devenuetes	Complete	Din nome	Conditions	Valu	ıe	Unit	Domorko
Parameter	Symbol	Pin name	Conditions	Min	Max	Unit	Remarks
MOEX		MOEV	Vcc ≥ 4.5 V	T 10			
Min pulse width	toew	MOEX	Vcc < 4.5 V	T _{HCLK} ×1 - 3	-	ns	
MOEX↓⇒		MOEX	Vcc ≥ 4.5 V	0	10		
Address delay time	t _{OEL - AV}	MAD24 to 00	Vcc < 4.5 V	0	20	ns	
MOEX ↑ ⇒		MOEX	Vcc ≥ 4.5 V	0	10		
Address delay time	t _{OEH - AX}	MAD24 to 00	Vcc < 4.5 V	0	20	ns	
MOEX↓⇒		MOEX	Vcc ≥ 4.5 V		40		
MCSX ↓ delay time	t _{OEL - CSL}	MCSX	Vcc < 4.5 V	0	10	ns	
MOEX ↑ ⇒		MOEX	Vcc ≥ 4.5 V	0	40		
MCSX ↑ delay time	t _{OEH - CSH}	MCSX	Vcc < 4.5 V	0	10	ns	
Data set up		MOEX	Vcc ≥ 4.5 V	20	-		
⇒MOEX ↑ time	t _{DS - OE}	MDATA15 to 0	Vcc < 4.5 V	38	-	ns	
MOEX ↑ ⇒		MOEX	Vcc ≥ 4.5 V	0			
Data hold time	t _{DH - OE}	MDATA15 to 0	Vcc < 4.5 V	0	-	ns	
MCSX↓⇒	4	MCSX	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 5	-	no	
MWEX ↓ delay time	t _{CSL - WEL}	MWEX	Vcc < 4.5 V	T _{HCLK} ×1 - 10	-	ns	
MWEX↑⇒	+	MCSX	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 5	-	no	
MCSX ↑ delay time	t _{weh - CSH}	MWEX	Vcc < 4.5 V	T _{HCLK} ×1 - 10	-	ns	
$Address \Rightarrow$	+	MWEX	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 5	-	ns	
MWEX ↓ delay time	t _{AV - WEL}	MAD24 to 00	Vcc < 4.5 V	T _{HCLK} ×1 - 15	-	115	
MWEX↑⇒	+	MWEX	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 5	-	ns	
Address delay time	t _{WEH-AX}	MAD24 to 00	Vcc < 4.5 V	T _{HCLK} ×1 - 15	-	115	
$MWEX \downarrow \Rightarrow$	t	MWEX	Vcc ≥ 4.5 V	0	5	ns	
MDQM ↓ delay time	t _{WEL - DQML}	MDQM0 to 1	Vcc < 4.5 V	0	10	115	
MWEX↑⇒	t _{WEH - DOMH}	MWEX	Vcc ≥ 4.5 V	0	5	ns	
MDQM ↑ delay time	WEH - DQMH	MDQM0 to 1	Vcc < 4.5 V	0	10	113	
MWEX	t _{WFW}	MWEX	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 3	_	ns	
Min pulse width	WEW		Vcc < 4.5 V			113	
$MWEX \downarrow \Rightarrow$	turn ou	MWEX	Vcc ≥ 4.5 V	- 5	5	ns	
Data delay time	t _{WEL - DV}	MDATA15 to 0	Vcc < 4.5 V	-15	15	113	
$MWEX \uparrow \Rightarrow$	turn av	MWEX	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 5	-	ns	
Data delay time	t _{WEH - DX}	MDATA15 to 0	Vcc < 4.5 V	T _{HCLK} ×1 - 15	-	113	

Note:

When the external load capacitance = 50 pF.

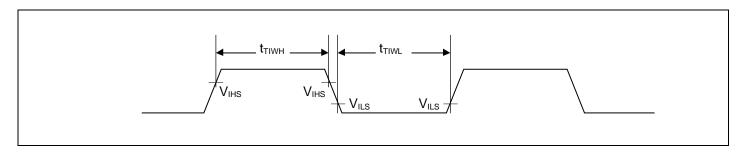
NAND FLASH mode

 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to + 85^{\circ}C)$


Parameter	Symbol	Pin name	Conditions	Valu	е	Unit	Remarks
	Syllibol		Conditions	Min	Max	Ullit	Remarks
MNREX	+	MNREX	Vcc ≥ 4.5 V	T v1 2		ns	
Min pulse width	t _{NREW}		Vcc < 4.5 V	T _{HCLK} ×1 - 3	-	115	
Data set up	4	MNREX	Vcc ≥ 4.5 V	20		ns	
⇒ MNREX ↑ tiime	t _{DS - NRE}	MDATA15 to 0	Vcc < 4.5 V	38	-	115	
MNREX↑⇒	4	MNREX	Vcc ≥ 4.5 V	0	-	ns	
Data hold time	t _{DH - NRE}	MDATA15 to 0	Vcc < 4.5 V	0	-	115	
MNALE ↑ ⇒	4	MNALE	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 5	-	ns	
MNWEX delay time	t _{ALEH - NWEL}	MNWEX	Vcc < 4.5 V	T _{HCLK} ×1 - 15	-	115	
MNWEX ↑ ⇒	4	MNALE	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 5	-	ns	
MNALE delay time	t _{NWEH - ALEL}	MNWEX	Vcc < 4.5 V	T _{HCLK} ×1 - 15	-	115	
MNCLE $\uparrow \Rightarrow$	4	MNCLE	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 5	-	ns	
MNWEX delay time	t _{CLEH - NWEL}	MNWEX	Vcc < 4.5 V	T _{HCLK} ×1 - 15	-	115	
MNWEX ↑ ⇒		MNCLE	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 5	-	ns	
MNCLE delay time	t _{NWEH - CLEL}	MNWEX	Vcc < 4.5 V	T _{HCLK} ×1 - 15	-	115	
MNWEX		MNWEX	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 3	_	ns	
Min pulse width	t _{NWEW}		Vcc < 4.5 V	I HCLK ~ I - 3	_	115	
$MNWEX \downarrow \Rightarrow$		MNWEX	Vcc ≥ 4.5 V	- 5	+ 5	ns	
Data delay time	t _{NWEL-DV}	MDATA15 to 0	Vcc < 4.5 V	-15	+15	110	
MNWEX↑⇒		MNWEX	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 5	-	ns	
Data delay time	t _{NWEH - DX}	MDATA15 to 0	Vcc < 4.5 V	T _{HCLK} ×1 - 15	-	113	

Note:

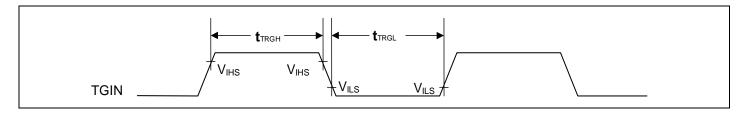
- When the external load capacitance = 50 pF.



12.4.9 Base Timer Input Timing

Timer input timing

 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to + 85^{\circ}C)$


Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max	Ollit	Remarks
Input pulse width	t _{TIWH}	TIOAn/TIOBn (when using as ECK,TIN)	-	2t _{CYCP}	-	ns	

Trigger input timing

(Vcc = 2.7 V to 5.5 V, Vss = 0 V,
$$T_A$$
 = - 40°C to + 85°C)

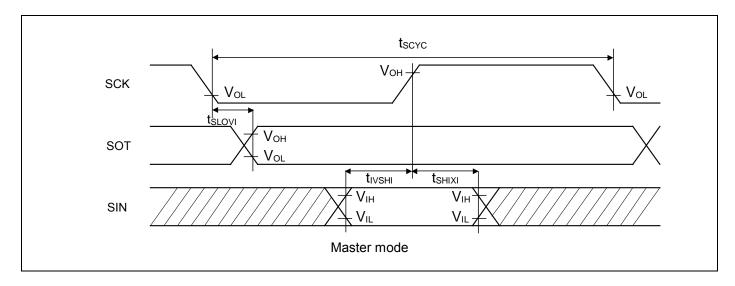
Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max	Oilit	Keiliaiks
Input pulse width	t _{TRGH}	TIOAn/TIOBn (when using as TGIN)	-	2t _{CYCP}	-	ns	

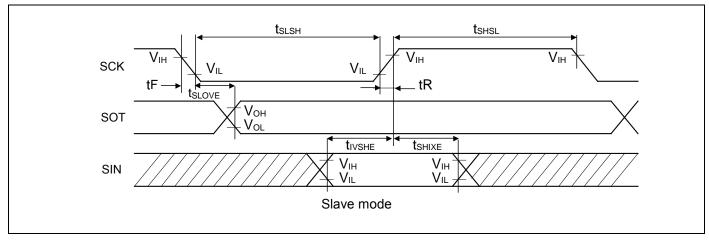
Note:

tcycp indicates the APB bus clock cycle time.
 About the APB bus number which the Base Timer is connected to, see "8. Block Diagram" in this datasheet.

