ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND	Operating Temperature Range40°C to +85°C Storage Temperature Range65°C to +150°C Maximum Junction Temperature+150°C Lead Temperature (soldering, 10s)+300°C
6-Pin SO123 (derate 8./mW/°C above +/0°C)696mW	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +2.7 \text{V to } +3.6 \text{V (MAX5363)}, V_{DD} = +4.5 \text{V to } +5.5 \text{V (MAX5364)}, V_{DD} = +2.7 \text{V to } +5.5 \text{V (MAX5365)}, R_L = 10 \text{k}\Omega, C_L = 50 \text{pF}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are $T_A = +25 ^{\circ}\text{C}$.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
STATIC ACCURACY								
Resolution				6			Bits	
Integral Linearity Error	INL	(Note 1)				±1	LSB	
Differential Linearity Error	DNL	Guaranteed monotoni	С			±1	LSB	
Offset Error	Vos	(Note 2)			±1	±25	mV	
Offset Error Supply Rejection		MAX5365 (Notes 2, 3)				60	dB	
Offset Error		MAX5363/MAX5364			3		ppm/°C	
Temperature Coefficient		MAX5365			1		ррпі/ С	
Full-Scale Error		Code = 63, no load	MAX5363/MAX5364			10	% of ideal	
Full-Scale EITOI		Code = 65, 110 10au	MAX5365			5	FS	
Full-Scale Error Supply		Code = 63 (Note 4)	MAX5363/MAX5364			50	dB	
Full-Scale Error Temperature		Code = 63	MAX5363/MAX5364		±40		nnm/°C	
Coefficient		Code = 63	MAX5365		±10		ppm/°C	
DAC OUTPUT								
		MAX5363 MAX5364 MAX5365		1.8	2	2.2	- - V	
Internal Reference Voltage	R _{EF}			3.6	4	4.4		
(Note 5)	NEF			0.85 × V _{DD}	$0.9 \times V_{DD}$	$0.95 \times V_{DD}$		
Output Load Regulation		Code = 63, 0 to 100μ	4		0.5		LSB	
Output Load Regulation		Code = 0, 0 to 100μ A			0.5		LOD	
			[D13, D12] = 0, 1		1k			
Shutdown Output Resistance to GND		$V_{OUT} = 0$ to V_{DD}	[D13, D12] = 1, 0		100k		Ω	
G G G		[D13, D12] = 1, 1			1M			
DYNAMIC PERFORMANCE								
Voltage Output Slew Rate		Positive and negative			0.4		V/µs	
Output Settling Time		To 1/2 LSB, 50kΩ and 50pF load (Note 6)			20		μs	
Digital Feedthrough		Code = 0, all digital inputs from 0 to V _{DD}			2		nVs	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD}=+2.7V \text{ to } +3.6V \text{ (MAX5363)}, V_{DD}=+4.5V \text{ to } +5.5V \text{ (MAX5364)}, V_{DD}=+2.7V \text{ to } +5.5V \text{ (MAX5365)}, R_L=10k\Omega, C_L=50pF, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS	
Digital-Analog Glitch Impulse		Code 31 to code 32		40		nVs	
Wake-Up Time		From software shutdown		50		μs	
POWER REQUIREMENTS							
		MAX5363	2.7		3.6		
Supply Voltage	V_{DD}	MAX5364	4.5		5.5	V	
		MAX5365	2.7		5.5]	
Supply Current	I _{DD}	No load, all digital inputs at 0 or V _{DD} , code = 63		150	230	μА	
		Shutdown mode			1	1	
DIGITAL INPUTS							
Input Low Voltage	VIL				0.3 × V _{DD}	V	
Input High Voltage	VIH		0.7 × V _{DD}			V	
Input Hysteresis	V _H			0.05 × V _{DD}		V	
Input Capacitance	CIN	(Note 7)		10		рF	
Input Leakage Current	IIN				±1	μΑ	

TIMING CHARACTERISTICS

(Figures 3 and 4, V_{DD} = +2.7V to +3.6V (MAX5363), V_{DD} = +4.5V to +5.5V (MAX5364), V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = 10k Ω

