High-Precision Voltage References with Temperature Sensor

Absolute Maximum Ratings

IN to GND0.3V to +42V	Operating Temperature Range40°C to +125°C
OUT, TRIM, TEMP to GND0.3V to (V _{IN} + 0.3V)	Junction Temperature+150°C
Output Short-Circuit to GND5s	Storage Temperature Range65°C to +150°C
Continuous Power Dissipation (T _A = +70°C) (Note1)	Lead Temperature (soldering, 10s)+300°C
8-Pin SO (derate 7.6mW/°C above +70°C)606mW	Soldering Temperature (reflow)+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

8 SO

PACKAGE CODE	S8+4
Outline Number	<u>21-0041</u>
Land Pattern Number	90-0096
Thermal Resistance, Single-Layer Board	
Junction to Ambient - θ _{JA}	170
Junction to Case - θ _{JC}	40
Thermal Resistance, Multi-Layer Board	
Junction to Ambient - θ _{JA}	132°C/W
Junction to Case - θ _{JC}	38°C/W

8 SO

PACKAGE CODE	S8+22
Outline Number	<u>21-0041</u>
Land Pattern Number	90-0096
Thermal Resistance, Single-Layer Board	
Junction to Ambient - θ_{JA}	170°C/W
Junction to Case - θ _{JC}	40°C/W
Thermal Resistance, Multi-Layer Board	
Junction to Ambient - θ_{JA}	132°C/W
Junction to Case - θ _{JC}	38°C/W

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

High-Precision Voltage References with Temperature Sensor

Electrical Characteristics—MAX6173 (V_{OUT} = 2.5V)

 $(V_{IN} = +5V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT	·						
Output Valtage			MAX6173A (0.06%)	2.4985	2.5	2.5015	
Output Voltage	V _{OUT}	No load, T _A = +25°C	MAX6173B (0.1%)	2.4975	2.5	2.5025	V
Output Adjustment Range	ΔV _{TRIM}	$R_{POT} = 10k\Omega$		±3	±6		%
Output-Voltage Temperature Coefficient	TCV _{OUT}	T _A = -40°C to	MAX6173AASA		1.5	3	ppm/°C
(Note 3)	101001	+125°C	MAX6173BASA		3	10	pp
Line Regulation (Note 4)	ΔVOUT/ΔVIN	4.5V ≤ V _{IN} ≤ 40V	T _A = +25°C		0.6	5	/
		$4.50 \leq V \mid N \leq 400$	$T_A = -40^{\circ}C$ to $+125^{\circ}C$		0.8	10	ppm/V
Load Regulation (Note 4)		Sourcing:	T _A = +25°C		2	10	
	A)/ / Al	$0 \le I_{OUT} \le 10 \text{mA}$	$T_A = -40^{\circ}C$ to $+125^{\circ}C$		2	15	nnm/mA
	ΔV _{OUT} /Δlout	Sinking: -0.6mA ≤ I _{OUT} ≤ 0	T _A = +25°C		50	500	ppm/mA
			T _A = -40°C to +125°C		90	900	
Output Short-Circuit	1	OUT shorted to GND OUT shorted to IN			60		mA
Current	I _{SC}				3		
Temperature Hysteresis (Note 5)	∆V _{OUT} / cycle				120		ppm
Long-Term Stability	∆V _{OUT} / time	1000 hours at T _A = +2	5°C		50		ppm
DYNAMIC							
	_	f = 0.1Hz to 10Hz			3.8		μV _{P-P}
Noise Voltage	eout	f = 10Hz to 1kHz			6.8		μV _{RMS}
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of fin	al value, C _{OUT} = 50pF		150		μs
INPUT							
Supply Voltage Range	V _{IN}	Guaranteed by line re	gulation test	4.5		40.0	V
Ourisseent Sumply Current		Nalaad	T _A = +25°C		300	450	
Quiescent Supply Current	IIN	No load	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			600	μA
TEMP OUTPUT							
TEMP Output Voltage	V _{TEMP}				570		mV
TEMP Temperature Coefficient	TC _{TEMP}				1.9		mV/°C

High-Precision Voltage References with Temperature Sensor

Electrical Characteristics—MAX6177 (V_{OUT} = 3.3V)

