
ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage±22V	/
Differential Input Voltage ±30V	!
Input Voltage Equal to Positive Supply Voltage	;
5V Below Negative Supply Voltage	;
Output Short-Circuit Duration Indefinite	÷
Storage Temperature Range	
All Grades –65°C to 150°C	,

Operating Temperature Range
LT1078AM/LT1078M/
LT1079AM/LT1079M (OBSOLETE)55°C to 125°C
LT1078I/LT1079I – 40°C to 85°C
LT1078AC/LT1078C/LT1078S8/
LT1079AC/LT1079C0°C to 70°C
Lead Temperature (Soldering, 10 sec)

PACKAGE/ORDER INFORMATION

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} \quad v_{s} = 5V, \ 0V, \ v_{CM} = 0.1V, \ v_{0} = 1.4V, \ T_{A} = 25^{\circ}\text{C} \ \text{unless otherwise noted}.$

SYMBOL	PARAMETER	CONDITIONS (NOTE 2)		078AC/LT ⁻)78AM/LT ⁻ TYP		LT10	78C/LT1 078I/LT1 78M/LT1 78S8/LT1 TYP	079I 079M	UNITS
V _{0S}	Input Offset Voltage	LT1078 LT1078IS8/LT1078S8 LT1079 LT1079ISW/LT1079SW		30 35	70 100		40 60 40 60	120 180 150 300	μV μV μV μV
$\frac{\Delta V_{0S}}{\Delta Time}$	Long Term Input Offset Voltage Stability			0.4			0.5		μV/Mo
I _{OS}	Input Offset Current			0.05	0.25		0.05	0.35	nA
IB	Input Bias Current			6	8		6	10	nA
e _n	Input Noise Voltage	0.1Hz to 10Hz (Note 3)		0.6	1.2		0.6		μV _{P-P}
	Input Noise Voltage Density	f ₀ = 10Hz (Note 3) f ₀ = 1000Hz (Note 3)		29 28	45 37		29 28		nV√Hz nV√Hz
i _n	Input Noise Current	0.1Hz to 10Hz (Note 3)		2.3	4.0		2.3		рА _{Р-Р}
	Input Noise Current Density	$f_0 = 10$ Hz (Note 3) $f_0 = 1000$ Hz		0.06 0.02	0.10		0.06 0.02		pA√Hz pA√Hz
	Input Resistance Differential Mode Common Mode	(Note 4)	400	800 6		300	800 6		MΩ GΩ
	Input Voltage Range		3.5 0	3.8 -0.3		3.5 0	3.8 -0.3		V V
CMRR	Common Mode Rejection Ratio	V _{CM} = 0V to 3.5V	97	110		94	108		dB
PSRR	Power Supply Rejection Ratio	V _S = 2.3V to 12V	102	114		100	114		dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = 0.03V$ to 4V, No Load $V_0 = 0.03V$ to 3.5V, R _L = 50k	200 150	1000 600		150 120	1000 600		V/mV V/mV
	Maximum Output Voltage Swing	Output Low, No Load Output Low, 2k to GND Output Low, I _{SINK} = 100µA		3.5 0.55 95	6 1.0 130		3.5 0.55 95	6 1.0 130	mV mV mV
		Output High, No Load Output High, 2k to GND	4.2 3.5	4.4 3.9		4.2 3.5	4.4 3.9		V V
SR	Slew Rate	$A_V = 1, V_S = \pm 2.5V$	0.04	0.07		0.04	0.07		V/µs
GBW	Gain Bandwidth Product	f ₀ ≤ 20kHz		200			200		kHz
I _S	Supply Current per Amplifier			38	50		39	55	μA
	Channel Separation	$\Delta V_{IN} = 3V, R_L = 10k$		130			130		dB
	Minimum Supply Voltage	(Note 5)		2.2	2.3		2.2	2.3	V

ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the temperature range $-40^{\circ}C \le T_A \le 85^{\circ}C$ for I grades, $-55^{\circ}C \le T_A \le 125^{\circ}C$ for AM/M grades. $V_S = 5V$, 0V, $V_{CM} = 0.1V$, $V_0 = 1.4V$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LT1 MIN	078AM/LT10 Typ	79AM Max		078I/LT1 178M/LT1 TYP		UNITS
V _{OS}	Input Offset Voltage	LT1078 LT1078IS8/LT1079 LT1079ISW	•		70 80	250 280		95 100 100	370 400 560	μV μV μV
$\frac{\Delta V_{OS}}{\Delta T}$	Input Offset Voltage Drift (Note 6)	LT1078IS8 LT1079ISW	•		0.4	1.8		0.5 0.6 0.7	2.5 3.5 4.0	μV/°C μV/°C μV/°C
I _{OS}	Input Offset Current	LT1078I/LT1079I	•		0.07	0.50		0.07 0.1	0.70 1.0	nA nA
I _B	Input Bias Current		•		7	10		7	12	nA
CMRR	Common Mode Rejection Ratio	V _{CM} = 0.05V to 3.2V		92	106		88	104		dB
PSRR	Power Supply Rejection Ratio	V _S = 3.1V to 12V	•	98	110		94	110		dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = 0.05V$ to 4V, No Load $V_0 = 0.05V$ to 3.5V, R _L = 50k	•	110 80	600 400		80 60	600 400		V/mV V/mV
	Maximum Output Voltage Swing	Output Low, No Load Output Low, I _{SINK} = 100μA	•		4.5 125	8 170		4.5 125	8 170	mV mV
		Output High, No Load Output High, 2k to GND	•	3.9 3.0	4.2 3.7		3.9 3.0	4.2 3.7		V V
ls	Supply Current per Amplifier		•		43	60		45	70	μA

The \bullet denotes the specifications which apply over the temperature range 0°C \leq T_A \leq 70°C. V_S = 5V, 0V, V_{CM} = 0.1V, V₀ = 1.4V unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LT1 MIN	078AC/LT10 Typ	79AC Max)78C/LT1 78S8/LT1 TYP		UNITS
V _{0S}	Input Offset Voltage	LT1078 LT1079 LT1078S8 LT1079SW	• • •		50 60	150 180		60 70 85 90	240 270 350 480	μV μV μV μV
$\frac{\Delta V_{0S}}{\Delta T}$	Input Offset Voltage Drift (Note 6)	LT1078S8 LT1079SW	•		0.4	1.8		0.5 0.6 0.7	2.5 3.5 4.0	μV/°C μV/°C μV/°C
I _{OS}	Input Offset Current		•		0.06	0.35		0.06	0.50	nA
I _B	Input Bias Current		•		6	9		6	11	nA
CMRR	Common Mode Rejection Ratio	V _{CM} = 0V to 3.4V	•	94	108		90	106		dB
PSRR	Power Supply Rejection Ratio	V _S = 2.6V to 12V	•	100	112		97	112		dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = 0.05V$ to 4V, No Load $V_0 = 0.05V$ to 3.5V, $R_L = 50k$	•	150 110	750 500		110 80	750 500		V/mV V/mV
	Maximum Output Voltage Swing	Output Low, No Load Output Low, I _{SINK} = 100µA	•		4.0 105	7 150		4.0 105	7 150	mV mV
		Output High, No Load Output High, 2k to GND	•	4.1 3.3	4.3 3.8		4.1 3.3	4.3 3.8		V V
I _S	Supply Current per Amplifier		•		40	55		42	63	μA

ELECTRICAL CHARACTERISTICS $V_S = \pm 15V$, $T_A = 25^{\circ}C$ unless otherwise noted.

SYMBOL	SYMBOL	PARAMETER	CONDITIONS		078AC/LT10 178AM/LT10 TYP		LT1 LT10	078C/LT1(078I/LT1()78M/LT1()78S8/LT1 TYP)79I)79M	UNITS
V _{0S}	Input Offset Voltage	(Including LT1078IS8/LT1078S8) LT1079ISW/LT1079SW		50	250		70 80	350 500	μV μV	
I _{OS}	Input Offset Current			0.05	0.25		0.05	0.35	nA	
I _B	Input Bias Current			6	8		6	10	nA	
	Input Voltage Range		13.5 -15.0	13.8 –15.3		13.5 -15.0	13.8 -15.3		V V	
CMRR	Common Mode Rejection Ratio	V _{CM} = 13.5V, -15V	100	114		97	114		dB	
PSRR	Power Supply Rejection Ratio	V _S = 5V, 0V to ±18V	102	114		100	114		dB	
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 50k$ $V_0 = \pm 10V, R_L = 2k$	1000 400	5000 1100		1000 300	5000 1100		V/mV V/mV	
V _{OUT}	Maximum Output Voltage Swing	$R_{L} = 50k$ $R_{L} = 2k$	±13.0 ±11.0	±14.0 ±13.2		±13.0 ±11.0	±14.0 ±13.2		V V	
SR	Slew Rate		0.06	0.10		0.06	0.10		V/µs	
I _S	Supply Current per Amplifier			46	65		47	75	μA	

