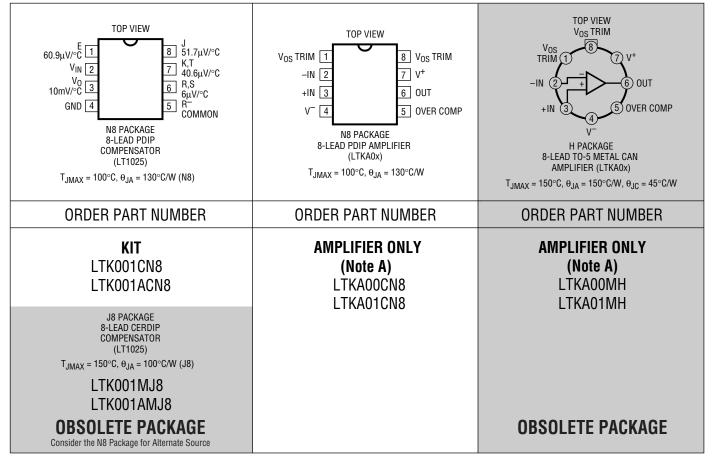
ABSOLUTE MAXIMUM RATINGS (Note 1)

Amplifier (LTKA0x)

Supply Voltage (Total V ⁺ to V ⁻)	40V
Differential Input Current (Note 2)	±10mA
Common Mode Input Voltage	Equal to Supplies
Output Short-Circuit Duration	Indefinite

Compensator (LT1025)


Supply Voltage (VIN to Ground Pin)	36V
Output Voltage (Forced)	5V
Output Short-Circuit Duration	Indefinite

Both Devices

Operating Temperature Range

	LIK001AMJ8, LIK001MJ8 (OBSO	LETE)
		55°C to 125°C
	LTK001ACN8, LTK001CN8	0°C to 70°C
St	orage Temperature Range	–65°C to 150°C
Le	ad Temperature Range (Soldering,	10 sec.) 300°C

PACKAGE/ORDER INFORMATION

Note A: The polarity of the amplifier is indicated by the 0 or 1 in the part number. An LT1025 with a 0 identifier is properly matched with an LTKA00, while an LT1025 with a 1 identifier should be used with an LTKA01. Consult factory for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS (Matched Amplifier and Compensator) $T_A = 25^{\circ}C$, $V_S = \pm 15V$ (Amplifier), $V_S = 5V$ (Compensator)

PARAMETER	CONDITIONS		MIN	LTK001A Typ	MAX	MIN	LTK001 TYP	MAX	UNITS
Total Temperature Error at 25°C		Туре Е			0.75			2.5	°C
(Note 3)		Type J			0.75			2.5	°C
		Туре К, Т			0.86			2.5	۵°
		Type R, S	(Note 12)		5.0			5.0	°C
Slope Error (Notes 4 and 9)	$0^{\circ}C \le T_{J} \le 70^{\circ}C$	Type E			0.05			0.09	°C/°C
		Type J			0.06			0.09	°C/°C
		Туре К, Т			0.07			0.10	°C/°C
		Type R, S			0.28			0.32	°C/°C
Total Temperature Error at	$0^{\circ}C \le T_{J} \le 70^{\circ}C$	Type E			2.0			5	°C
Temperature Extremes (Note 9)		Type J			2.1			5	°C
		Туре К, Т			2.6			5.2	°C
		Type R, S	(Note 12)		16			16	°C
	-55°C ≤ T _J ≤ 125°C	Type E			6			8.5	°C
		Type J			6			8.5	°C
		Туре К, Т			6.3			9	°C
		Type R, S	(Note 12)		30			30	°C
Temperature Error Change with Supply Voltage (Note 5)					0.1			0.1	°C/V
Supply Current				480	900		480	900	μA

ELECTRICAL CHARACTERISTICS (Compensator LT1025)

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_S = 5V unless otherwise noted.