 $(V_{IN} = +10V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
OUTPUT								
	Maxim	No load, T _A = +25°C	MAX6177A (0.06%)	3.2980	3.3	3.3020	V	
Output Voltage	V _{OUT}	$10010000, 1A - +25^{\circ}C$	MAX6177B (0.1%)	3.2967	3.3	3.3033	v	
Output Adjustment Range	ΔV_{TRIM}	$R_{POT} = 10k\Omega$		±3	±6		%	
Output-Voltage Temperature Coefficient	TCVOUT	T _A = -40°C to	MAX6177AASA		1.5	3	ppm/°C	
(Note 3)	100001	+125°C	MAX6177BASA		3	10		
Line Regulation (Note 4)		5.3V ≤ V _{IN} ≤ 40V	T _A = +25°C		0.6	5	ppm/V	
	$\Delta V_{OUT} / \Delta V_{IN}$	$5.3V \leq V_{\text{IN}} \leq 40V$	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$		0.8	10	ppm/v	
		Sourcing:	T _A = +25°C		2	10		
Load Regulation (Note 4)	A)//Al	$0 \le I_{OUT} \le 10 \text{mA}$	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$		2	15		
Load Regulation (Note 4)	ΔV _{OUT} /ΔΙουτ	Sinking: -0.6mA ≤ I _{OUT} ≤ 0	T _A = +25°C		50	500	ppm/mA	
			$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$		90	900		
Output Short-Circuit		OUT shorted to GND			60		mA	
Current	I _{SC}	OUT shorted to IN			3		IIIA	
Temperature Hysteresis (Note 5)	∆V _{OUT} / cycle				120		ppm	
Long-Term Stability	∆V _{OUT} / time	1000 hours at T _A = +2	5°C		50		ppm	
DYNAMIC								
Noine Valtage	0	f = 0.1Hz to 10Hz			5		μV _{P-P}	
Noise Voltage	eout	f = 10Hz to 1kHz			9.3		μV _{RMS}	
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of fin	al value, C _{OUT} = 50pF		180		μs	
INPUT								
Supply Voltage Range	V _{IN}	Guaranteed by line re	gulation test	5.3		40.0	V	
Ouissesst Complex Complex			T _A = +25°C		320	500		
Quiescent Supply Current	IIN	No load	T _A = -40°C to +125°C			650	μA	
TEMP OUTPUT								
TEMP Output Voltage	V _{TEMP}				630		mV	
TEMP Temperature Coefficient	TC _{TEMP}				2.1		mV/°C	

High-Precision Voltage References with Temperature Sensor

Electrical Characteristics—MAX6174 (V_{OUT} = 4.096V)

(V_{IN} = +10V, T_A = -40°C to +125°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS	
OUTPUT								
Quality (1) (1) (1)	V _{OUT}		MAX6174A (0.06%)	4.0935	4.096	4.0985	v	
Output Voltage		No load, T _A = +25°C	MAX6174B (0.1%)	4.0919	4.096	4.1001		
Output Adjustment Range	ΔV _{TRIM}	$R_{POT} = 10k\Omega$		±3	±6		%	
Output-Voltage Temperature	TOV	T - 40%0 to 1405%0	MAX6174AASA		1.5	3		
Coefficient (Note 3)	TCV _{OUT}	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	MAX6174BASA		3	10	ppm/°C	
Line Regulation (Note 4)	∆V _{OUT} /	6.11/c.1/m < 101/c	T _A = +25°C		0.6	5	nnm//	
	ΔV _{IN}	$6.1V \le V_{IN} \le 40V$	T _A = -40°C to +125°C		0.8	10	ppm/V	
		Sourcing:	T _A = +25°C		2	10		
Load Pagulation (Nata 4)	ΔV _{OUT} /	$0 \le I_{OUT} \le 10 \text{mA}$	T _A = -40°C to +125°C		2	15		
Load Regulation (Note 4)	Δlout	Sinking:	T _A = +25°C		50	500	- ppm/mA	
		-0.6mĂ ≤ I _{OUT} ≤ 0	T _A = -40°C to +125°C		90	900		
Output Short Circuit Current	1	OUT shorted to GND			60		mA	
Output Short-Circuit Current	I _{SC}	OUT shorted to IN			3			
Temperature Hysteresis (Note 5)	∆V _{OUT} / cycle						ppm	
Long-Term Stability	ΔV _{OUT} / time	1000 hours at T _A = +25		50		ppm		
DYNAMIC	1			1			1	
		f = 0.1Hz to 10Hz			7		μV _{P-P}	
Noise Voltage	eOUT	f = 10Hz to 1kHz			11.5		μV _{RMS}	
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of fina	l value, C _{OUT} = 50pF		200		μs	
INPUT								
Supply Voltage Range	V _{IN}	Guaranteed by line reg	ulation test	6.1		40.0	V	
Ouissesst Oursely Ourset		Nelsed	T _A = +25°C		320	500		
Quiescent Supply Current	I _{IN}	No load	T _A = -40°C to +125°C			650	μA	
TEMP OUTPUT								
	\/	T _A = +25°C		475	630	785	m)/	
TEMP Output Voltage	V _{TEMP}	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		300		1130	mV	
TEMP Temperature Coefficient	TC _{TEMP}			2.1		mV/°C		

High-Precision Voltage References with Temperature Sensor

Electrical Characteristics—MAX6175 (V_{OUT} = 5.0V)