The \bullet denotes the specifications which apply over the temperature range $-40^{\circ}C \le T_A \le 85^{\circ}C$ for I grades, $-55^{\circ}C \le T_A \le 125^{\circ}C$ for AM/M grades. V_S = ±15V unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LT10 Min	78AM/LT10 Typ	79AM Max		0781/LT10 178M/LT10 TYP		UNITS
V _{OS}	Input Offset Voltage	(Including LT1078IS8) LT1079ISW	•		90	430		120 130	600 825	μV μV
$\frac{\Delta V_{OS}}{\Delta T}$	Input Offset Voltage Drift (Note 6)	LT1078IS8 LT1079ISW	•		0.5	1.8		0.6 0.7 0.8	2.5 3.8 5.0	μV/°C μV/°C μV/°C
I _{OS}	Input Offset Current	LT1078I/LT1079I	•		0.07	0.50		0.07 0.1	0.70 1.0	nA nA
I _B	Input Bias Current		•		7	10		7	12	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 5k$	•	200	700		150	700		V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = 13V, -14.9V	•	94	110		90	110		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S}$ = 5V, 0V to ±18V	•	98	110		94	110		dB
	Maximum Output Voltage Swing	R _L = 5k	•	±11.0	±13.5		±11.0	±13.5		V
I _S	Supply Current per Amplifier		•		52	80		54	95	μA

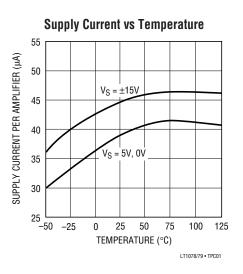
ELECTRICAL CHARACTERISTICS $0^{\circ}C \le T_A \le 70^{\circ}C$. $V_S = \pm 15V$ unless otherwise noted.

The • denotes the specifications which apply over the temperature range

SYMBOL	PARAMETER	CONDITIONS		LT1(MIN	078AC/LT10 Typ	79AC Max)78C/LT1()78S8/LT1 TYP		UNITS
V _{OS}	Input Offset Voltage	LT1078S8 LT1079SW	•		70	330		90 100 115	460 540 750	μV μV μV
$\frac{\Delta V_{OS}}{\Delta T}$	Input Offset Voltage Drift (Note 6)	LT1078S8 LT1079SW	•		0.5	1.8		0.6 0.7 0.8	2.5 3.8 5.0	μV/°C μV/°C μV/°C
I _{OS}	Input Offset Current		•		0.06	0.35		0.06	0.50	nA
I _B	Input Bias Current		•		6	9		6	11	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 5k$	•	300	1200		250	1200		V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = 13V, -15V	•	97	112		94	112		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S}$ = 5V, 0V to ±18V	•	100	112		97	112		dB
	Maximum Output Voltage Swing	R _L = 5k	•	±11.0	±13.6		±11.0	±13.6		V
I _S	Supply Current per Amplifier		•		49	73		50	85	μA

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

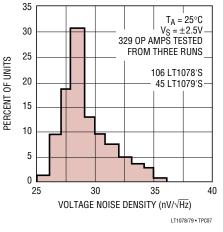
Note 2: Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers, i.e., out of 100 LT1079s (or 100 LT1078s) typically 240 op amps (or 120) will be better than the indicated specification.

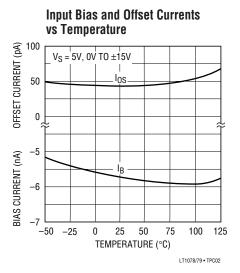

Note 3: This parameter is tested on a sample basis only. All noise parameters are tested with $V_S = \pm 2.5V$, $V_0 = 0V$.

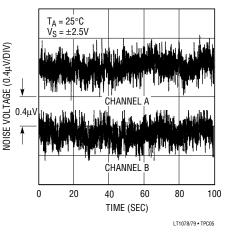
Note 4: This parameter is guaranteed by design and is not tested.

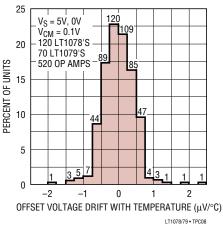

Note 5: Power supply rejection ratio is measured at the minimum supply voltage. The op amps actually work at 1.8V supply but with a typical offset skew of -300μ V.

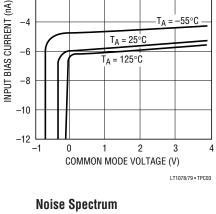
Note 6: This parameter is not 100% tested.

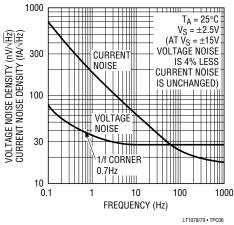



0.1Hz to 10Hz Noise

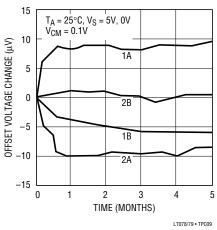

10Hz Voltage Noise Distribution


Downloaded from Arrow.com.