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCLK Period	tCP		100			ns
SCLK Pulse Width High	tсн		40			ns
SCLK Pulse Width Low	t _{CL}		40			ns
CS Fall to SCLK Rise Setup Time	tcss		40			ns
SCLK Rise to $\overline{\text{CS}}$ Rise Hold Time	tcsh		0			ns
DIN Setup Time	t _{DS}		40			ns
DIN Hold Time	tDH		0			ns
SCLK Rise to $\overline{\text{CS}}$ Fall Delay	tcso		10			ns
CS Rise to SCLK Rise Hold	tCS1		40			ns
CS Pulse Width High	tcsw		100			ns

TIMING CHARACTERISTICS (continued)

(Figures 3 and 4, V_{DD} = +2.7V to +3.6V (MAX5363), V_{DD} = +4.5V to +5.5V (MAX5364), V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = +2.7V to +5.5V (MAX5365), V_{DD} = 10k Ω , V_{DD} = 10k Ω

- Note 1: Guaranteed from code 2 to code 63.
- Note 2: The offset value extrapolated from the range over which the INL is guaranteed.
- Note 3: MAX5365 tested at 5V $\pm 10\%$.
- Note 4: MAX5363 tested at 3V \pm 10%; MAX5364 tested at 5V \pm 10%.
- **Note 5:** Actual output voltages at full scale are 63/64 × V_{REF}.
- Note 6: Output settling time is measured by stepping from code 2 to code 63, and from code 63 to code 2.
- Note 7: Guaranteed by design.

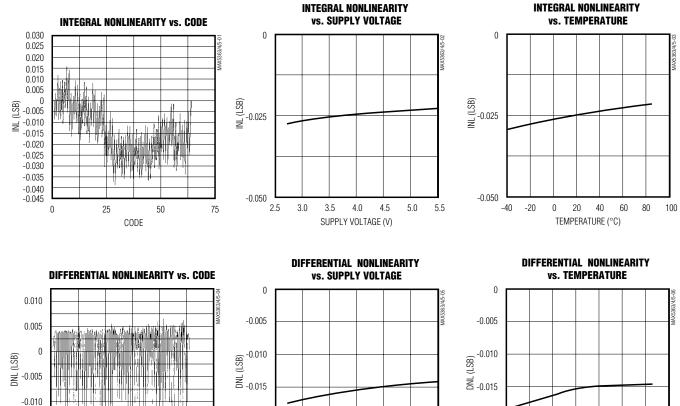
Typical Operating Characteristics

-0.020

-0.025

20

TEMPERATURE (°C)


 $(V_{DD} = +3.0V \text{ (MAX5363)}, V_{DD} = +5.0V \text{ (MAX5364/MAX5365)}, T_{A} = +25^{\circ}\text{C}$, unless otherwise noted.)

-0.020

-0.025

2.5

3.0

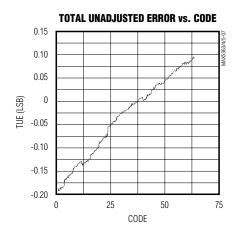
4 _______*N*IXI/VI

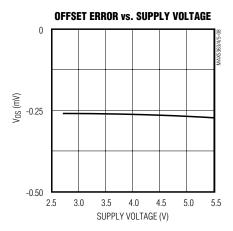
40

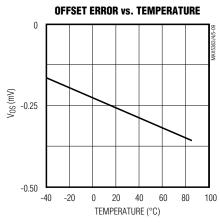
SUPPLY VOLTAGE (V)