			COMPENSATOR (LT	1025)	
PARAMETER	CONDITIONS		MIN TYP È	MAX	UNITS
Temperature Error at 10mV/°C Output (Note 9)	$T_J = 25^{\circ}C, LTK001A$ $T_J = 25^{\circ}C, LTK001$		0.3 0.5	0.5 2.0	0° 0°
	Full Temperature Span	•	See Curve on LT1025 D		
Temperature Error at Individual Outputs (Note 10)	LTK001A: E, J, K, T LTK001A: R, S		0.4 0.4	0.75 1.5	0° 0°
	LTK001: E, J, K, T LTK001: R, S		0.8 1.2	2.4 3.5	0° 0°
	Full Temperature Span • See Cur		See Curve on LT1025 D	ata Sheet	
Supply Current	$4V \le V_{IN} \le 36V$		80	100	μΑ
	$0^{\circ}C \le T_{J} \le 70^{\circ}C$	•		150	μΑ
	$-55^{\circ}C \le T_{J} \le 125^{\circ}C$	•		200	μΑ
Change in Supply Current	$4V \le V_{IN} \le 36V$		0.01	0.05	μA/V
Line Regulation (Note 11)	$4V \le V_{IN} \le 36V$ 10mV/°C Output	•	0.003	0.02	°C/V
Load Regulation (Note 11)	0 ≤ I ₀ ≤ 1mA 10mV/°C Output	•	0.04	0.2	۵°
Divider Impedance	E		2.5 2.1		kΩ kΩ
	, Т		4.4		kΩ
	R, S		3.8		kΩ

ELECTRICAL CHARACTERISTICS (Amplifier LTKA0x)

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_S = ±15V, V_{CM} = 0V, T_J = 25°C unless otherwise noted.

				AMI	PLIFIER (LTH	(A0x)	
PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Input Offset Voltage					10	35	μV
Input Offset Voltage Drift with Temperature	(Note 6)				0.3	1.5	μV/°C
Input Bias Current	$0^{\circ}C \le T_A \le 70^{\circ}C$ $-55^{\circ}C \le T_A \le 125^{\circ}C$				±200 ±300	±600 ±1500	pA pA
Input Bias Current Drift with Temperature	(Note 6)				1	5	pA/°C
Input Offset Current	$0^{\circ}C \le T_{A} \le 70^{\circ}C$ $-55^{\circ}C \le T_{A} \le 125^{\circ}C$			±100 ±200	±500 ±700	pA pA	
Input Offset Current Drift with Temperature	(Note 6)	(Note 6)			0.6	4	pA/°C
Large Signal Voltage Gain	$R_L = 10k\Omega$			400	2000		V/mV
Common Mode Rejection Ratio	V _{CM} = ±13.5V			106	130		dB
Power Supply Rejection Ratio	$\pm 2.5V \le V_{\rm S} \le \pm 20V$ (N	lote 5)		106	125		dB
Common Mode Input Voltage Range	Notes 6, 7	Above V ⁻		0.75			V
		Below V ⁺				1.0	V
Output Voltage Swing (Notes 6, 8)	Referred to Supplies	I _{OUT} = 0.1mA			0.8		V
		I _{OUT} = 1mA			1.1		V
Supply Current					400	800	μA
Supply Voltage Range	Total V ⁺ to V ⁻ Voltage		4.5		40	V	

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: The inputs of the LTKA0x amplifier are clamped with diodes, so a differential voltage rating does not apply.

Note 3: Total temperature error is the overall error at 25°C taking into account the offset of the amplifier, the offset at the compensator 10mV/°C output, and the error in the compensator divider network. Warmup drift is not included.

Note 4: Slope error is the increase in total temperature error as ambient temperature is increased. It is guaranteed by design and by other tests, but is not tested directly.

Note 5: This is a worst-case limit assuming that any or all supply voltages change.

Note 6: Guaranteed, but not tested.

Note 7: By referring common mode range to the supplies, the range referred to ground can be quickly calculated for any given supply voltage. With a single 5V supply, for instance, which has a worst-case low value of 4.7V, the upper common mode limit is 4.7V - 1V = 3.7V. The lower common mode limit is 0V + 0.75V = 0.75V. With ±15V supplies, the limits would be 14V and -14.25V, respectively. Common mode range has a temperature sensitivity of $\approx 2mV/^{\circ}C$.

Note 8: Absolute output voltage swing is calculated by subtracting the given limits from actual supply voltage. These limits indicate the point where offset voltage has changed suddenly by $5\mu V$.

Note 9: Temperature error is defined as the deviation from the following formula:

 $V_{OUT} = \alpha(T) + \alpha \beta(T - 25^{\circ}C)^2$

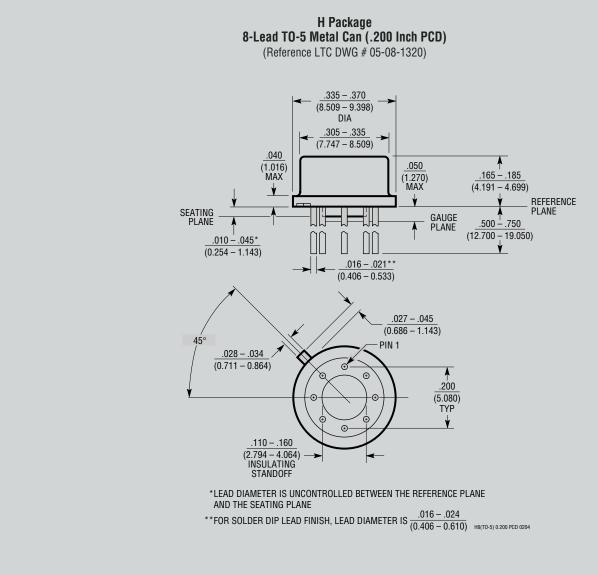
 α = Typical thermocouple Seebeck coefficient as follows,

E = 60.9μ V/°C, J = 51.7μ V/°C, K, T = 40.6μ V/°C, R, S = 5.95μ V/°C. α = 10mV/°C at the 10mV output.