12.4.10 CSIO/UART Timing

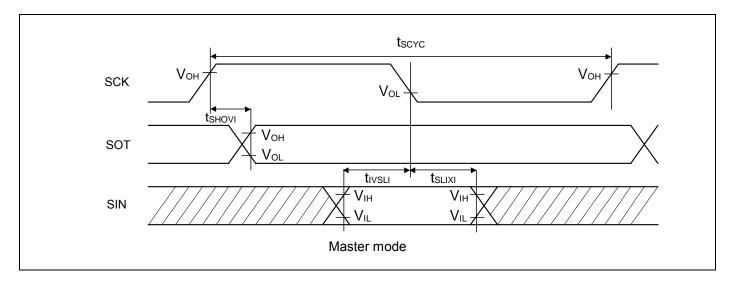
CSIO (SPI = 0, SCINV = 0)

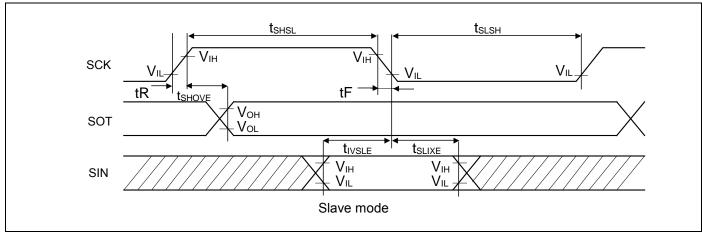

 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to + 85^{\circ}C)$


Doromotor	Symbol	Pin name	Conditions	Vcc < 4.5 V		Vcc ≥ 4.5 V		11
Parameter				Min	Max	Min	Max	Unit
Baud Rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	t _{scyc}	SCKx	Master mode	4t _{CYCP}	-	4t _{CYCP}	-	ns
$SCK \downarrow \rightarrow SOT$ delay time	t _{SLOVI}	SCKx SOTx		-30	+30	- 20	+ 20	ns
$SIN \rightarrow SCK \uparrow setup time$	t _{IVSHI}	SCKx SINx		50	-	30	-	ns
$SCK \uparrow \to SIN \; hold \; time$	t _{SHIXI}	SCKx SINx		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx	Slave mode	2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \downarrow \to SOT \ delay \ time$	t _{SLOVE}	SCKx SOTx		-	50	-	30	ns
$SIN \rightarrow SCK \uparrow setup time$	t _{IVSHE}	SCKx SINx		10	-	10	-	ns
$SCK \uparrow \rightarrow SIN$ hold time	t _{SHIXE}	SCKx SINx		20	-	20	-	ns
SCK fall time	tF	SCKx		-	5	-	5	ns
SCK rise time	tR	SCKx		_	5	-	5	ns

Notes:

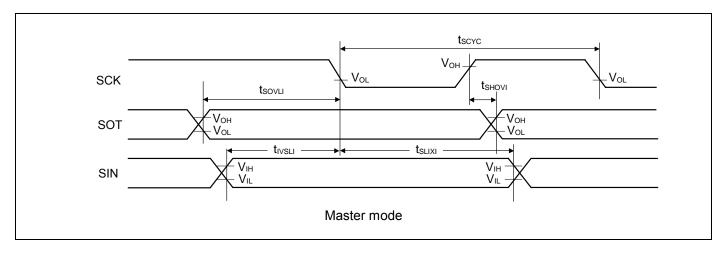
- The above characteristics apply to CLK synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
- About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram" in this datasheet.
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance = 50 pF.

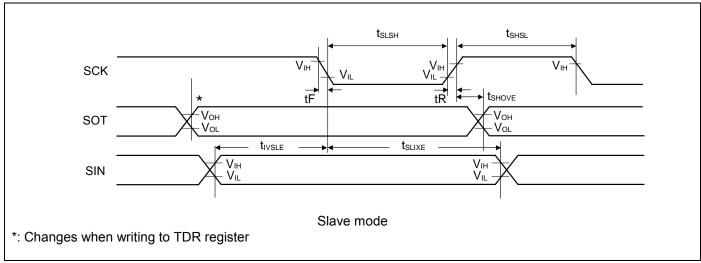

CSIO (SPI = 0, SCINV = 1)


 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to + 85^{\circ}C)$

Doromotor	Cumbal	Pin	Conditions	Vcc <	4.5 V	Vcc ≥	Unit	
Parameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Baud Rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	tscyc	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	t _{shovi}	SCKx SOTx		-30	+30	- 20	+ 20	ns
$SIN \to SCK \downarrow setup\ time$	t _{IVSLI}	SCKx SINx	Master mode	50	-	30	-	ns
$SCK \downarrow \to SIN \; hold \; time$	t _{SLIXI}	SCKx SINx		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \uparrow \to SOT \ delay\ time$	t _{SHOVE}	SCKx SOTx		-	50	-	30	ns
$SIN \to SCK \downarrow setup time$	t _{IVSLE}	SCKx SINx	Slave mode	10	-	10	-	ns
$SCK \downarrow \rightarrow SIN$ hold time	t _{SLIXE}	SCKx SINx		20	-	20	-	ns
SCK fall time	tF	SCKx		-	5	-	5	ns
SCK rise time	tR	SCKx		-	5	-	5	ns

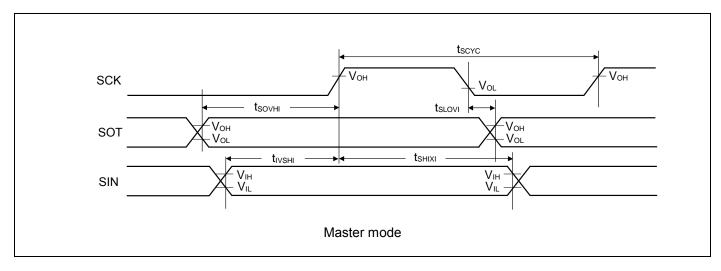
- The above characteristics apply to CLK synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function serial is connected to, see "8. Block Diagram" in this datasheet.
- These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance = 50 pF.

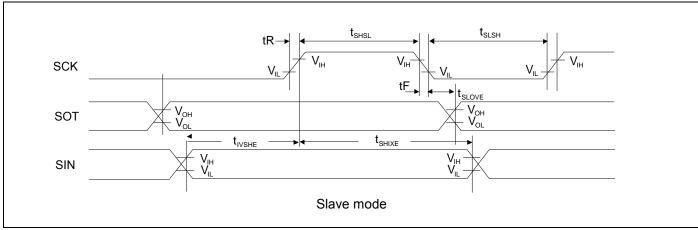

CSIO (SPI = 1, SCINV = 0)


 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Conditions	Vcc <	4.5 V	Vcc ≥	4.5 V	Unit
Parameter	Syllibol	name	Conditions	Min	Max	Min	Max	Onne
Baud Rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	tscyc	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	t _{shovi}	SCKx SOTx		-30	+30	- 20	+ 20	ns
$SIN \rightarrow SCK \downarrow setup time$	t _{IVSLI}	SCKx SINx	Master mode	50	-	30	-	ns
$SCK \downarrow \to SIN \; hold \; time$	t _{SLIXI}	SCKx SINx		0	-	0	-	ns
$SOT \rightarrow SCK \downarrow delay time$	t _{SOVLI}	SCKx SOTx		2t _{CYCP} - 30	-	2t _{CYCP} - 30	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	t _{SHOVE}	SCKx SOTx		-	50	-	30	ns
$SIN \rightarrow SCK \downarrow setup time$	t _{IVSLE}	SCKx SINx	Slave mode	10	-	10	-	ns
$SCK \downarrow \rightarrow SIN$ hold time	t _{SLIXE}	SCKx SINx		20	-	20	-	ns
SCK fall time	tF	SCKx		-	5	-	5	ns
SCK rise time	tR	SCKx		-	5	-	5	ns

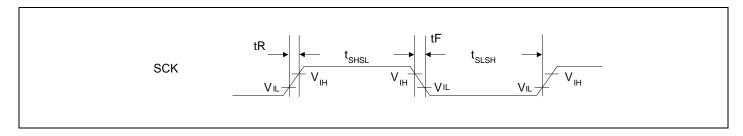
- The above characteristics apply to CLK synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram" in this datasheet.
- These characteristics only guarantees the same relocate port number.
 For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance = 50 pF.


CSIO (SPI = 1, SCINV = 1)


 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Cumbal	Pin	Conditions	Vcc <	4.5 V	Vcc ≥	4.5 V	Unit
Parameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Baud Rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	t _{scyc}	SCKx		4t _{CYCP} p	-	4t _{CYCP}	-	ns
SCK \downarrow \rightarrow SOT delay time	t _{sLOVI}	SCKx SOTx		-30	+30	- 20	+ 20	ns
$SIN \rightarrow SCK \uparrow setup time$	t _{IVSHI}	SCKx SINx	Master mode	50	-	30	-	ns
$SCK \uparrow \rightarrow SIN \text{ hold time}$	t _{shixi}	SCKx SINx		0	-	0	-	ns
SOT → SCK ↑ delay time	t _{sovні}	SCKx SOTx		2t _{CYCP} - 30	-	2t _{CYCP} - 30	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \downarrow \to SOT \ delay \ time$	t _{SLOVE}	SCKx SOTx		-	50	-	30	ns
$SIN \to SCK \uparrow setup time$	t _{IVSHE}	SCKx SINx	Slave mode	10	-	10	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	t _{SHIXE}	SCKx SINx		20	-	20	-	ns
SCK fall time	tF	SCKx		-	5	-	5	ns
SCK rise time	tR	SCKx		-	5	-	5	ns

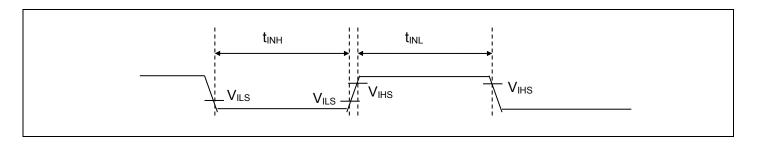
- The above characteristics apply to CLK synchronous mode.
- tcycp indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram" in this datasheet.
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance = 50 pF.