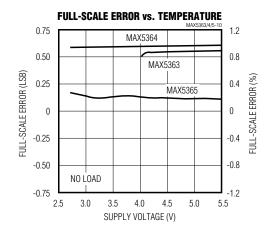
5.0

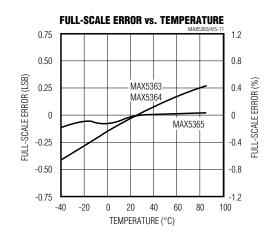
5.5

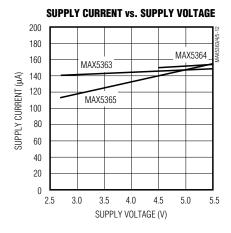

-0.015 -0.020

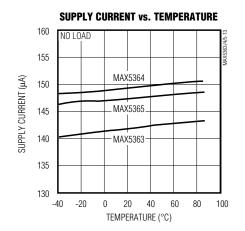

0

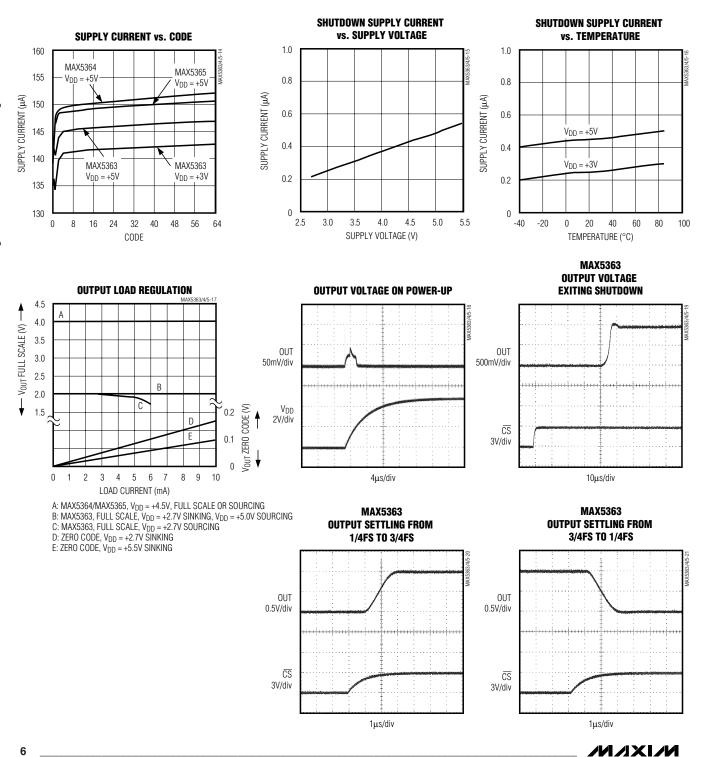

CODE


Typical Operating Characteristics (continued)


 $(V_{DD} = +3.0V \text{ (MAX5363)}, V_{DD} = +5.0V \text{ (MAX5364/MAX5365)}, T_{A} = +25^{\circ}\text{C}, unless otherwise noted.)$

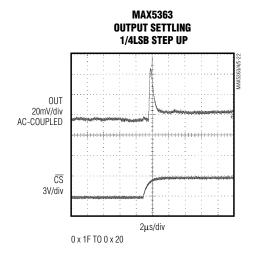


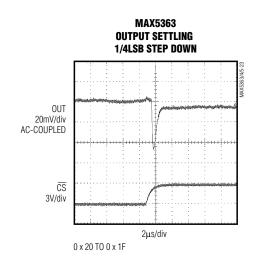




MIXIM

Typical Operating Characteristics (continued)


 $(V_{DD} = +3.0V \text{ (MAX5363)}, V_{DD} = +5.0V \text{ (MAX5364/MAX5365)}, T_{A} = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$



Downloaded from **Arrow.com**.

Typical Operating Characteristics (continued)

 $(V_{DD} = +3.0V \text{ (MAX5363)}, V_{DD} = +5.0V \text{ (MAX5364/MAX5365)}, T_{A} = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

Pin Description

PIN	NAME	FUNCTION	
1	OUT	DAC Voltage Output	
2	GND	Ground	
3	V_{DD}	Power-Supply Input	
4	DIN	Serial Data Input	
5	SCLK	Serial Clock Input	
6	CS	Chip-Select Input	

Detailed Description

The MAX5363/MAX5364/MAX5365 voltage-output, 6-bit DACs offer full 6-bit performance with less than 1LSB integral nonlinearity error and less than 1LSB differential nonlinearity error, ensuring monotonic performance. The devices use a simple 3-wire, SPI/QSPI/ MICROWIRE-compatible serial interface that operates up to 10MHz. The MAX5363/MAX5364/MAX5365 include an internal reference, an output buffer, and three low-current shutdown modes, making these devices ideal for low-power, highly integrated applications. Figure 1 shows the devices' functional diagram.

Analog Section

The MAX5363/MAX5364MAX5365 employ a current-steering DAC topology as shown in Figure 2. At the core of the DAC is a reference voltage-to-current converter (V/I) that generates a reference current. This current is mirrored to 63 equally weighted current sources. DAC switches control the outputs of these current mirrors so that only the desired fraction of the total current-mirror currents is steered to the DAC output. The current is then converted to a voltage across a resistor, and this voltage is buffered by the output buffer amplifier.

Output Voltage

Table 1 shows the relationship between the DAC code and the analog output voltage. The 6-bit DAC code is binary unipolar with 1LSB = ($V_{REF}/64$). The MAX5363/MAX5364 have a full-scale output voltage of (+2V - 1LSB) and (+4V - 1LSB), respectively, set by the internal references. The MAX5365 has a full-scale output voltage of (0.9 × V_{DD} - 1LSB).