(V_{IN} = +15V, T_A = -40°C to +125°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CON	MIN	TYP	MAX	UNITS		
OUTPUT								
		No lood T = 105°C	MAX6175A (0.06%)	4.9970	5.0	5.0030	V	
Output Voltage	VOUT	No load, $T_A = +25^{\circ}C$	MAX6175B (0.1%)	4.9950	5.0	5.0050	v	
Output Adjustment Range	ΔV_{TRIM}	$R_{POT} = 10k\Omega$		±3	±6		%	
Output-Voltage Temperature Coefficient (Note 3)	TO 14	T 40%0 L 1405%0	MAX6175AASA		1.5	3	1 00	
	TCV _{OUT}	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	MAX6175BASA		3	10	ppm/°C	
Line Regulation (Note 4)	ΔV _{OUT} / ΔV _{IN}	7V ≤ V _{IN} ≤ 40V	T _A = +25°C		0.6	5	ppm/V	
	ΔV_{IN}	7 V S VIN S 40 V	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		0.8	10	ppin/v	
		Sourcing:	T _A = +25°C		2	10		
Load Pagulation (Nata 4)	∆V _{OUT} /	$0 \le I_{OUT} \le 10 \text{mA}$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		2	15	nnm/mA	
Load Regulation (Note 4)	Δlout	Sinking:	T _A = +25°C		50	500	- ppm/mA -	
		$-0.6\text{mA} \le I_{OUT} \le 0$	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$		90	900		
	1	OUT shorted to GND			60			
Output Short-Circuit Current		OUT shorted to IN			3		mA	
Temperature Hysteresis (Note 5)	∆V _{OUT} / cycle			120		ppm		
Long-Term Stability	∆V _{OUT} / time	1000 hours at T _A = +25		50		ppm		
DYNAMIC							1	
	-	f = 0.1Hz to 10Hz			9		μV _{P-P}	
Noise Voltage	eout	f = 10Hz to 1kHz			14.5		μV _{RMS}	
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of fina	l value, C _{OUT} = 50pF		230		μs	
INPUT								
Supply Voltage Range	V _{IN}	Guaranteed by line reg	Guaranteed by line regulation test			40.0	V	
Quieseent Sumply Quet		Neleed	T _A = +25°C		320	550		
Quiescent Supply Current	I _{IN}	No load	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			700	μA	
TEMP OUTPUT								
	V	T _A = +25°C		475	630	785	m\/	
TEMP Output Voltage	V _{TEMP}	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		300		1130	mV	
TEMP Temperature Coefficient	TC _{TEMP}				2.1		mV/°C	

High-Precision Voltage References with Temperature Sensor

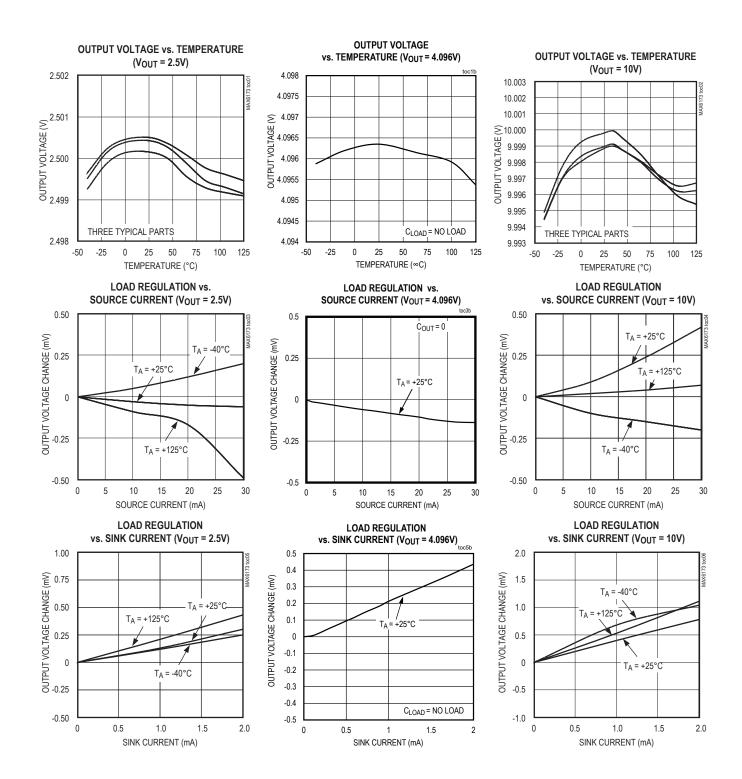
ELECTRICAL CHARACTERISTICS—MAX6176 (V_{OUT} = 10V)

 $(V_{IN} = +15V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 2)

PARAMETER	SYMBOL	CON	MIN	TYP	MAX	UNITS		
OUTPUT								
	Maxa	No load, T _A = +25°C	MAX6176A (0.05%)	9.9950	10.0	10.0050	V	
Output Voltage	V _{OUT}	No load, 1A - +25 C	MAX6176B (0.1%)	9.9900	10.0	10.0100	v	
Output Adjustment Range	ΔV_{TRIM}	$R_{POT} = 10k\Omega$		±3	±6		%	
Output-Voltage Temperature Coefficient	TCV _{OUT}	T _A = -40°C to +125°C	MAX6176AASA		1.5	3	ppm/°C	
(Note 3)	101001		MAX6176BASA		3	10		
Line Regulation (Note 4)	ΔV _{OUT} /	12V ≤ V _{IN} ≤ 40V	T _A = +25°C		0.6	5	ppm/V	
	ΔV _{IN}	12 V S VIN S 40 V	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		0.8	10	ppin/v	
		Sourcing:	T _A = +25°C		2	10		
Load Regulation (Note 4)	∆V _{OUT} /	$0 \le I_{OUT} \le 10 \text{mA}$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		2	15	ppm/mA	
Load Regulation (Note 4)	Δlout	Sinking:	T _A = +25°C		50	500	ppm/mA	
		-0.6 mA $\leq I_{OUT} \leq 0$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		90	900		
Output Short-Circuit	laa	OUT shorted to GND			60		mA	
Current Isc		OUT shorted to IN			3			
Temperature Hysteresis (Note 5)	∆V _{OUT} / cycle				120		ppm	
Long-Term Stability	∆V _{OUT} / time	1000 hours at T _A = +25	5°C		50		ppm	
DYNAMIC							<u> </u>	
		f = 0.1Hz to 10Hz			18		μV _{P-P}	
Noise Voltage	eout	f = 10Hz to 1kHz			29		μV _{RMS}	
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of fina	al value, C _{OUT} = 50pF		400		μs	
INPUT								
Supply Voltage Range	VIN	Guaranteed by line regulation test		12.0		40.0	V	
Quiescent Supply Current	lu.	No load	T _A = +25°C		340	550		
Quiescent Supply Current	I _{IN}		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			700	μA	
TEMP OUTPUT								
TEMP Output Voltage	V _{TEMP}				630		mV	
TEMP Temperature Coefficient	TC _{TEMP}				2.1		mV/°C	