UART external clock input (EXT = 1)

(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = - 40°C to + 85°C)

Parameter	Symbol	Conditions	Min	Max	Unit	Remarks
Serial clock "L" pulse width	t _{SLSH}		t _{CYCP} + 10	-	ns	
Serial clock "H" pulse width	t _{SHSL}	C = 50 pF	t _{CYCP} + 10	-	ns	
SCK fall time	tF	C _L = 50 pF	-	5	ns	
SCK rise time	tR		-	5	ns	

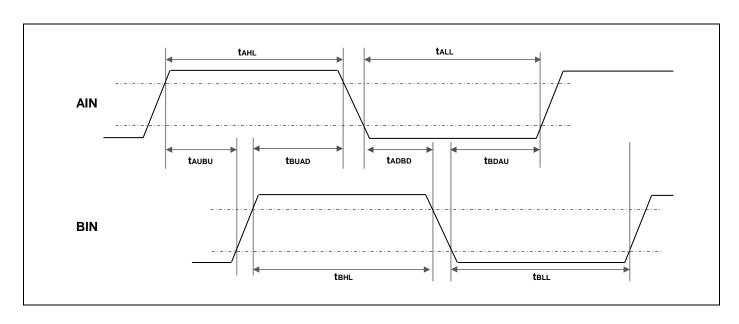


12.4.11 External Input Timing

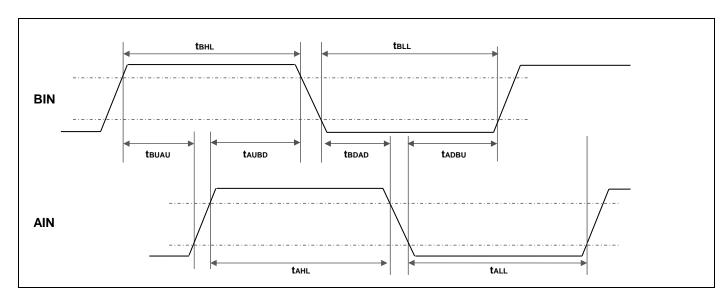
 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

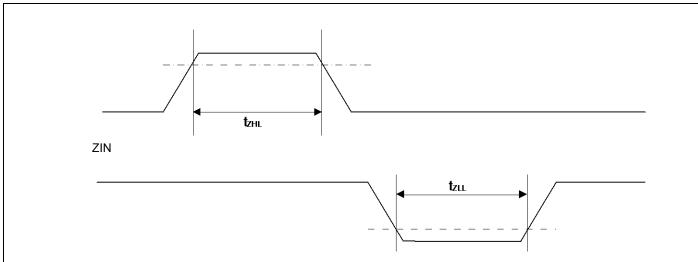
Parameter	Symbol	Pin name	Conditions	conditions Value Min Max		Unit	Remarks
Parameter	Symbol	Fill Hallie	Conditions			Oilit	Remarks
		ADTG	- 2t _{cvcp} *1 -				A/D converter trigger input
		FRCKx			-	ns	Free-run timer input clock
		ICxx				Input capture	
Input pulse	t _{INH}	DTTIxX	-	2t _{CYCP} *1	-	ns	Wave form generator
width	t _{INL}	INTxx,	Except Timer mode, Stop mode	2t _{CYCP} + 100 *1	-	ns	External interrupt
			Timer mode, Stop mode	500	-	ns	NMI

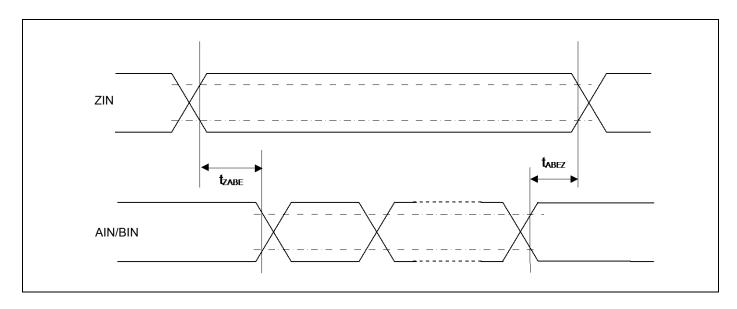
^{*1:} t_{CYCP} indicates the APB bus clock cycle time.
About the APB bus number which the A/D converter, Multi-function Timer, External interrupt are connected to, see "8. Block Diagram" in this datasheet.



12.4.12 Quadrature Position/Revolution Counter timing

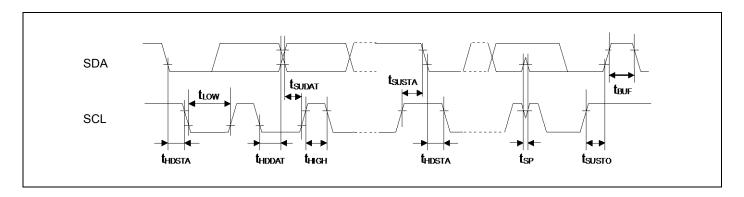

 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to + 85^{\circ}C)$


Davamatar	Cumbal	Conditions	V	alue alue	l lmi4
Parameter	Symbol	Conditions	Min	Max	Unit
AIN pin "H" width	t _{AHL}	-			
AIN pin "L" width	t _{ALL}	-			
BIN pin "H" width	t _{BHL}	-			
BIN pin "L" width	t _{BLL}	-			
BIN rise time from AIN pin "H" level	t _{AUBU}	PC_Mode2 or PC_Mode3			
AIN fall time from BIN pin "H" level	t _{BUAD}	PC_Mode2 or PC_Mode3			
BIN fall time from AIN pin "L" level	t _{ADBD}	PC_Mode2 or PC_Mode3			
AIN rise time from BIN pin "L" level	t _{BDAU}	PC_Mode2 or PC_Mode3			
AIN rise time from BIN pin "H" level	t _{BUAU}	PC_Mode2 or PC_Mode3	2t _{CYCP} *1	-	ns
BIN fall time from AIN pin "H" level	t _{AUBD}	PC_Mode2 or PC_Mode3			
AIN fall time from BIN pin "L" level	t _{BDAD}	PC_Mode2 or PC_Mode3			
BIN rise time from AIN pin "L" level	t _{ADBU}	PC_Mode2 or PC_Mode3			
ZIN pin "H" width	t _{zhL}	QCR:CGSC="0"			
ZIN pin "L" width	t _{zll}	QCR:CGSC="0"			
AIN/BIN rise and fall time from determined ZIN level	t _{ZABE}	QCR:CGSC="1"			
Determined ZIN level from AIN/BIN rise and fall time	t _{ABEZ}	QCR:CGSC="1"			


^{*1:} t_{CYCP} indicates the APB bus clock cycle time. About the APB bus number which the Quadrature Position/Revolution Counter is connected to, see "8. Block Diagram" in this datasheet.

12.4.13 I²C Timing

 $(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = -40^{\circ}C to + 85^{\circ}C)$

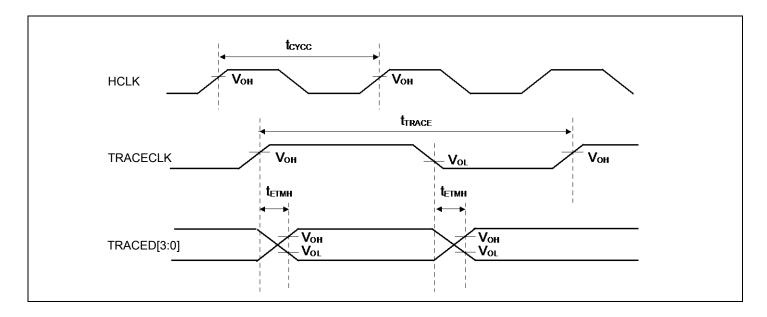

Parameter	Symbol	Conditions	Standa	rd-mode	Fast-	-mode	Unit	Remarks
Parameter	Symbol	Conditions	Min	Max	Min	Max	Ullit	Remarks
SCL clock frequency	F _{SCL}		0	100	0	400	kHz	
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	t _{HDSTA}		4.0	-	0.6	-	μs	
SCLclock "L" width	t _{LOW}		4.7	-	1.3	-	μs	
SCLclock "H" width	t _{HIGH}		4.0	-	0.6	-	μs	
(Repeated) START setup time $SCL \uparrow \rightarrow SDA \downarrow$	t _{SUSTA}	C = 50 pE	4.7	-	0.6	-	μs	
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	t _{HDDAT}	$C_L = 50 \text{ pF},$ $R = (Vp/I_{OL})^{*1}$	0	3.45 *2	0	0.9*3	μs	
Data setup time $SDA \downarrow \uparrow \rightarrow SCL \uparrow$	t _{SUDAT}		250	-	100	-	ns	
STOP condition setup time $SCL \uparrow \rightarrow SDA \uparrow$	t _{susто}		4.0	-	0.6	-	μs	
Bus free time between "STOP condition" and "START condition"	t _{BUF}		4.7	-	1.3	-	μs	
Noise filter	t _{SP}	-	2 t _{CYCP} *4	-	2 t _{CYCP} *4	-	ns	

- *1: R and C represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and I_{OL} indicates V_{OL} guaranteed current.
- *2: The maximum thddat must satisfy that it doesn't extend at least "L" period (tLow) of device's SCL signal.
- *3: Fast-mode I²C bus device can be used on Standard-mode I²C bus system as long as the device satisfies the requirement of "t_{SUDAT} ≥ 250 ns".
- *4: t_{CYCP} is the APB bus clock cycle time.

About the APB bus number that I²C is connected to, see "8. Block Diagram" in this datasheet.

To use Standard-mode, set the APB bus clock at 2 MHz or more.

To use Fast-mode, set the APB bus clock at 8 MHz or more.