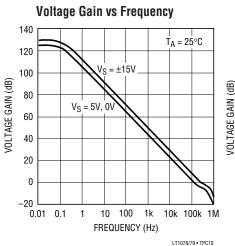

0.01Hz to 10Hz Noise

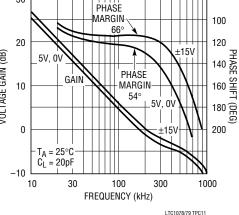


Distribution of Offset Voltage Drift with Temperature (In All Packages **Except Surface Mount)**

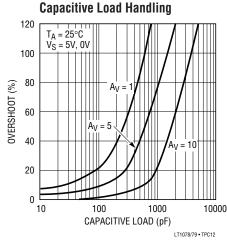


Input Bias Current vs Common Mode Voltage 0 $V_{\rm S} = 5V'$, 0V-2 T_A = −55°C -4 $T_A = 25^{\circ}C$ -6 T_A = 125°C

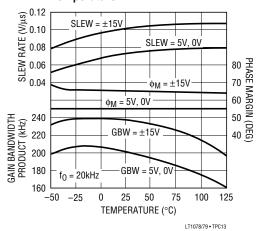


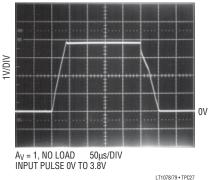


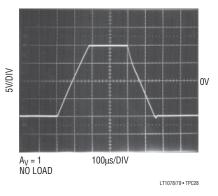
Long Term Stability of Two Representative Units (LT1078)