Note 2: All devices are 100% production tested at $T_A = +25^{\circ}C$ and guaranteed by design over $T_A = T_{MIN}$ to T_{MAX} , as specified.

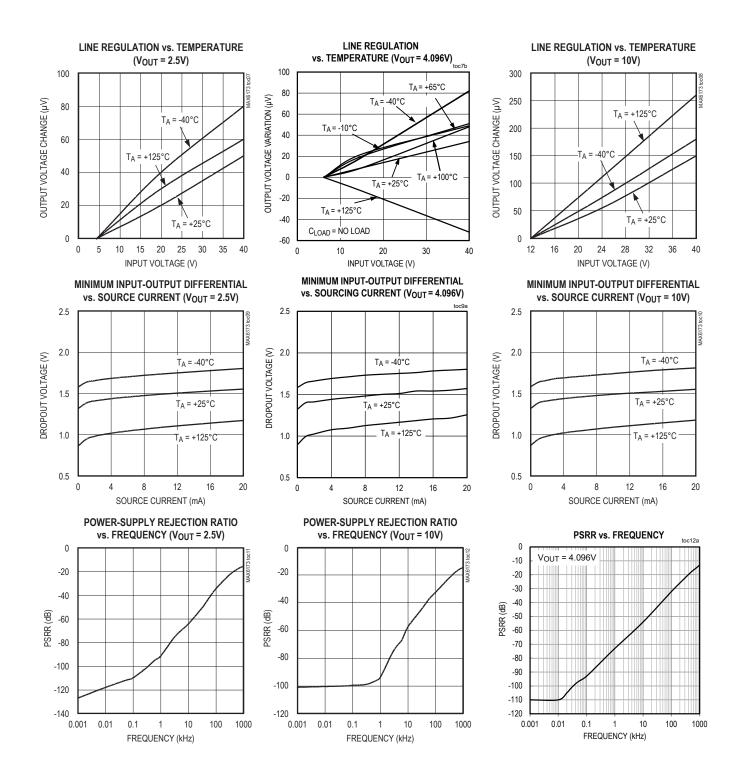
Note 3: Temperature coefficient is defined as ΔV_{OUT} divided by the temperature range.


Note 4: Line and load regulation specifications do not include the effects of self-heating.

Note 5: Thermal hysteresis is defined as the change in +25°C output voltage before and after cycling the device from T_{MAX} to T_{MIN}.

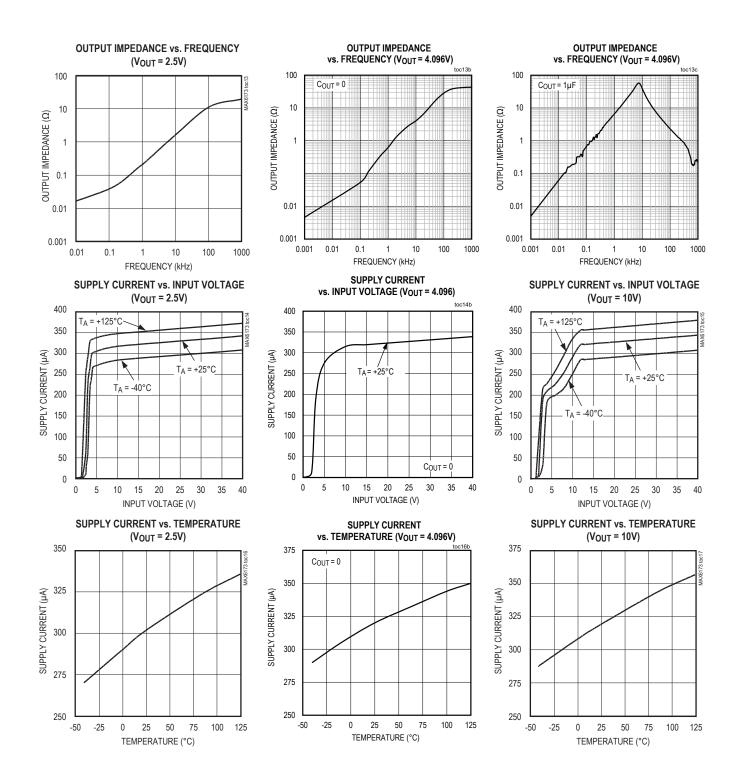
High-Precision Voltage References with Temperature Sensor

Typical Operating Characteristics


(V_{IN} = +5V for V_{OUT} = +2.5V, V_{IN} = +15V for V_{OUT} = 4.096V and V_{OUT} = +10V, I_{OUT} = 0, T_A = +25°C, unless otherwise noted.)