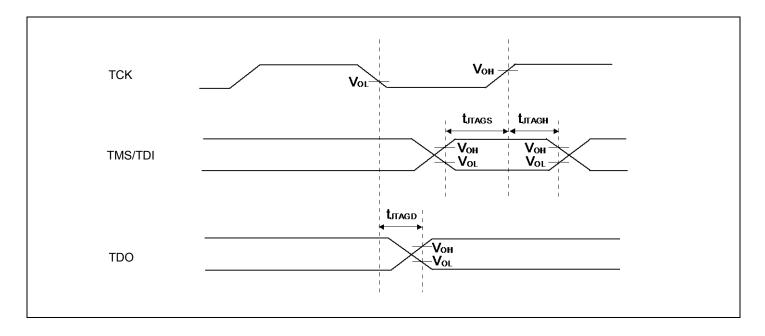

12.4.14 ETM Timing

(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = - 40°C to + 85°C)

Parameter	Symbol	Pin name Conditions		Valu	ıe	Unit	Remarks
Parameter	Symbol	Fili liaille	Min		Max	Ullit	Nemarks
B		TRACECLK	Vcc ≥ 4.5 V	2	9		
Data hold	t _{ETMH}	TRACED3 - 0	Vcc < 4.5 V	2	15	ns	
TRACECLK	1/4		Vcc ≥ 4.5 V	-	50	MHz	
Frequency	1/t _{TRACE}	TRACECLK	Vcc < 4.5 V	-	32	MHz	
TRACECLK	4	TRACECLK	Vcc ≥ 4.5 V	20	-	ns	
clock cycle time	ŤTDA OF		Vcc < 4.5 V	31.25	-	ns	

Note:

- When the external load capacitance = 50 pF.


12.4.15 JTAG Timing

(Vcc = 2.7 V to 5.5 V, Vss = 0 V, T_A = - 40°C to + 85°C)

Parameter	Symbol	Pin name	Conditions	V	Value		Remarks
Parameter	Symbol	Pili liaille	Min		Max	Unit	Remarks
TMC TDI cotun time		TCK	Vcc ≥ 4.5 V	15		200	
TMS,TDI setup time	t _{JTAGS}	TMS,TDI	Vcc < 4.5 V	15	-	ns	
TMS,TDI hold time	+	TCK	Vcc ≥ 4.5 V	15		ns	
TIVIS, I DI HOIG TIME	T _{JTAGH}	TMS,TDI	Vcc < 4.5 V	13	_	115	
TDO delay time	t	тск	Vcc ≥ 4.5 V	-	25	ns	
1DO delay time	t _{JTAGD}	TDO	Vcc < 4.5 V	-	45	113	

Note:

When the external load capacitance = 50 pF.

12.5 12-bit A/D Converter

Electrical characteristics for the A/D converter

 $(Vcc = AVcc = 2.7 \text{ V to } 5.5 \text{ V}, \text{ Vss} = \text{AVss} = 0 \text{ V}, \text{ T}_A = -40^{\circ}\text{C to} + 85^{\circ}\text{C})$

Parameter	Cumbal	Pin		Value		Unit	Remarks
Parameter	Symbol	name	Min	Тур	Max	Unit	Remarks
Resolution	-	-	-	-	12	bit	
Integral Nonlinearity	-	-	-	± 2	± 4.5	LSB	
Differential Nonlinearity	-	-	-	± 2	± 2.5	LSB	AVRH = 2.7 V to 5.5 V
Zero transition voltage	V_{ZT}	ANxx	-	± 5	± 20	mV	AVRH = 2.7 V to 5.5 V
Full-scale transition voltage	V_{FST}	ANxx	-	AVRH ± 10	AVRH ± 20	mV	
Conversion time			1.0 *1	-	-	116	AVcc ≥ 4.5 V
Conversion time	-	-	2.666 *1	-	-	μs	AVcc < 4.5 V
Sampling time	Ts		*2	-	-	ns	AVcc ≥ 4.5 V
Sampling time	13		*2	-	-	113	AVcc < 4.5 V
*3			55.5		10000		AVcc ≥ 4.5 V
Compare clock cycle *3	Tcck	-	166.6 *4	-	10000	ns	AVcc < 4.5 V
State transition time to operation permission	Tstt	-	-	-	2.5	μs	
Analog input capacity	C _{AIN}	-	-	-	14.5	pF	
Analas innut vasiatanas	Б				0.93	1.0	AVcc ≥ 4.5 V
Analog input resistance	R _{AIN}	-	-	-	2.04	kΩ	AVcc < 4.5 V
Interchannel disparity	-	-	-	-	4	LSB	
Analog port input leak current	-	ANxx	-	-	5	μΑ	
Analog input voltage	-	ANxx	AV _{SS}	-	AVRH	V	
Reference voltage	-	AVRH	2.7	-	AV _{CC}	V	

^{*1:} The Conversion time is the value of sampling time(Ts) + compare time(Tc).

The condition of the minimum conversion time is the following.

AVcc \geq 4.5 V, HCLK=72 MHz sampling time: 0.222 μ s compare time: 0.778 μ s AVcc < 4.5 V, HCLK=54 MHz sampling time: 0.333 μ s compare time: 2.333 μ s

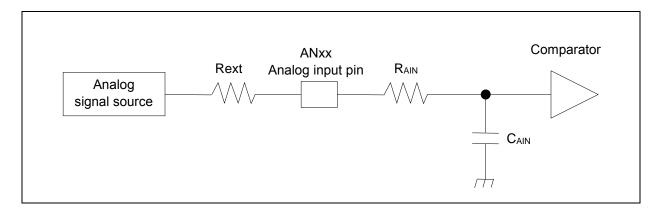
Ensure that it satisfies the value of the sampling time (Ts) and compare clock cycle (Tcck).

For setting of the sampling time and compare clock cycle, see "Chapter 1-1: A/D Converter" in "FM3 Family Peripheral Manual Analog Macro Part".

The registers setting of the A/D Converter are reflected in the operation according to the APB bus clock timing.

The sampling clock and compare clock is generated from the Base clock (HCLK).

About the APB bus number which the A/D Converter is connected to, see "8. Block Diagram" in this datasheet.


*2: A necessary sampling time changes by external impedance.

Ensure that it set the sampling time to satisfy (Equation 1)

- *3: The Compare time (Tc) is the value of (Equation 2)
- *4: When 12-bit A/D converter is used at AVcc<4.5 V, there is a limitation as follows.

Please set the HCLK frequency under 54 MHz.

(Equation 1) Ts \geq (R_{AIN} + Rext) × C_{AIN} × 9

Ts: Sampling time

R_{AIN}: Input resistance of A/D = $0.93 \text{ k}\Omega$ $4.5 \text{ V} \leq \text{AV}_{CC} \leq 5.5 \text{ V}$

Input resistance of A/D = 2.04 k Ω 2.7 V \leq AV_{CC} < 4.5 V Input capacity of A/D = 14.5 pF 2.7 V \leq AV_{CC} \leq 5.5 V

Rext: Output impedance of external circuit

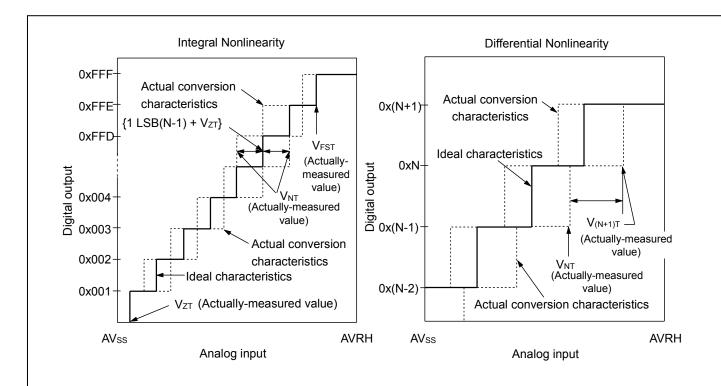
(Equation 2) Tc = Tcck × 14

CAIN:

Tc: Compare time

Tcck: Compare clock cycle

Definition of 12-bit A/D Converter Terms


■ Resolution: Analog variation that is recognized by an A/D converter.

■Integral Nonlinearity: Deviation of the line between the zero-transition point

 $(0b000000000000 \longleftrightarrow 0b00000000000)$ and the full-scale transition point $(0b111111111110 \longleftrightarrow 0b11111111111)$ from the actual conversion characteristics.

■ Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code

by 1 LSB

Integral Nonlinearity of digital output N =
$$\frac{V_{NT} - \{1LSB \times (N-1) + V_{ZT}\}}{1LSB}$$
 [LSB]

Differential Nonlinearity of digital output N =
$$\frac{V_{(N+1)T} - V_{NT}}{1LSB}$$
 - 1 [LSB]

$$1LSB = \frac{V_{FST} - V_{ZT}}{4094}$$

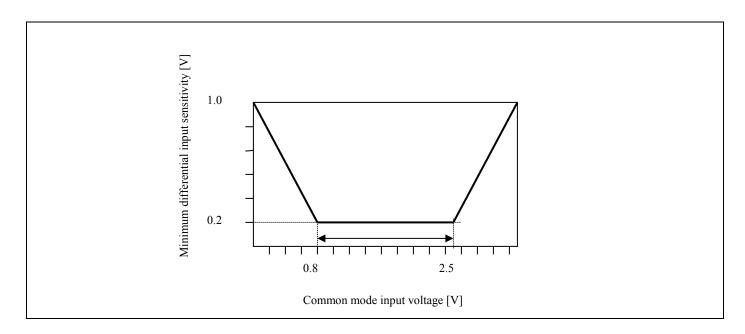
N: A/D converter digital output value.

 V_{ZT} : Voltage at which the digital output changes from 0x000 to 0x001. V_{FST}: Voltage at which the digital output changes from 0xFFE to 0xFFF. V_{NT}: Voltage at which the digital output changes from 0x(N - 1) to 0xN.