Output Buffer

The DAC voltage output is an internally buffered unity-gain follower that slews up to $\pm 0.4 \text{V/}\mu\text{s}$. The output can swing from 0 to full scale. With a 1/4FS to 3/4FS output transition, the amplifier outputs typically settle to 1/2LSB in less than 5 μ s when loaded with 10k Ω in parallel with 50pF. The buffer amplifiers are stable with any

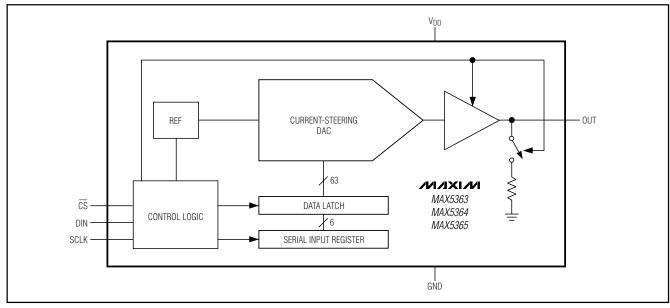


Figure 1. Functional Diagram

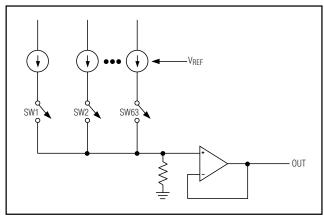


Figure 2. Current-Steering DAC Topology

Table 1. Unipolar Code Output Voltage

DAC CODE	OUTPUT VOLTAGE					
[D11–D6]	MAX5363 MAX5364		MAX5365			
111 111	2V × (63/64)	4V × (63/64)	0.9 × V _{DD} × (63/64)			
100 000	1V	2V	$0.9 \times V_{DD} / 2$			
000 001	31mV	63mV	0.9 × V _{DD} / 64			
000 000	0	0	0			

combination of resistive loads >10k $\!\Omega$ and capacitive loads <50pF.

Power-On Reset

The MAX5363/MAX5364/MAX5365 have a power-on reset circuit to set the DAC's output to 0 when VDD is first applied or when VDD dips below 1.7V (typ). This ensures that unwanted DAC output voltages will not occur immediately following a system startup, such as after a loss of power. The output glitch on startup is typically less than 50mV.

Shutdown Mode

The MAX5363/MAX5364/MAX5365 include three software-controlled shutdown modes that reduce the supply current to <1 μ A. All internal circuitry is disabled, and a known impedance is placed from OUT to GND to ensure 0V while in shutdown. Table 2 details the three shutdown modes of operation.

Digital Section

3-Wire Serial Interface

The MAX5363/MAX5364/MAX5365s' digital interface is a standard 3-wire connection compatible with SPI/QSPI/MICROWIRE interfaces. The chip-select input (CS) frames the serial data loading at the data-input pin (DIN). Immediately following CS's high-to-low transition, the data is shifted synchronously and latched into the input register on the rising edge of the serial clock input (SCLK). After 16 bits have been loaded into the serial

input register, it transfers its contents to the DAC latch on CS's low-to-high transition (Figure 3). Note that if CS is not kept low during the entire 16 SCLK cycles, data will be corrupted. In this case, reload the DAC latch with a new 16-bit word. The serial clock (SCLK) can idle either high or low between transitions. Figure 4 shows the complete 3-wire serial interface transmission. Table 3 lists serial interface mapping.

_Applications Information

Device Powered by an External Reference

Since the MAX5365 generates an output voltage proportional to V_{DD}, a noisy power supply will affect the accuracy of the on-board reference, thereby affecting the overall accuracy of the DAC. The circuit in Figure 5 rejects this power-supply noise by powering the device directly with a precision voltage reference, improving overall system accuracy. The MAX6103 (+3V, 75ppm) or the MAX6105 (+5V, 75ppm) precision voltage references are ideal choices due to the low power requirements of the MAX5365. This solution is also useful when the required full-scale output voltage is different from the available supply voltages.

Digital Inputs and Interface Logic

The digital interface for the 6-bit DAC is based on a 3-wire standard that is compatible with SPI, QSPI, and MICROWIRE interfaces. The three digital inputs (CS, DIN, and SCLK) load the digital input serially into the DAC.