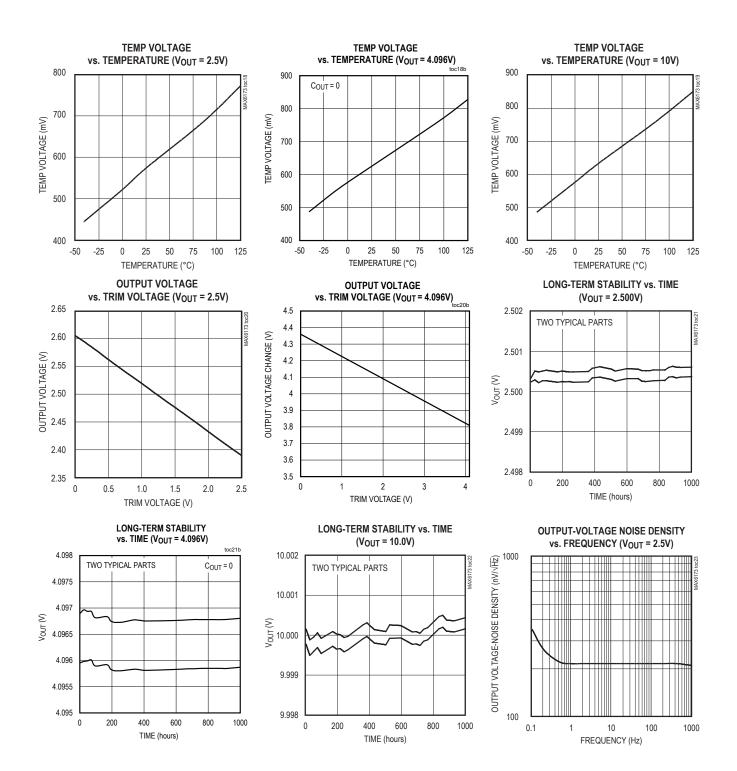
High-Precision Voltage References with Temperature Sensor

Typical Operating Characteristics (continued)


(V_{IN} = +5V for V_{OUT} = +2.5V, V_{IN} = +15V for V_{OUT} = 4.096V and V_{OUT} = +10V, I_{OUT} = 0, T_A = +25°C, unless otherwise noted.)

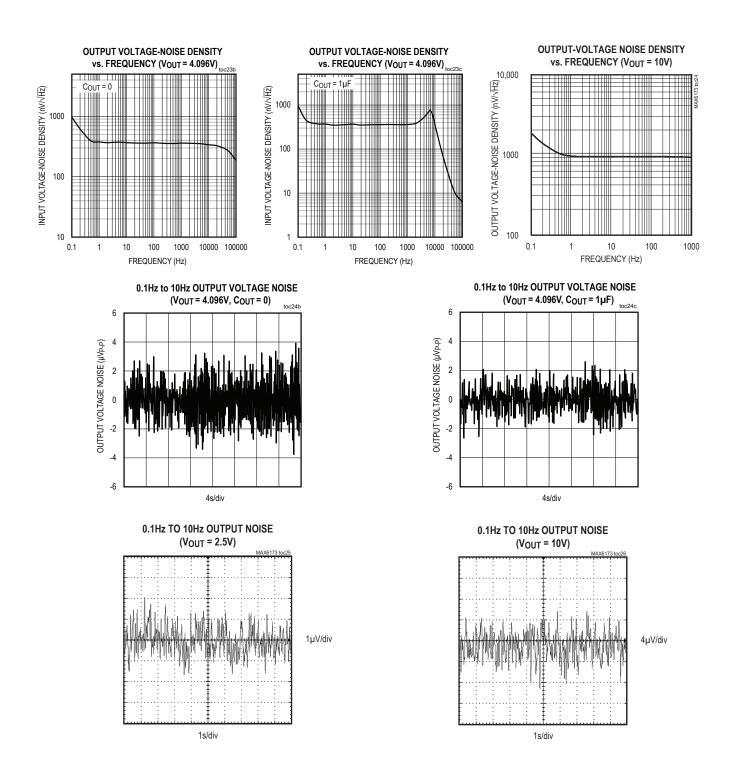
High-Precision Voltage References with Temperature Sensor

Typical Operating Characteristics (continued)


 $(V_{IN} = +5V \text{ for } V_{OUT} = +2.5V, V_{IN} = +15V \text{ for } V_{OUT} = 4.096V \text{ and } V_{OUT} = +10V, I_{OUT} = 0, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

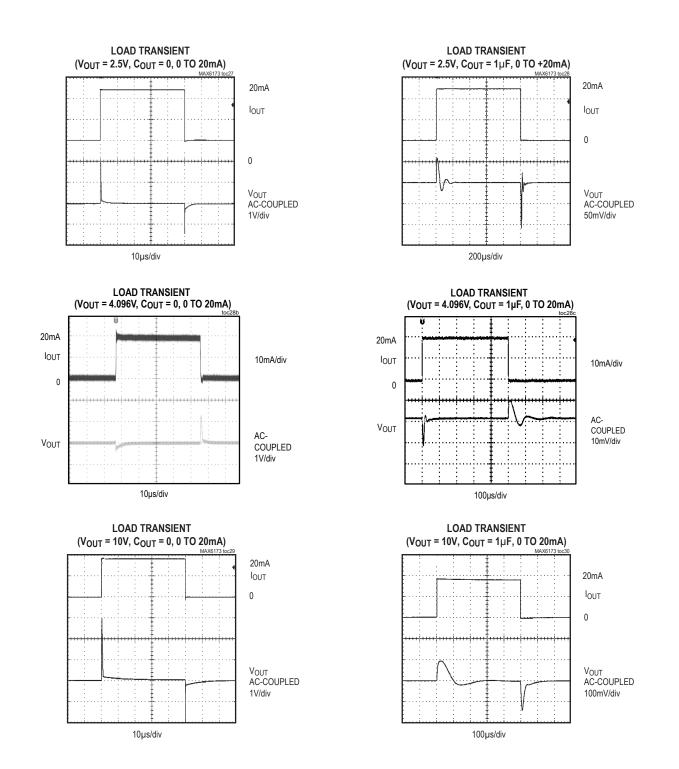
High-Precision Voltage References with Temperature Sensor