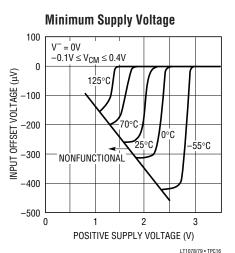


30

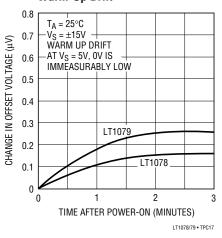



Gain, Phase vs Frequency

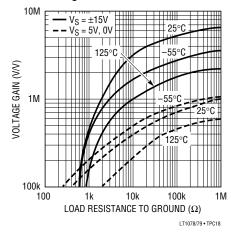

Slew Rate, Gain Bandwidth Product and Phase Margin vs Temperature

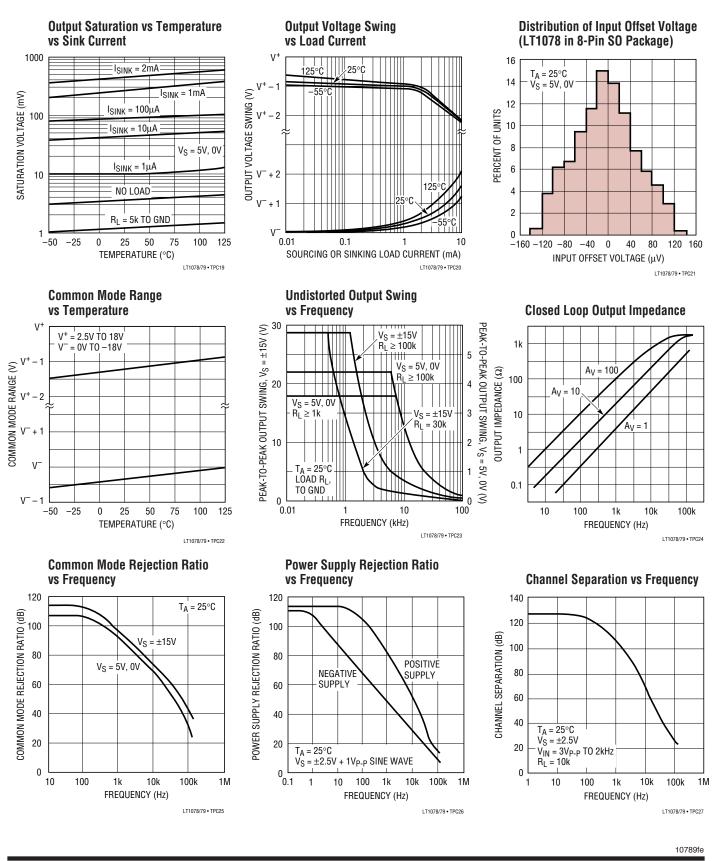


Large-Signal Transient Response $V_S = 5V$, 0V

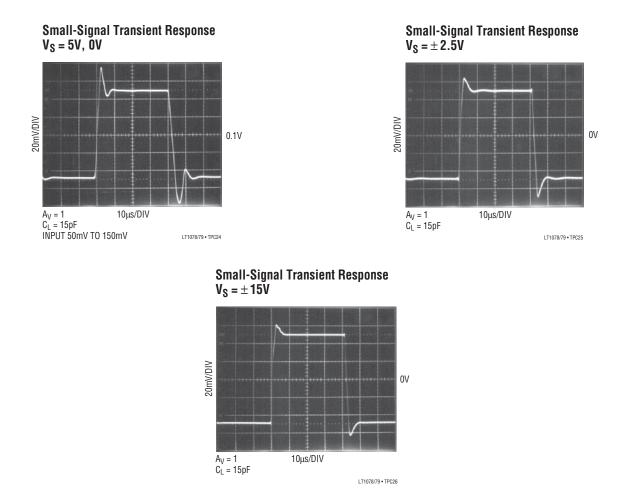


Large-Signal Transient Response V_S = $\pm 15 V$





Voltage Gain vs Load Resistance



APPLICATIONS INFORMATION

The LT1078/LT1079 devices are fully specified with V⁺ = 5V, V⁻ = 0V, V_{CM} = 0.1V. This set of operating conditions appears to be the most representative for battery-powered micropower circuits. Offset voltage is internally trimmed to a minimum value at these supply voltages. When 9V or 3V batteries or $\pm 2.5V$ dual supplies are used, bias and offset current changes will be minimal. Offset voltage changes will be just a few microvolts as given by the PSRR and CMRR specifications. For example, if PSRR = 114dB (= 2µV/V), at 9V the offset voltage change will be 8µV. Similarly, V_S = $\pm 2.5V$, V_{CM} = 0V is equivalent to a common mode voltage change of 2.4V or a V_{OS} change of 7µV if CMRR = 110dB (3µV/V).

A full set of specifications is also provided at $\pm 15V$ supply voltages for comparison with other devices and for completeness.

Single Supply Operation

The LT1078/LT1079 are fully specified for single supply operation, i.e., when the negative supply is 0V. Input common mode range goes below ground and the output swings within a few millivolts of ground while sinking current. All competing micropower op amps either cannot swing to within 600mV of ground (OP-20, OP-220, OP-420) or need a pull-down resistor connected to the output to swing to ground (OP-90, OP-290, OP-490, HA5141/42/44). This

APPLICATIONS INFORMATION

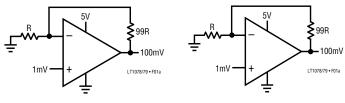
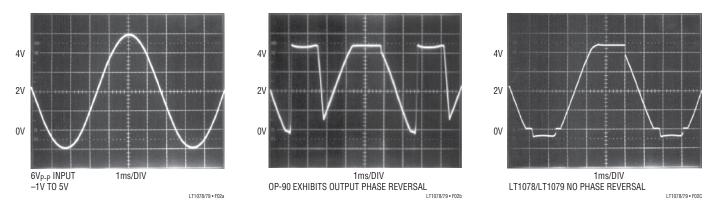
difference is critical because in many applications these competing devices cannot be operated as micropower op amps and swing to ground simultaneously.

As an example, consider the instrumentation amplifier shown on the front page. When the common mode signal is low and the output is high, amplifier A has to sink current. When the common mode signal is high and the output low, amplifier B has to sink current. The competing devices require a 12k pull-down resistor at the output of amplifier A and a 15k at the output of B to handle the specified signals. (The LT1078 does not need pull-down resistors.) When the common mode input is high and the output is high these pull-down resistors draw 300µA (150µA each), which is excessive for micropower applications.

The instrumentation amplifier is by no means the only application requiring current sinking capability. In seven of the nine single supply applications shown in this data sheet the op amps have to be able to sink current. In two of the applications the first amplifier has to sink only the 6nA input bias current of the second op amp. The competing devices, however, cannot even sink 6nA without a pulldown resistor

Since the output of the LT1078/LT1079 cannot go exactly to ground, but can only approach ground to within a few millivolts, care should be exercised to ensure that the output is not saturated. For example, a 1mV input signal will cause the amplifier to set up in its linear region in the gain 100 configuration shown in Figure 1a, but is not

enough to make the amplifier function properly in the voltage follower mode, Figure 1b.

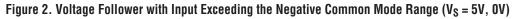

Figure 1a. Gain 100 Amplifier

Figure 1b. Voltage Follower

Single supply operation can also create difficulties at the input. The driving signal can fall below OV — inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, two distinct problems can occur on previous single supply designs, such as the LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP-420 (1 and 2), OP-90/290/490 (2 only):

- When the input is more than a diode drop below ground, unlimited current will flow from the substrate (V⁻ terminal) to the input. This can destroy the unit. On the LT1078/LT1079, resistors in series with the input protect the devices even when the input is 5V below ground.
- 2. When the input is more than 400mV below ground (at 25° C), the input stage saturates and phase reversal occurs at the output. This can cause lockup in servo systems. Due to a unique phase reversal protection circuitry, the LT1078/LT1079 output does not reverse, as illustrated in Figure 2, even when the inputs are at -1V.