All of the digital inputs include Schmitt-trigger buffers to accept slow-transition interfaces. This means that optocouplers can interface directly to the MAX5363/MAX5364/MAX5365 without additional external logic. The digital inputs are compatible with CMOS logic levels and can be driven with voltages up to +5.5V regardless of the supply voltage.

Power-Supply Bypassing and Layout

Careful PC board layout is important for best system performance. To reduce crosstalk and noise injection, keep analog and digital signals separate. To ensure that the ground return from GND to the supply ground is short and low impedance, a ground plane is recommended. Bypass VDD with a 0.1 μ F to ground as close as possible to the device. If the supply is excessively noisy, connect a 10 Ω resistor in series with the supply and VDD and add additional capacitance.

Table 2. Shutdown Modes

DAC CODE [D13 AND D12]	MODE	OUTPUT RESISTANCE TO GROUND (Ω)	MAXIMUM SUPPLY CURRENT (μA)
01	Shutdown	1k	1
10	Shutdown	100k	1
11	Shutdown	1M	1

Table 3. Serial Interface Mapping

16-BIT SERIAL WORD			ANALOG	FUNCTION		
MSB		LSB		OUTPUT	FUNCTION	
XX00	0000	0000	XXXX	OV	Normal operation	
XX00	1111	11XX	XXXX	V _{REF} × (63/64)	Normal operation	
XX00	0000	01XX	XXXX	V _{REF} × (1/64)	Normal operation	
XX00	1000	00XX	XXXX	V _{REF} × (32/64)	Normal operation	
XX01	XXXX	XXXX	XXXX	OV	Shutdown, 1kΩ to GND	
XX10	XXXX	XXXX	XXXX	OV	Shutdown, 100kΩ to GND	
XX11	XXXX	XXXX	XXXX	OV	Shutdown, $1M\Omega$ to GND	

X = Don't care

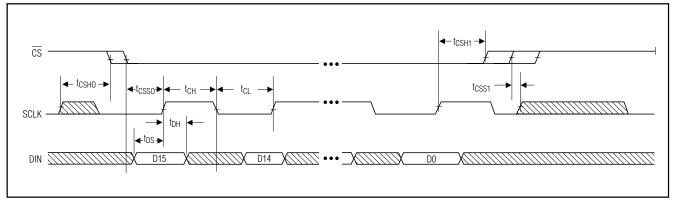


Figure 3. 3-Wire Serial Interface Timing Diagram

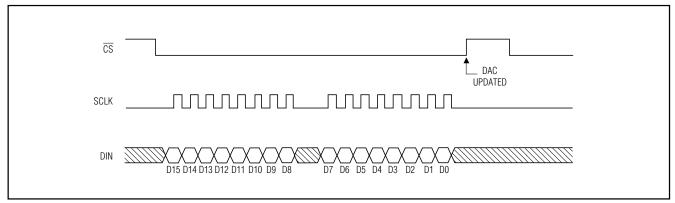


Figure 4. Complete 3-Wire Serial Interface Transmission

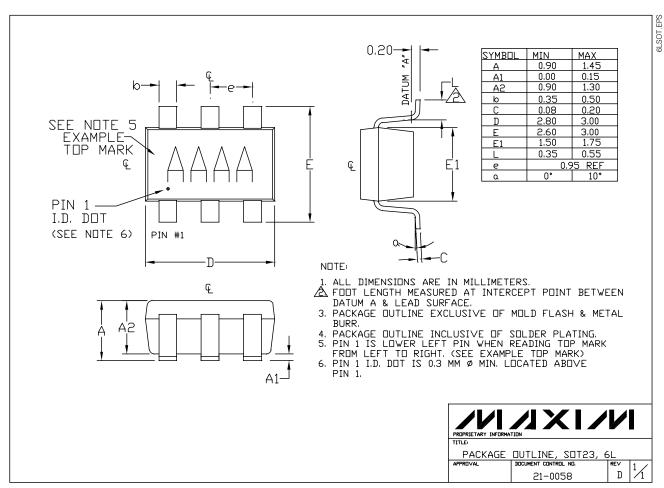

+3.2V TO +12V IN MAX6103 OUT GND WOD TO 10 +2.7V DIN MAX5365 SCLK GND TO 10 +2.7V

Figure 5. Powering the MAX5365 with a Precision Voltage Reference

_Chip Information

TRANSISTOR COUNT: 2160

Package Information

MIXIM

NOTES

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600