12.6 USB Characteristics

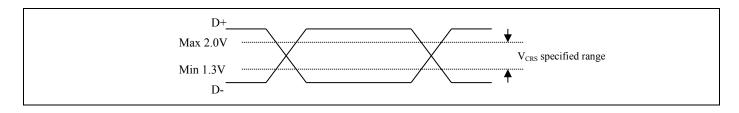
 $(Vcc = 2.7 \text{ V to } 5.5 \text{ V}, USBVcc = 3.0 \text{V to } 3.6 \text{ V}, Vss = 0 \text{ V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

	Parameter	Symbol	Pin	Conditions		Value	Unit	Remarks
	Parameter	Syllibol	name	Conditions	Min	Max	Ollit	Remarks
	Input High level voltage	V_{IH}		-	2.0	USBVcc + 0.3	V	*1
Input	Input Low level voltage	V _{IL}		-	Vss - 0.3	0.8	V	*1
charact- eristics	Differential input sensitivity	V _{DI}	1	-	0.2	-	V	*2
01101100	Different common mode input voltage	V _{CM}		-	0.8	2.5	V	*2
	Output High level voltage	V _{OH}	- UDP0,	External pull- down resistance = 15 kΩ	2.8	3.6	V	*3
Output	Output Low level voltage	V _{OL}	UDM0	External pull-up resistance = 1.5 kΩ	0.0	0.3	V	*3
charact-	Crossover voltage	V_{CRS}		-	1.3	2.0	V	*4
erstics	Rise time	t_{FR}		Full Speed	4	20	ns	*5
	Fall time	t _{FF}		Full Speed	4	20	ns	*5
	Rise/ fall time matching	t _{FRFM}		Full Speed	90	111.11	%	*5
	Output impedance	Z_{DRV}		Full Speed	28	44	Ω	*6
	Rise time	t _{LR}		Low Speed	75	300	ns	*7
	Fall time	t _{LF}		Low Speed	75	300	ns	*7
	Rise/ fall time matching	t_{LRFM}		Low Speed	80	125	%	*7

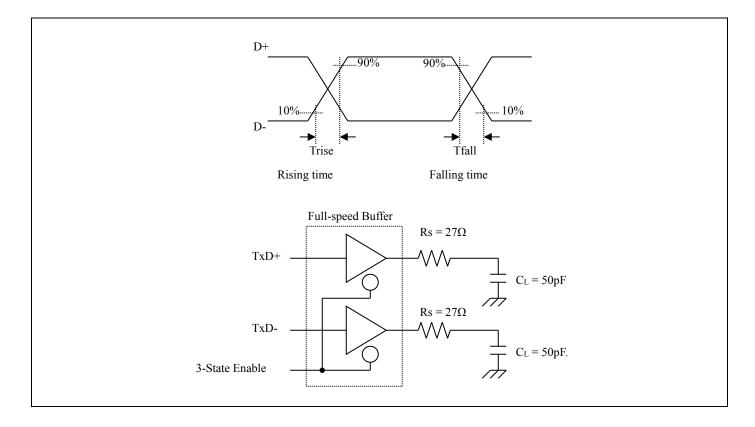

^{*1:} The switching threshold voltage of Single-End-Receiver of USB I/O buffer is set as within V_{IL} (Max) = 0.8 V, V_{IH} (Min) = 2.0 V (TTL input standard).

There are some hystereses to lower noise sensitivity.

*2: Use differential-Receiver to receive USB differential data signal.

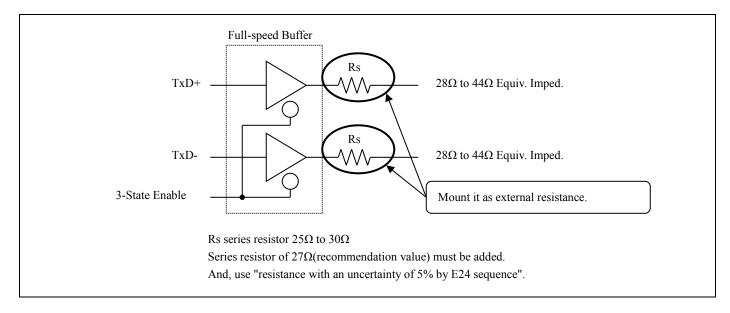

Differential-Receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level.

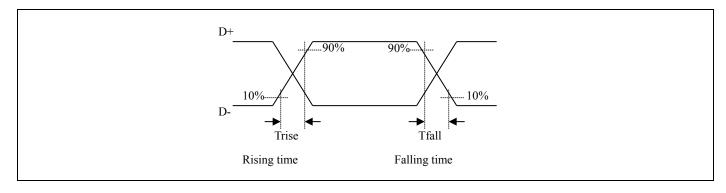
Above voltage range is the common mode input voltage range.



- *3: The output drive capability of the driver is below 0.3 V at Low-State (V_{OL}) (to 3.6 V and 1.5 k Ω load), and 2.8 V or above (to the VSS and 1.5 k Ω load) at High-State (V_{OH}).
- *4: The cross voltage of the external differential output signal (D + /D −) of USB I/O buffer is within 1.3 V to 2.0 V.

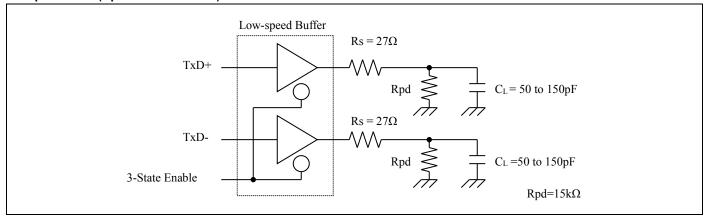
*5: They indicate rise time (Trise) and fall time (Tfall) of the full-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. For full-speed buffer, Tr/Tf ratio is regulated as within \pm 10% to minimize RFI emission.

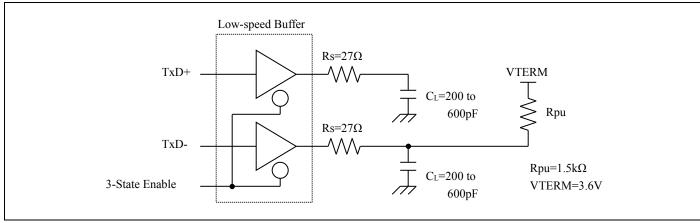


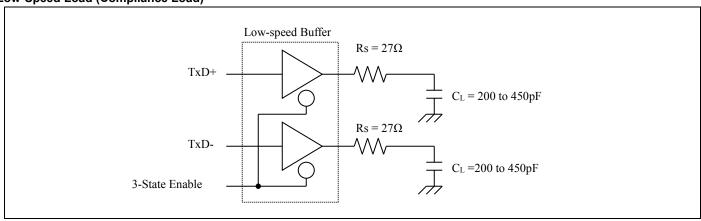

*6: USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15% characteristic impedance (Differential Mode).

USB standard defines that output impedance of USB driver must be in range from 28 Ω to 44 Ω . So, discrete series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance.

When using this USB I/O, use it with 25 Ω to 30 Ω (recommendation value 27 Ω) series resistor Rs.


*7: They indicate rise time (Trise) and fall time (Tfall) of the low-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage.


See "Low-Speed Load (Compliance Load)" for conditions of the external load.


Low-Speed Load (Upstream Port Load) - Reference 1

Low-Speed Load (Downstream Port Load) - Reference 2

Low-Speed Load (Compliance Load)

12.7 Low-Voltage Detection Characteristics

12.7.1 Low-Voltage Detection Reset

 $(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol	Conditions		Value		Unit	Remarks
Farameter	Syllibol	Conditions	Min	Тур	Max	Oilit	Remarks
Detected voltage	VDL	-	2.20	2.40	2.60	V	When voltage drops
Released voltage	VDH	-	2.30	2.50	2.70	٧	When voltage rises

12.7.2 Interrupt of Low-Voltage Detection

 $(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol Co	Conditions		Value		Unit	Remarks
Parameter	Symbol	Conditions	Min	Тур	Max	Ullit	Remarks
Detected voltage	VDL	SVHI = 0000	2.58	2.8	3.02	V	When voltage drops
Released voltage	VDH	3VHI = 0000	2.67	2.9	3.13	V	When voltage rises
Detected voltage	VDL	SVHI = 0001	2.76	3.0	3.24	V	When voltage drops
Released voltage	VDH	30111 = 0001	2.85	3.1	3.34	V	When voltage rises
Detected voltage	VDL	SVHI = 0010	2.94	3.2	3.45	V	When voltage drops
Released voltage	VDH	3VHI = 0010	3.04	3.3	3.56	V	When voltage rises
Detected voltage	VDL	SVHI = 0011	3.31	3.6	3.88	V	When voltage drops
Released voltage	VDH		3.40	3.7	3.99	V	When voltage rises
Detected voltage	VDL	SVHI = 0100	3.40	3.7	3.99	V	When voltage drops
Released voltage	VDH	3VHI = 0100	3.50	3.8	4.10	V	When voltage rises
Detected voltage	VDL	SVHI = 0111	3.68	4.0	4.32	V	When voltage drops
Released voltage	VDH	3VHI = 0111	3.77	4.1	4.42	V	When voltage rises
Detected voltage	VDL	SVHI = 1000	3.77	4.1	4.42	V	When voltage drops
Released voltage	VDH	SVHI = 1000	3.86	4.2	4.53	V	When voltage rises
Detected voltage	VDL	SVHI = 1001	3.86	4.2	4.53	V	When voltage drops
Released voltage	VDH	3VHI = 1001	3.96	4.3	4.64	V	When voltage rises
LVD stabilization wait time	T _{LVDW}	-	-	-	2040 × tcycp *1	μs	

^{*1:} tcycp indicates the APB2 bus clock cycle time.

12.8 Flash Memory Write/Erase Characteristics

12.8.1 Write / Erase time

 $(Vcc = 2.7 V to 5.5 V, T_A = -40^{\circ}C to + 85^{\circ}C)$

Parameter		Value		Unit	Remarks	
Palai	Parameter		Max *1	Unit	Neillaiks	
Sector erase time	Large Sector	1.6	7.5		Includes write time prior to internal erase	
Sector erase time	Small Sector	0.4	2.1	S	includes write time prior to internal erase	
Half word (16 bit) write time		25	400	μs	Not including system-level overhead time.	
Chip erase time		16	76.8	s	Includes write time prior to internal erase	

^{*1:} The typical value is immediately after shipment, the maximum value is guarantee value under 100,000 cycle of erase/write.