Typical Operating Characteristics (continued)


(V_{IN} = +5V for V_{OUT} = +2.5V, V_{IN} = +15V for V_{OUT} = 4.096V and V_{OUT} = +10V, I_{OUT} = 0, T_A = +25°C, unless otherwise noted.)

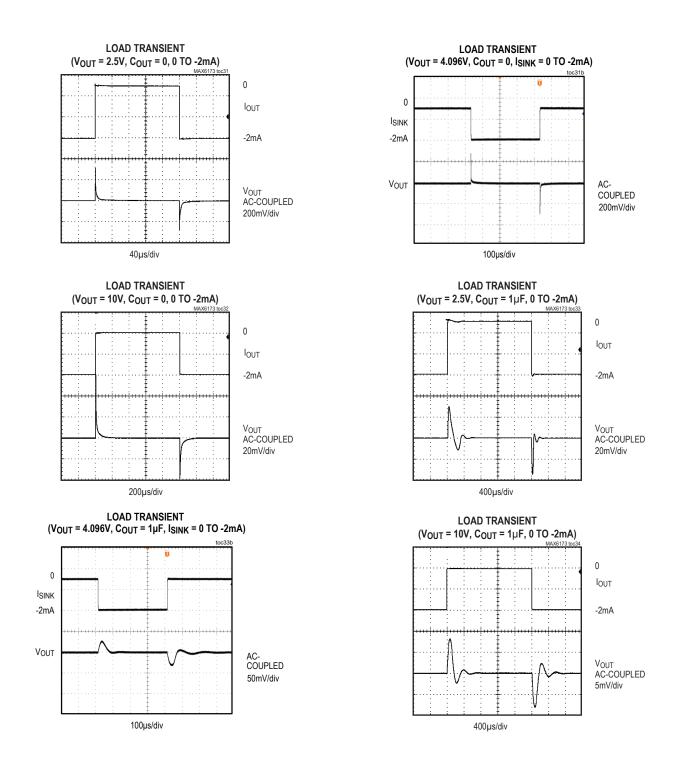
High-Precision Voltage References with Temperature Sensor

Typical Operating Characteristics (continued)


(V_{IN} = +5V for V_{OUT} = +2.5V, V_{IN} = +15V for V_{OUT} = 4.096V and V_{OUT} = +10V, I_{OUT} = 0, T_A = +25°C, unless otherwise noted.)

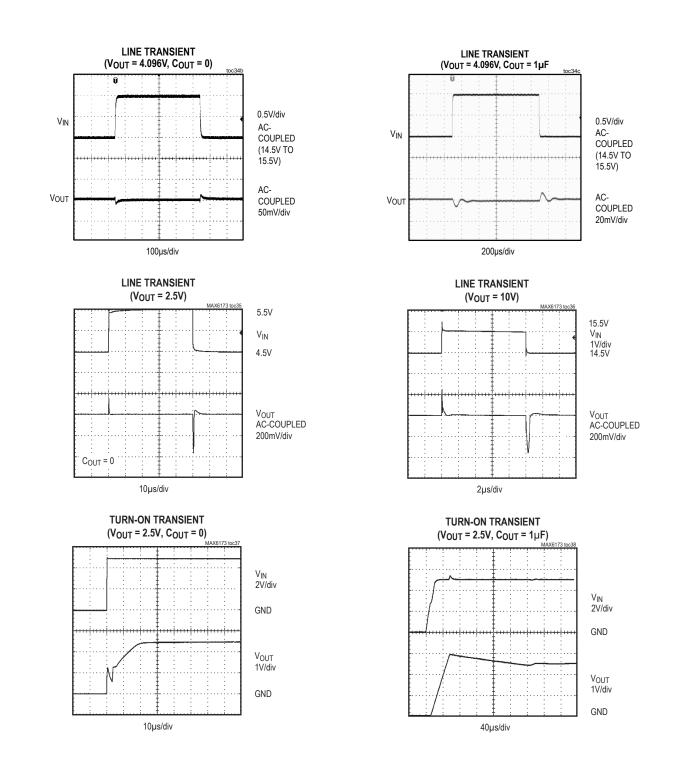
High-Precision Voltage References with Temperature Sensor

Typical Operating Characteristics (continued)


 $(V_{IN} = +5V \text{ for } V_{OUT} = +2.5V, V_{IN} = +15V \text{ for } V_{OUT} = 4.096V \text{ and } V_{OUT} = +10V, I_{OUT} = 0, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