APPLICATIONS INFORMATION

Matching Specifications

In many applications the performance of a system depends on the matching between two op amps, rather than the individual characteristics of the two devices. The two and three op amp instrumentation amplifier configurations shown in this data sheet are examples. Matching characteristics are not 100% tested on the LT1078/LT1079.

Some specifications are guaranteed by definition. For example, 70μ V maximum offset voltage implies that mismatch cannot be more than 140μ V. 97dB (= 14μ V/V) CMRR means that worst-case CMRR match is 91dB (= 28μ V/V). However, Table 1 can be used to estimate the expected matching performance at V_S = 5V, 0V between the two sides of the LT1078, and between amplifiers A and D, and between amplifiers B and C of the LT1079.

Table 1

		LT1078AC/LT1079A	C/LT1078AM/LT1079AM	LT1078C/LT1079	C/LT1078M/LT1079M	
PARAMETER		50% YIELD	98% YIELD	50% YIELD	98% YIELD	UNITS
V_{OS} Match, ΔV_{OS}	LT1078	30	110	50	190	μV
	LT1079	40	150	50	250	μV
Temperature Coefficie	nt ∆V _{OS}	0.5	1.2	0.6	1.8	μV/°C
Average Noninverting	I _B	6	8	6	10	nA
Match of Noninverting	I _B	0.12	0.4	0.15	0.5	nA
CMRR Match		120	100	117	97	dB
PSRR Match		117	105	117	102	dB

Comparator Applications

The single supply operation of the LT1078/LT1079 and its ability to swing close to ground while sinking current

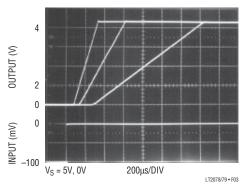


Figure 3. Comparator Rise Response Time to 10mV, 5mV, 2mV Overdrives

lends itself to use as a precision comparator with TTL compatible output.

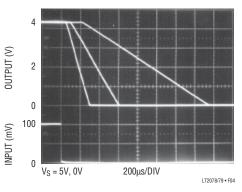
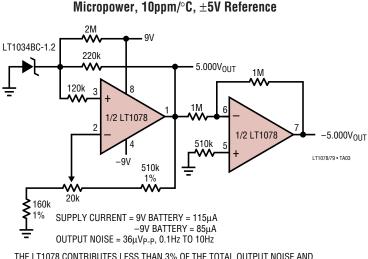
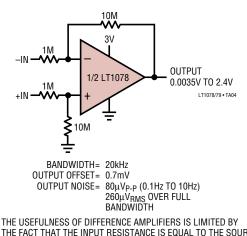
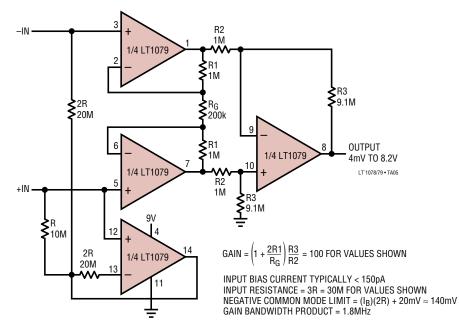
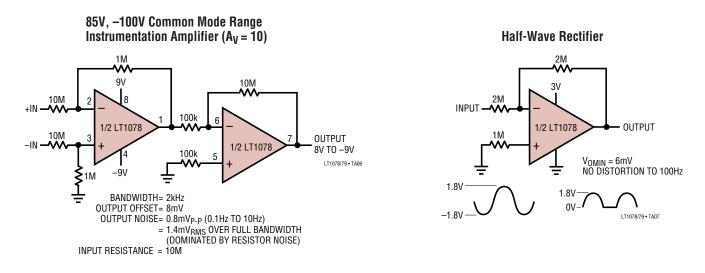
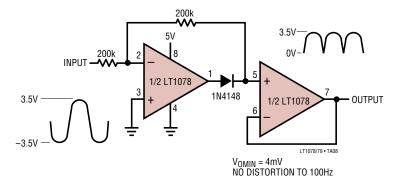




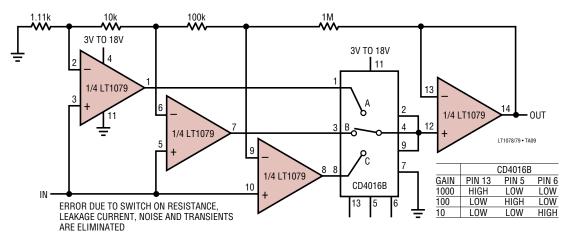
Figure 4. Comparator Fall Response Time to 10mV, 5mV, 2mV Overdrives