12.8.2 Erase/write cycles and data hold time

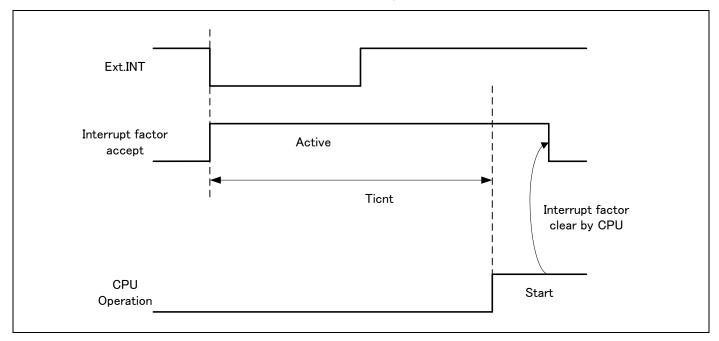
Erase/write cycles (cycle)	Data hold time (year)	Remarks
1,000	20 ^{*1}	
10,000	10 ^{*1}	
100,000	5 ^{*1}	

^{*1:} At average + 85°C

12.9 Return Time from Low-Power Consumption Mode

12.9.1 Return Factor: Interrupt

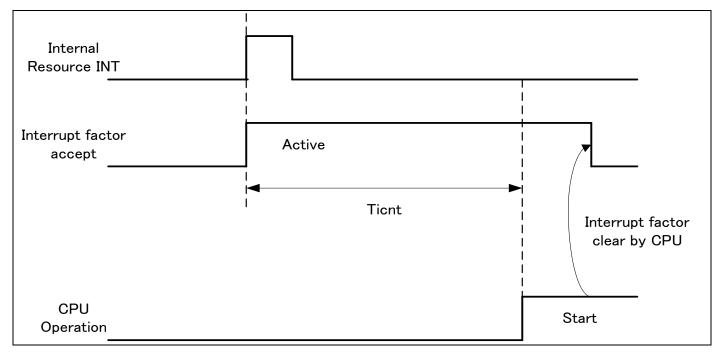
The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation.


Return Count Time

$$(V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$$

Parameter	Symbol	Value		Unit	Remarks
Parameter	Syllibol	Тур	Max *1	Ullit	Remarks
SLEEP mode		t _{cycc}		ns	
High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode	Ticnt	33	100	μs	
Low-speed CR TIMER mode		445	1061	μs	
Sub TIMER mode		445	1061	μs	
STOP mode		445	1061	μs	

^{*1:} The maximum value depends on the accuracy of built-in CR.


Operation example of return from Low-Power consumption mode (by external interrupt *1)

^{*1:} External interrupt is set to detecting fall edge.

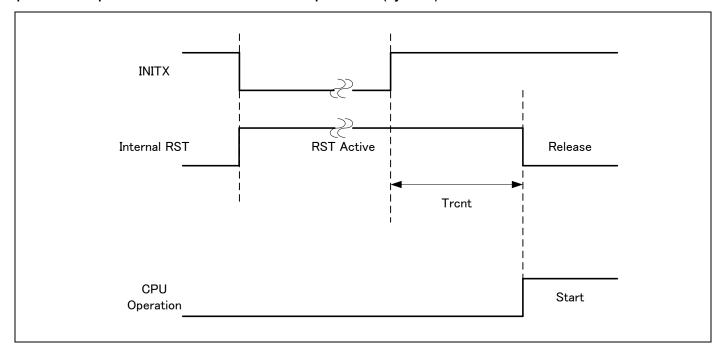
Operation example of return from Low-Power consumption mode (by internal resource interrupt *1)

^{*1:} Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.

- The return factor is different in each Low-Power consumption modes.
 See "Chapter 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family Peripheral Manual about the return factor from Low-Power consumption mode.
- When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power consumption mode transition. See "Chapter 6: Low Power Consumption Mode" in "FM3 Family Peripheral Manual"

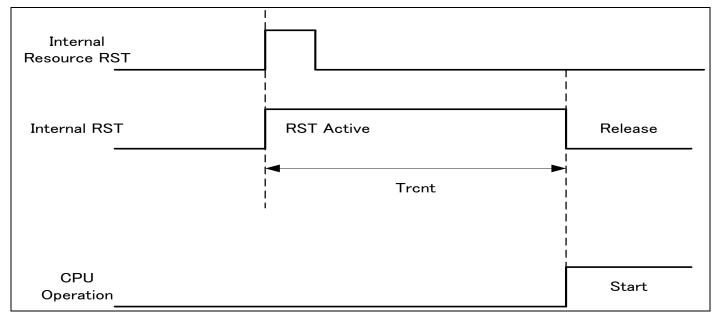
12.9.2 Return Factor: Reset

The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation.


Return Count Time

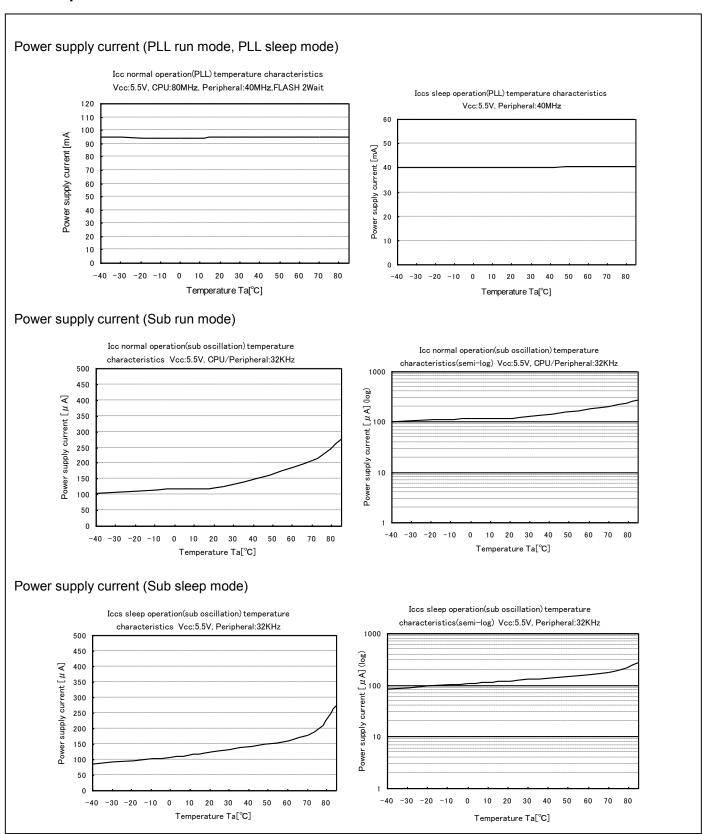
$$(V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$$

Parameter	Symbol	Value		Unit	Remarks
Parameter	Symbol	Тур	Max *1	Ullit	Remarks
SLEEP mode		82	181	μs	
High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode	Trent	82	181	μs	
Low-speed CR TIMER mode		431	1003	μs	
Sub TIMER mode		431	1003	μs	
STOP mode		431	1003	μs	

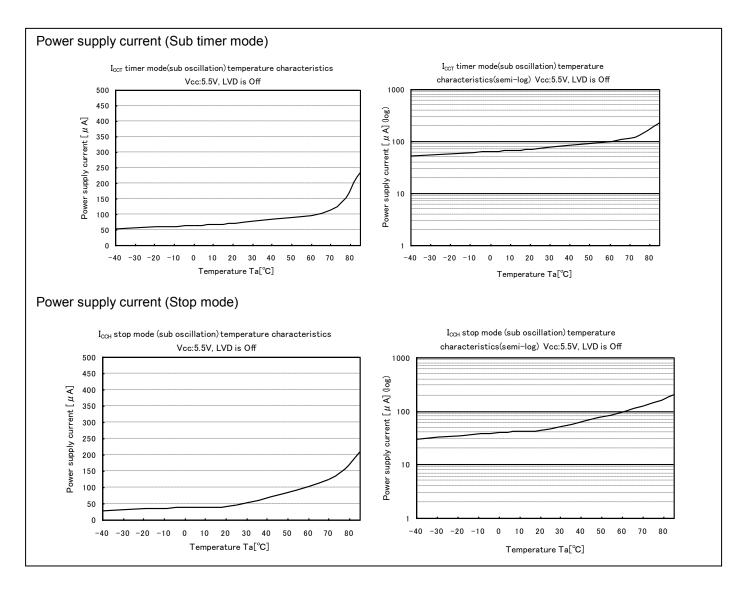

^{*1:} The maximum value depends on the accuracy of built-in CR.

Operation example of return from Low-Power consumption mode (by INITX)

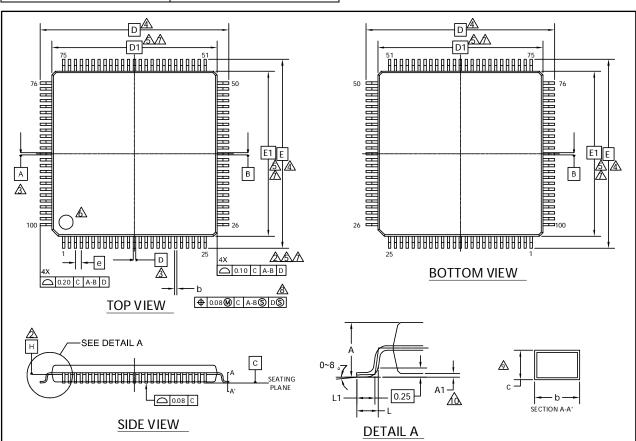
Operation example of return from low power consumption mode (by internal resource reset *1)



^{*1:} Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.