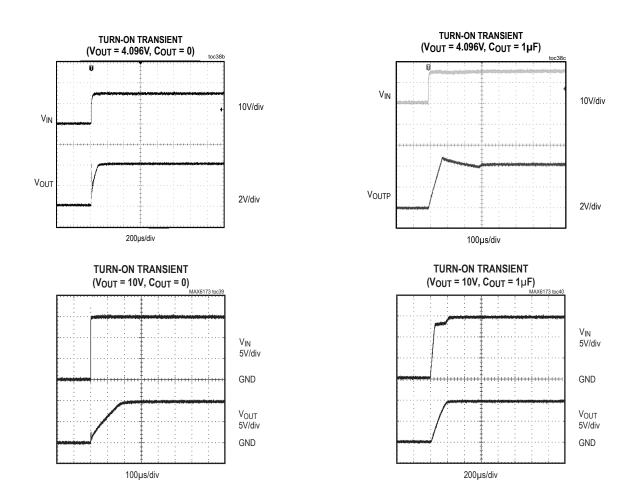
High-Precision Voltage References with Temperature Sensor

Typical Operating Characteristics (continued)


 $(V_{IN} = +5V \text{ for } V_{OUT} = +2.5V, V_{IN} = +15V \text{ for } V_{OUT} = 4.096V \text{ and } V_{OUT} = +10V, I_{OUT} = 0, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

High-Precision Voltage References with Temperature Sensor

Typical Operating Characteristics (continued)


(V_{IN} = +5V for V_{OUT} = +2.5V, V_{IN} = +15V for V_{OUT} = 4.096V and V_{OUT} = +10V, I_{OUT} = 0, T_A = +25°C, unless otherwise noted.)

High-Precision Voltage References with Temperature Sensor

Typical Operating Characteristics (continued)

 $(V_{IN} = +5V \text{ for } V_{OUT} = +2.5V, V_{IN} = +15V \text{ for } V_{OUT} = 4.096V \text{ and } V_{OUT} = +10V, I_{OUT} = 0, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

High-Precision Voltage References with Temperature Sensor

Pin Description

PIN	NAME	FUNCTION
1, 8	I.C.	Internally Connected. Do not connect externally.
2	IN	Positive Power-Supply Input
3	TEMP	Temperature Proportional Output Voltage. TEMP generates an output voltage proportional to the die temperature.
4	GND	Ground
5	TRIM	Output Voltage Trim. Connect TRIM to the center of a voltage-divider between OUT and GND for trimming. Leave unconnected to use the preset output voltage.
6	OUT	Output Voltage
7	N.C.	No Connection. Not internally connected.

Detailed Description

The MAX6173–MAX6177 precision voltage references provide accurate preset +2.5V, +3.3V, +4.096V, +5.0V, and +10V reference voltages from up to +40V input voltages. These devices feature a proprietary temperature-coefficient curvature-correction circuit and laser-trimmed thin-film resistors that result in a very low 3ppm/°C temperature coefficient and excellent 0.05% initial accuracy. The MAX6173–MAX6177 draw 340 μ A of supply current and source 30mA or sink 2mA of load current.

Trimming the Output Voltage

Trim the factory-preset output voltage on the MAX6173– MAX6177 by placing a resistive divider network between OUT, TRIM, and GND.

Use the following formula to calculate the change in output voltage from its preset value:

$$\Delta V_{OUT} = 2 \times (V_{TRIM} - V_{TRIM (open)}) \times k$$

where:

V_{TRIM} = 0V to V_{OUT} V_{TRIM (open)} = V_{OUT} (nominal)/2 (typ) k = ±6% (typ) For example, use a 50k Ω potentiometer (such as the MAX5436) between OUT, TRIM, and GND with the potentiometer wiper connected to TRIM (see Figure 2). As the TRIM voltage changes from V_{OUT} to GND, the output voltage changes accordingly. Set R2 to 1M Ω or less. Currents through resistors R1 and R2 add to the quiescent supply current.

Temp Output

The MAX6173–MAX6177 provide a temperature output proportional to die temperature. TEMP can be calculated from the following formula:

TEMP (V) =
$$T_J$$
 (°K) x n

where T_J = the die temperature,

n = the temperature multiplier,

$$n = \frac{V_{TEMP}(at T_J = T_0)}{T_0} \cong 1.9 mV/°K$$

 T_A = the ambient temperature.

Self-heating affects the die temperature and conversely, the TEMP output. The TEMP equation assumes the output is not loaded. If device power dissipation is negligible, then $T_J \approx T_A$.

Applications Information

Bypassing/Output Capacitance

For the best line-transient performance, decouple the input with a 0.1μ F ceramic capacitor as shown in the *Typical Operating Circuit*. Place the capacitor as close to IN as possible. When transient performance is less important, no capacitor is necessary.

The MAX6173–MAX6177 do not require an output capacitor for stability and are stable with capacitive loads up to 100μ F. In applications where the load or the supply can experience step changes, a larger output capacitor reduces the amount of overshoot (undershoot) and improves the circuit's transient response. Place output capacitors as close to the devices as possible for best performance.

Supply Current

The MAX6173–MAX6177 consume $320\mu A$ (typ) of quiescent supply current. This improved efficiency reduces power dissipation and extends battery life.