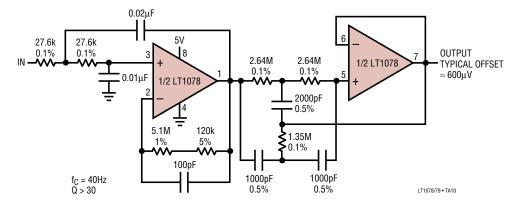

THE LT1078 CONTRIBUTES LESS THAN 3% OF THE TOTAL OUTPUT NOISE AND DRIFT WITH TIME AND TEMPERATURE. THE ACCURACY OF THE -5V OUTPUT DEPENDS ON THE MATCHING OF THE TWO 1M RESISTORS

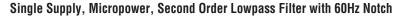

Gain of 10 Difference Amplifier

THE OSEFULNESS OF DIFFERENCE AMPLIFIERS IS LIMITED BY THE FACT THAT THE INPUT RESISTANCE IS EQUAL TO THE SOURCE RESISTANCE. THE PICOAMPERE OFFSET CURRENT AND LOW CURRENT NOISE OF THE LT1078 ALLOWS THE USE OF 1M SOURCE RESISTORS WITHOUT DEGRADATION IN PERFORMANCE. IN ADDITION, WITH MEGOHM RESISTORS MICROPOWER OPERATION CAN BE MAINTAINED

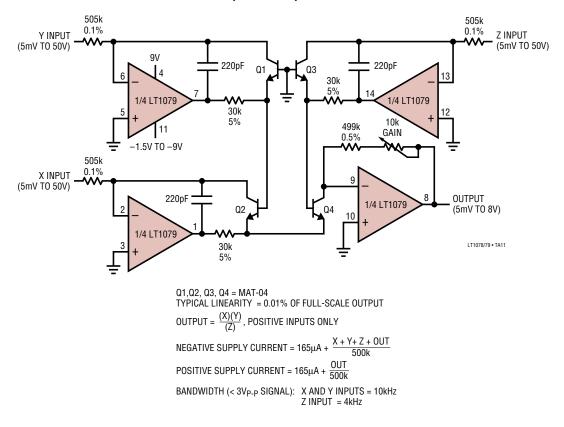


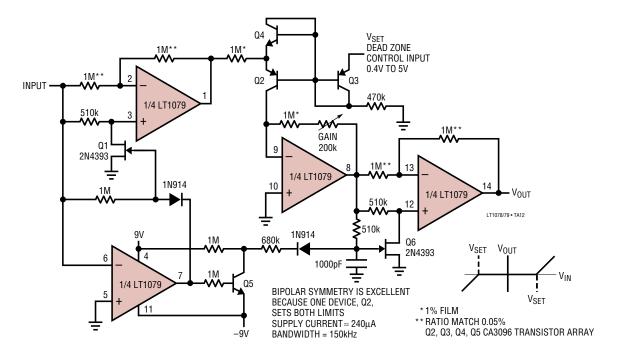



Absolute Value Circuit (Full-Wave Rectifier)

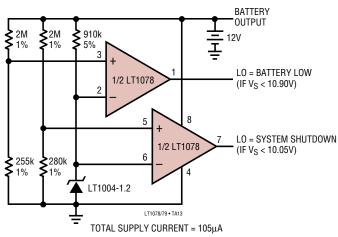


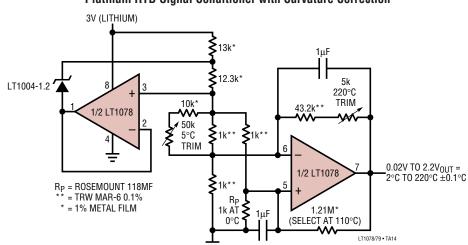
Programmable Gain Amplifier (Single Supply)