 β = Nonlinearity coefficient built into the LT1025 to help compensate for the nonlinearities of thermocouples. β = 5.5 x 10⁻⁴, generating 0.34°C bow for 25°C temperature change, and 1.36°C bow for 50°C change.

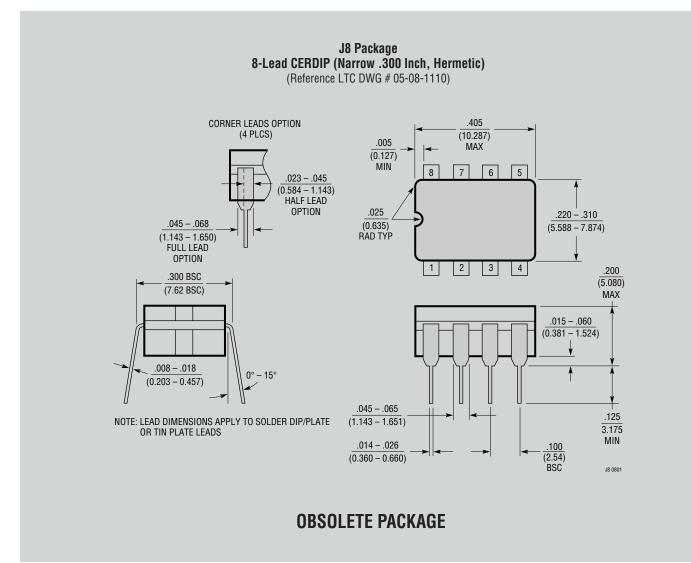
Note 10: Temperature error at the individual outputs is the sum of the 10mV/°C output error plus the resistor divider error.

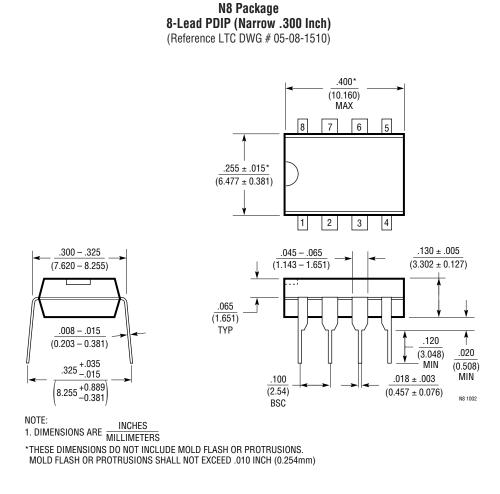
Note 11: Line and load regulation do not take into account the effects of self-heating. Output changes due to self-heating can be calculated as follows:


$$\begin{array}{ll} \Delta V_{OUT} \mbox{ (Line) } = \Delta V_{IN} (I_q + I_{load}) (150^{\circ} \mbox{C/W}) \\ \Delta V_{OUT} \mbox{ (Load) } = (\Delta I_{load}) (V_{IN}) (150^{\circ} \mbox{C/W}) \\ = LT1025 \mbox{ supply current} \end{array}$$

Load regulation is $30\mu A \le I_0 \le 1 \text{ mA}$ for $T_A \le 0^\circ \text{C}$.

Note 12: Larger errors with type R and S thermocouples are due mostly to 35μ V offset of the amplifier. This error can be reduced to 5μ V max with the LTC[®]1050 or LTC1052 operational amplifiers.


PACKAGE DESCRIPTION



PACKAGE DESCRIPTION

PACKAGE DESCRIPTION

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1012	Picoamp Input Current Amplifier	V_{OS} = 120 μ V MAX, I _{OS} = 280pA MAX
LT1025	Thermocouple Cold Junction Comparator	Micropower, 0.5°C Initial Accuracy
LTC1050	Zero Drift Amplifier	$V_{OS} = 5\mu V MAX, A_{VOL} = 1 V/\mu V MAX$
LTC2050	SOT-23 Zero Drift Amplifier	$V_{OS} = 3\mu V MAX$

 \bowtie