Thermal Hysteresis

Thermal hysteresis is the change in the output voltage at $T_A = +25^{\circ}$ C before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The typical thermal hysteresis value is 120ppm.

Turn-On Time

The MAX6173–MAX6177 typically turn on and settle to within 0.1% of the preset output voltage in 150 μ s (2.5V output). The turn-on time can increase up to 150 μ s with the device operating with a 1 μ F load.

Short-Circuited Outputs

The MAX6173–MAX6177 feature a short-circuit-protected output. Internal circuitry limits the output current to 60mA when short circuiting the output to ground. The output current is limited to 3mA when short circuiting the output to the input.

Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

In a data converter application, the reference voltage of the converter must stay within a certain limit to keep the error in the data converter smaller than the resolution limit through the operating temperature range. Figure 1 shows the maximum allowable reference-voltage temperature coefficient to keep the conversion error to less than 1 LSB, as a function of the operating temperature range (T_{MAX} - T_{MIN}) with the converter resolution as a parameter. The graph assumes the reference-voltage temperature coefficient as the only parameter affecting accuracy.

In reality, the absolute static accuracy of a data converter is dependent on the combination of many parameters such as integral nonlinearity, differential nonlinearity, offset error, gain error, as well as voltage-reference changes.

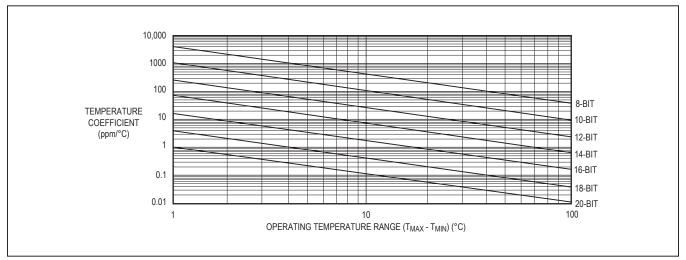


Figure 1. Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

High-Precision Voltage References with **Temperature Sensor**

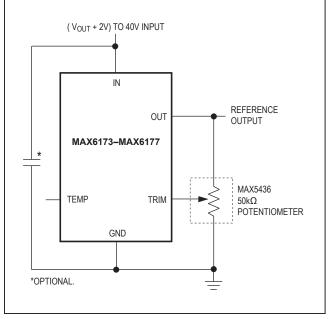
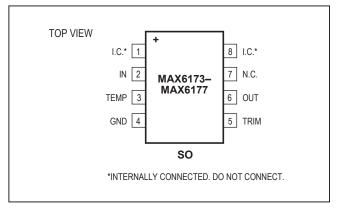



Figure 2. Applications Circuit Using the MAX5436 Potentiometer

Pin Configuration

Chip Information PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 SO	S8+4	<u>21-0041</u>	<u>90-0096</u>
8 SO	S8+22	21-0041	90-0096

Ordering Information/Selector Guide

PART	TEMP RANGE	PIN- PACKAGE	OUTPUT VOLTAGE (V)	TEMPERATURE COEFFICIENT (ppm/°C) -40°C TO +125°C	INITIAL ACCURACY (%)
MAX6173AASA+	-40°C to +125°C	8 SO	2.500	3	0.06
MAX6173BASA+	-40°C to +125°C	8 SO	2.500	10	0.10
MAX6173BASA/V+T	-40°C to +125°C	8 SO	2.500	3	0.06
MAX6174AASA+	-40°C to +125°C	8 SO	4.096	3	0.06
MAX6174BASA+	-40°C to +125°C	8 SO	4.096	10	0.10
MAX6174BASA/V+	-40°C to +125°C	8 SO	4.096	10	0.10
MAX6174BASA/V+T	-40°C to +125°C	8 SO	4.096	10	0.10
MAX6175AASA+	-40°C to +125°C	8 SO	5.000	3	0.06
MAX6175BASA+	-40°C to +125°C	8 SO	5.000	10	0.10
MAX6175BASA/V+	-40°C to +125°C	8 SO	5.000	10	0.10
MAX6176AASA+	-40°C to +125°C	8 SO	10.000	3	0.05
MAX6176BASA+	-40°C to +125°C	8 SO	10.000	10	0.10
MAX6177AASA+	-40°C to +125°C	8 SO	3.300	3	0.06
MAX6177BASA+	-40°C to +125°C	8 SO	3.300	10	0.10

+Denotes a lead(Pb)-free/RoHS-compliant package.

N denotes an automotive qualified part

High-Precision Voltage References with Temperature Sensor

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/04	Initial release	—
1	2/11	Added automotive grade part, lead-free information, and soldering temperature	1, 2
2	3/14	Updated package code in Package Information	14
3	6/14	Updated Ordering Information, Electrical Characteristics, and Typical Operating Characteristics	1, 4, 5, 8
4	9/14	Updated Typical Operating Characteristics	7–14
5	9/14	Updated Typical Operating Characteristics	7–15
6	12/17	Added AEC statement to Benefits and Features section	1
7	3/18	Updated Ordering Informaiton table	18
8	3/18	Updated Absolute Maximum Ratings section and Electrical Characteristics table	2–6
9	3/18	Updated Absolute Maximum Ratings section	2
10	10/18	Update Applications, Package Thermal Characteristics, Package Information, and Ordering Information/Selector Guide	1, 2, 18
11	4/19	Updated General Description section	1

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2019 Maxim Integrated Products, Inc. | 20