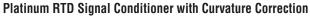


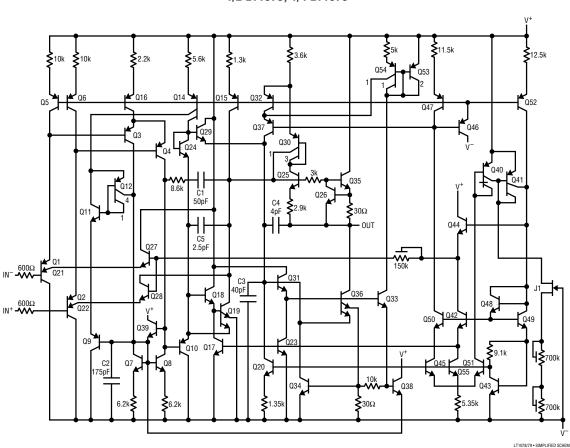


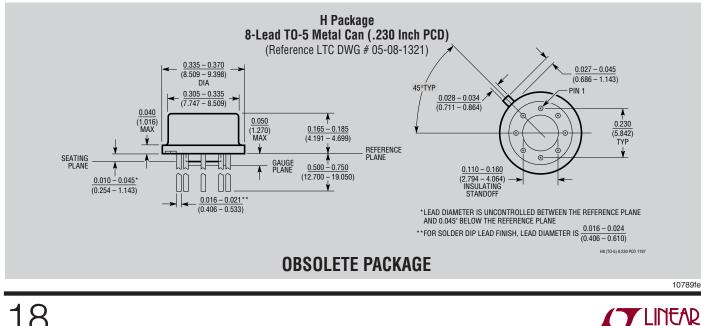
Micropower Multiplier/Divider



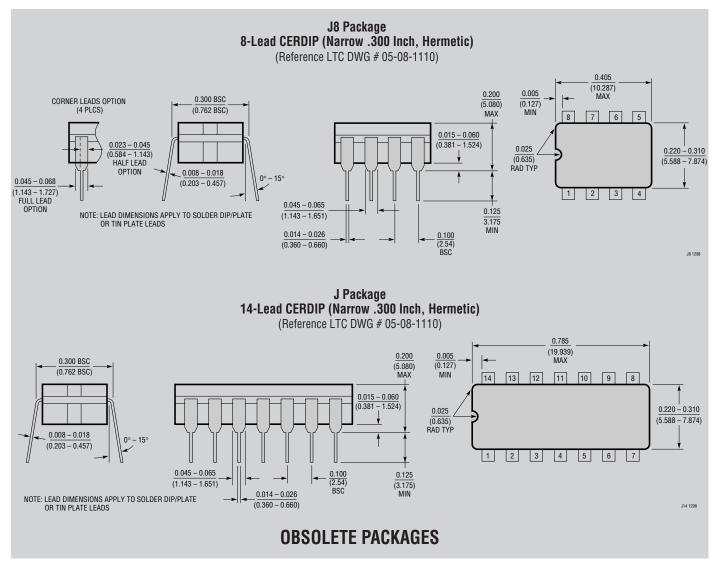



Micropower Dead Zone Generator

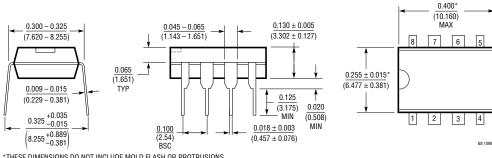

Lead-Acid Low-Battery Detector with System Shutdown



SIMPLIFIED SCHEMATIC


1/2 LT1078, 1/4 LT1079

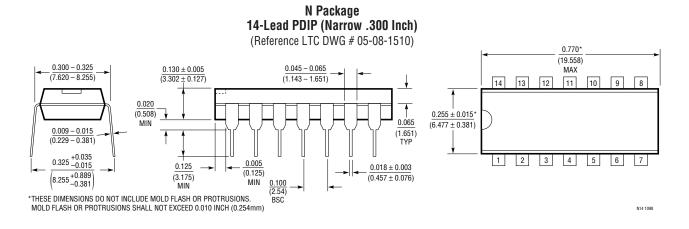
PACKAGE DESCRIPTION

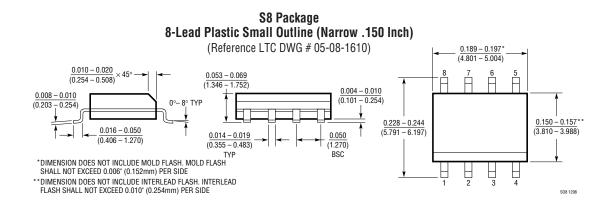


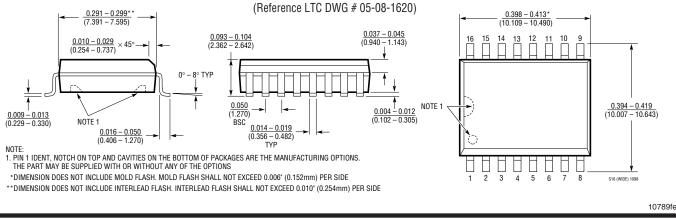
18 Downloaded from Arrow.com.

PACKAGE DESCRIPTION

N8 Package 8-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510)




*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)


Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

PACKAGE DESCRIPTION

SW Package 16-Lead Plastic Small Outline (Wide .300 Inch)

20 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 • FAX: (408) 434-0507 • www.linear.com LT/CPI 1201 1.5K REV E • PRINTED IN USA