- The return factor is different in each Low-Power consumption modes.
 See "Chapter 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family Peripheral Manual.
- When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power consumption mode transition. See "Chapter 6: Low Power Consumption Mode" in "FM3 Family Peripheral Manual"
- The time during the power-on reset/low-voltage detection reset is excluded. See "12.4.7. Power-on Reset Timing
 12.4. AC Characteristics in 12. Electrical Characteristics" for the detail on the time during the power-on reset/low -voltage
 detection reset
- When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time.
- The internal resource reset means the watchdog reset and the CSV reset.

13. Example of Characteristic


14. Ordering Information

Part Number	On-chip Flash Memory	On-chip SRAM	Package	Packing	
MB9BF304NBPMC-G-JNE2	050 Klasta	00 KD			
MB9BF304NBPMC-G-UNE1	256 Kbyte	32 KB		Tray	
MB9BF305NBPMC-G-JNE2	384 Kbyte	48 KB	Plastic • LQFP(0.5 mm pitch),100-pin (LQI100)		
MB9BF306NBPMC-G-UNE1	-1010	2445	(EQI100)		
MB9BF306NBPMC-G-UNE2	512 Kbyte	64 KB			
MB9BF304RBPMC-G-JNE2	050141-1	00.145			
MB9BF304RBPMC-G-UNE1	256 Kbyte	32 KB	Plastic • LQFP(0.5 mm pitch),120-pin		
MB9BF305RBPMC-G-JNE2	384 Kbyte	48 KB	(LQM120)		
MB9BF306RBPMC-G-JNE2	512 Kbyte	64 KB			
MB9BF304NBBGL-GK6E1	256 Kbyte	32 KB			
MB9BF305NBBGL-GK6E1	384 Kbyte	48 KB	Plastic • FBGA(0.8 mm pitch),112-pin (LBC112)		
MB9BF306NBBGL-GK6E1	512 Kbyte	64 KB	(LBC112)		

15. Package Dimensions

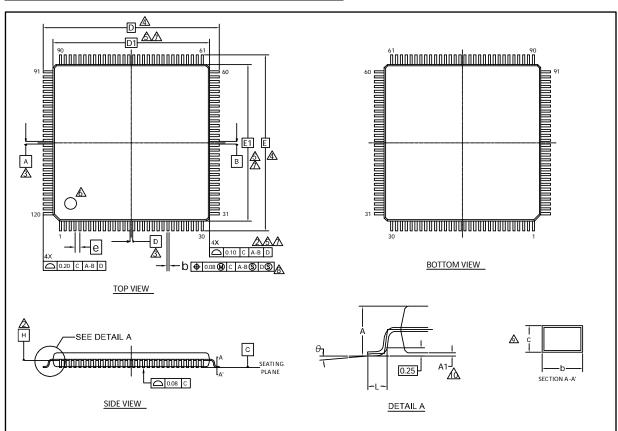
Package Type	Package Code
LQFP 100	LQI100

SYMBOL	DIN	1ENSIOI	VS	
STIVIBUL	MIN.	NOM.	MAX.	
Α	_		1.70	
A1	0.05		0.15	
b	0.15	_	0.27	
С	0.09	_	0.20	
D	16.00 BSC			
D1	14.00 BSC			
е	0.50 BSC			
E	16.00 BSC			
E1	14.00 BSC			
L	0.45	0.60	0.75	
L1	0.30	0.50	0.70	

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- <u>^</u>DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ADATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- ⚠TO BE DETERMINED AT SEATING PLANE C.
- ⚠DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED

AT DATUM PLANE H.


- ⚠DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. THE DAMBAR PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 6 MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- HESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- 1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

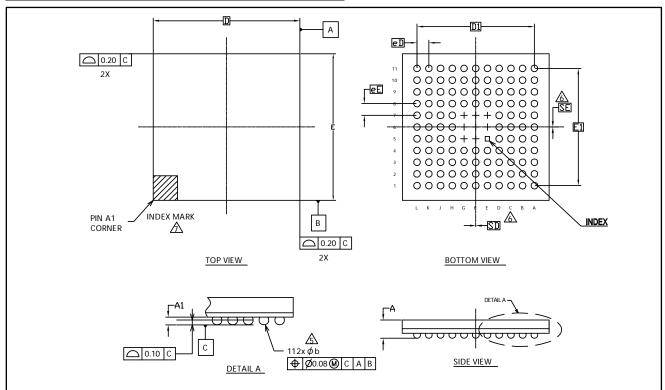
002-11500 *A

PACKAGE OUTLINE, 100 LEAD LQFP 14.0X14.0X1.7 MM LQI100 REV*A

Package Type	Package Code
LQFP 120	LQM120

SYMBOL	DIN	/ENSIO	NS		
STIVIBUL	MIN.	NOM.	MAX.		
А	_	_	1.70		
A1	0.05		0.15		
b	0.17	0.22	0.27		
С	0.115	_	0.195		
D	18.00 BSC				
D1	16.00 BSC				
е	0.50 BSC				
E	18.00 BSC				
E1	16.00 BSC				
L	0.45	0.60	0.75		
θ	0°	_	8°		

NOTES


- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ⚠ DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠ DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- TO BE DETERMINED AT SEATING PLANE C.
- ⚠DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION 6 DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION. (6.) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 6 MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- 9 THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- 10 A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 11. JEDEC SPECIFICATION NO. REF: N/A.

002-16172 **

PACKAGE OUTLINE, 120 LEAD LQFP 18.0X18.0X1.7 MM LQM120 REV**

Package Type	Package Code
FBGA 112	LBC112

0.4.400.	DIMENSIONS				
SYMBOL	MIN.	NOM.	MAX.		
А	-	-	1.45		
A1	0.25	0.35	0.45		
D		10.00 BSC			
E		10.00 BSC			
D1	8.00 BSC				
E1	8.00 BSC				
MD	11				
ME	11				
N		112			
Øb	0.35 0.45 0.55				
eD	0.80 BSC				
eE	0.80 BSC				
SD	0.00				
SE		0.00			

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. SOLDER BALL POSITION DESIGNATIO N PER JEP95, SECTION 3, SPP-020.
- 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
- 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.

 SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.

 N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
- © "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.

 WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW,
 "SD" OR "SE" = 0.
 - WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, $"SD" = eD/2 \ AND \ "SE" = eE/2.$
- A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.
 - 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS.

002-13225 **

PACKAGE OUTLINE, 112 BALL FBGA 10.00X10.00X1.45 MM LBC112 REV**

16. Errata

This chapter describes the errata for MB9B300R and MB9B300RA series. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

16.1 Part Numbers Affected

Part Number
Initial Revision
MB9BF304RPMC-G-JNE2, MB9BF305RPMC-G-JNE2, MB9BF306RPMC-G-JNE2, MB9BF304NPMC-G-JNE2, MB9BF305NPMC-G-JNE2, MB9BF306NPMC-G-JNE2, MB9BF304NBGL-GE1, MB9BF305NBGL-GE1, MB9BF306NBGL-GE1, MB9BF306NBGL-GE1, MB9BF306NBGL-GE1,
Rev. A
MB9BF304RAPMC-G-JNE2, MB9BF305RAPMC-G-JNE2, MB9BF306RAPMC-G-JNE2, MB9BF304NAPMC-G-JNE2, MB9BF305NAPMC-G-JNE2, MB9BF306NAPMC-G-JNE2, MB9BF304NABGL-GE1, MB9BF305NABGL-GE1, MB9BF306NABGL-GE1

16.2 Qualification Status

Product Status: In Production - Qual.

16.3 Errata Summary

This table defines the errata applicability to available devices.

Items	Part Number	Silicon Revision	Fix Status
[1] Timer/Stop Mode Issue	Refer to 16.1	Rev. initial rev.	Fixed in Rev. A
[2] USB HOST Issue	Refer to 16.1	Rev. initial rev. Rev. A	Fixed in Rev. B
[3] Gap Between Watch Counter Value and Real Time at Return in Timer Mode	Refer to 16.1	Rev. initial rev.	Fixed in Rev. A

16.4 Errata Detail

16.4.1 Timer and Stop Mode Issue

■PROBLEM DEFINITION

MCU does not return form timer or stop mode.

■ PARAMETERS AFFECTED

NI/A

■TRIGGER CONDITION(S)

The condition is that the timing of entering timer or stop mode and an interruption occurrence meet.

■SCOPE OF IMPACT

MCU does not return from time or stop mode.

■WORKAROUND

This error cannot be avoided by any software, except not using timer and stop mode.

■FIX STATUS

This issue was fixed in Rev. A.

16.4.2 USB HOST Issue

■PROBLEM DEFINITION

Unexpected USB transfer is generated or USB HOST stops its operation.

■PARAMETERS AFFECTED

N/A

■TRIGGER CONDITION(S)

The condition is that all (1) and (2) and (3) and (4) meet.

- (1) The timing of rising edge of USB clock and the timing of rising edge of CPU clock meet
- (2) Endpoint processing is on-going
- (3) USB bus is differential 1
- (4) One of these cases happens

Case 1: TKNEN bits are set to 001 from 110.

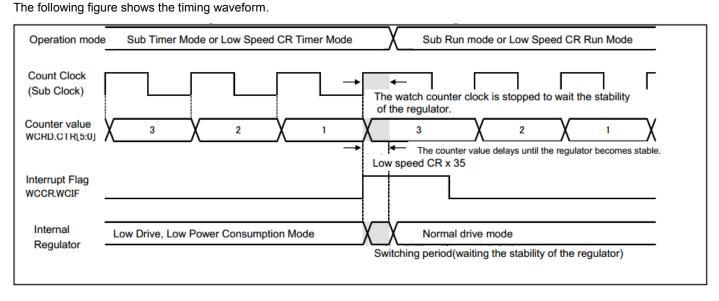
Case 2: TKNEN is set to 111.

■SCOPE OF IMPACT

USB HOST does not work properly.

■WORKAROUND

This error cannot be avoided by any software, except not using USB HOST.


■FIX STATUS

This issue was fixed in Rev. B.

16.4.3 Gap Between Watch Counter Value and Real Time at Return in Timer Mode

■ PROBLEM DEFINITION

There is a gap between the value of the counter and the real time at the return by the interrupt in the sub-timer mode or the low speed CR timer mode. When the watch counter using the sub-crystal oscillator is used in the sub timer mode or the low speed CR timer mode, the value of the watch counter has a "Low speed CR x 35clock" delay (about 350us at waiting for the stability of the regulator) at the return by the interrupt. As a result, a gap occurs between the value of the counter and the real time.

■ ROOT CAUSE

The internal regulator operates with low drive and low power consumption in the sub timer mode or the low speed CR timer mode.

When the interrupt is requested, the mode of the internal regulator is switched to the normal drive mode. At this time, a switching time for the stability of the regulator is required.

This MCU is designed for keeping down the voltage variation of the regulator by reducing the current. To achieve it, the clock to the watch counter is stopped in the period.

At a result, the value of the watch counter delay until the time for the stability of the regulator is shown in the Figure. Therefore, a gap occurs between the value of the counter and the real time.

■ TRIGGER CONDITION(S)

When both of (1) and (2) described in below is applicable, the gap occurs.

(1) CPU Operation Mode

The gap occurs in the sub timer mode or the low speed CR mode.

It does not occur in the following modes:

- Run modes (PLL, main, high speed CR, sub, and low speed CR)
- Sleep modes (PLL, main, high speed CR, sub, low speed CR)
- PLL timer mode
- · Main timer mode
- · High speed CR timer mode
- Stop mode

(2) Return Factor

The gap occurs when any of the following interrupt is requested for the return in the sub timer mode or the low speed CR timer mode.

- NMI interrupt
- External interrupt
- Hardware Watchdog Timer interrupt
- USB Wakeup interrupt
- Watch Counter interrupt
- Low-voltage detection interrupt
- The gap does not occur in the standby return by the reset because the value of the counter is cleared

■ WORKAROUND

When the extremely accuracy is required for the count time of the watch counter, use the sub sleep mode or the low speed CR sleep mode.

■FIX STATUS

This issue was fixed in Rev. A.

17. Major Changes

Spansion Publication Number: DS706-00024

Page	Section	Change Results		
Revision	1.0			
-	-	Initial release		
Revision	2.0	-		
-	_	Corrected series name and part number: MB9B300A Series → MB9B300B Series, MB9BF304NA → MB9BF304NB, MB9BF304RA → MB9BF304RB, MB9BF305NA → MB9BF305NB, MB9BF305RA → MB9BF305RB, MB9BF306NA → MB9BF306NB, MB9BF306RA → MB9BF306RB		
Revision	2.1			
-	-	Company name and layout design change		
Revision	3.0			
2	FEATURES USB Interface	Added the description of PLL for USB		
3	FEATURES External Bus Interface	Added the description of Maximum area size		
8	PACKAGES	Deleted the description of ES		
17	LIST OF PIN FUNCTIONS List of pin numbers	Modified the Pin state type of P4E from I to H		
32-35	LIST OF PIN FUNCTIONS List of pin functions	Added LIN to the description of SOTxx		
42	I/O CIRCUIT TYPE	Added the description of I ² C to the type of E and F		
42, 43	I/O CIRCUIT TYPE	Added about +B input		
48	HANDLING DEVICES	Added "Stabilizing power supply voltage"		
48	HANDLING DEVICES Crystal oscillator circuit	Added the following description "Evaluate oscillation of your using crystal oscillator by your mount board."		
49	HANDLING DEVICES C Pin	Changed the description		
50	BLOCK DIAGRAM	Modified the block diagram		
50	MEMORY SIZE	Changed to the following description See "Memory size" in "PRODUCT LINEUP" to confirm the memory size.		
51	MEMORY MAP Memory map(1)	Modified the area of "External Device Area"		
52	MEMORY MAP Memory map(2)	Added the summary of Flash memory sector and the note		
59, 60	ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings	Added the Clamp maximum current Added the output current of P80 and P81 Added about +B input		
61	ELECTRICAL CHARACTERISTICS 2. Recommended Operation Conditions	Modified the minimum value of Analog reference voltage Added Smoothing capacitor Added the note about less than the minimum power supply voltage		
62, 63	ELECTRICAL CHARACTERISTICS 3. DC Characteristics (1) Current rating	Changed the table format Added Main TIMER mode current Added Flash Memory Current Moved A/D Converter Current		
65	ELECTRICAL CHARACTERISTICS 4. AC Characteristics (1) Main Clock Input Characteristics	Added Master clock at Internal operating clock frequency		
66	ELECTRICAL CHARACTERISTICS 4. AC Characteristics (3) Built-in CR Oscillation Characteristics	Added Frequency stability time at Built-in high-speed CR		

Page	Section	Change Results
67	ELECTRICAL CHARACTERISTICS 4. AC Characteristics (4-1) Operating Conditions of Main and USB PLL (4-2) Operating Conditions of Main PLL	Added Main PLL clock frequency Added USB clock frequency Added the figure of Main PLL connection and USB PLL connection
68	ELECTRICAL CHARACTERISTICS 4. AC Characteristics (6) Power-on Reset Timing	Added Time until releasing Power-on reset Changed the figure of timing
74-81	ELECTRICAL CHARACTERISTICS 4. AC Characteristics (7) CSIO/UART Timing	Modified from UART Timing to CSIO/UART Timing Changed from Internal shift clock operation to Master mode Changed from External shift clock operation to Slave mode
88	ELECTRICAL CHARACTERISTICS 5. 12bit A/D Converter	Added the typical value of Integral Nonlinearity, Differential Nonlinearity, Zero transition voltage and Full-scale transition voltage Added Conversion time at AVcc < 4.5 V Modified Stage transition time to operation permission Modified the minimum value of Reference voltage
91	ELECTRICAL CHARACTERISTICS 6. USB Characteristics	Modified condition of Output Low level voltage
96	ELECTRICAL CHARACTERISTICS 8. Flash Memory Write/Erase Characteristics	Change to the erase time of include write time prior to internal erase
97-100	ELECTRICAL CHARACTERISTICS 9. Return Time from Low-Power Consumption Mode	Added Return Time from Low-Power Consumption Mode
103	ORDERING INFORMATION	Change to full part number
104	PACKAGE DIMENSIONS	Deleted FPT-100P-M20 and FPT-120P-M21

Note: Please see "Document History" about later revised information.

Document History

Document Title: MB9B300B Series 32-bit Arm® Cortex®-M3 FM3 Microcontroller

Document Number: 002-05612

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	AKIH	12/15/2014	Migrated to Cypress and assigned document number 002-05612. No change to document contents or format.
*A	5206321	AKIH	04/11/2016	Updated to Cypress format.
*B	5486354	HTER	03/02/2017	Updated Cypress Logo. Corrected the following statement USB Function → USB Device in chapter: Features (Page 1) 1. Product Lineup (Page 6) 4. List of Pin Functions (Page 36) 8. Block Diagram (Page 47). Corrected the following statement J-TAG → JTAG in chapter 4. List of Pin Functions (Page 25) Added "Note" about TAP pins in chapter 4. List of Pin Functions (Page 37). Added the Baud rate spec in 12.4.10 CSIO Timing (Page 72-78) Corrected the following statement Analog port input current → Analog port input leak current in chapter 12.5 12-bit A/D Converter (Page 86). Corrected the following statement Comrare clock cycle → Compare clock cycle in chapter 12.5 12-bit A/D Converter (Page 87). Changed the package codes as the following table in chapter: 2. Packages (Page 7) 3. Pin Assignment (Page 8-10) 12.2 Recommended Operating Conditions (Page 57) 14. Ordering Information (Page 101) 15. Package Dimensions (Page 102-104). Before After FPT-100P-M23 LQI100 FPT-120P-M37 LQM120 BGA-112P-M04 LBC112 Added the Part numbers - MB9BF304RBPMC-G-UNE1 in chapter 14. Ordering Information (Page 101). Corrected the Part numbers - MB9BF304NBBGL-G-YE1 → MB9BF305NBBGL-GK6E1 - MB9BF305NBBGL-G-YE1 → MB9BF306NBBGL-GK6E1 - MB9BF306NBBGL-G-YE1 → MB9BF306NBBGL-GK6E1 - MB9BF306NBBGL-G-YE1 → MB9BF306NBBGL-GK6E1 in chapter 14. Ordering Information (Page 101). Added 16. Errata (Page 105-106)
*C	5811601	YSAT	07/13/2017	Adapted new Cypress logo

Revision	ECN	Orig. of Change	Submission Date	Description of Change
	*D 5942095	HUAL	10/24/2017	Corrected the following Clock frequency MAX value (When not trimming) 5MHz → 6MHz in chapter 12.4.3 Built-in CR Oscillation Characteristics.
				Added the Part numbers in chapter 14. Ordering Information.
*D				- MB9BF304NBPMC-G-UNE1
				- MB9BF306NBPMC-G-UNE1
				Corrected the Part numbers in chapter 14. Ordering Information.
				- MB9BF306NBPMC-G-JNE2 → MB9BF306NBPMC-G-UNE2 Added the errata 002-06782 contents in chapter 16. Errata.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Wireless Connectivity

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic **Touch Sensing** cypress.com/touch **USB Controllers** cypress.com/usb

cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2011-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-05612 Rev. *D October 24, 2017 Page 112 of 112