
ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage	±22V
Differential Input Volta	ge±30V
Input Voltage	. Equal to Positive Supply Voltage
5	5V Below Negative Supply Voltage
Output Short-Circuit D	uration Indefinite
Storage Temperature F	lange
All Grades	-65°C to 150°C

PIN CONFIGURATION

ORDER INFORMATION http://www.linear.com/product/LT1013#orderinfo

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT1013DS8#PBF	LT1013DS8#TRPBF	1013	8-Lead Plastic SO	0°C to 70°C
LT1013IS8#PBF	LT1013IS8#TRPBF	10131	8-Lead Plastic SO	-40°C to 85°C
LT1013ACN8#PBF	LT1013ACN8#TRPBF	LT1013ACN8	8-Lead PDIP	0°C to 70°C
LT1013CN8#PBF	LT1013CN8#TRPBF	LT1013CN8	8-Lead PDIP	0°C to 70°C
LT1013DN8#PBF	LT1013DN8#TRPBF	LT1013DN8	8-Lead PDIP	0°C to 70°C
LT1013IN8#PBF	LT1013IN8#TRPBF	LT1013IN8	8-Lead PDIP	-40°C to 85°C
LT1014DSW#PBF	LT1014DSW#TRPBF	LT1014DSW	16-Lead Plastic SO	0°C to 70°C
LT1014ISW#PBF	LT1014ISW#TRPBF	LT1014ISW	16-Lead Plastic SO	-40°C to 85°C
LT1014ACN#PBF	LT1014ACN#TRPBF	LT1014ACN	14-Lead PDIP	0°C to 70°C
LT1014CN#PBF	LT1014CN#TRPBF	LT1014CN	14-Lead PDIP	0°C to 70°C
LT1014DN#PBF	LT1014DN#TRPBF	LT1014DN	14-Lead PDIP	0°C to 70°C
LT1014IN#PBF	LT1014IN#TRPBF	LT1014IN	14-Lead PDIP	-40°C to 85°C
LT1013AMJ8#PBF	LT1013AMJ8#TRPBF	LT1013AMJ8	8-Lead CERDIP	-55°C to 125°C (OBSOLETE)
LT1013MJ8#PBF	LT1013MJ8#TRPBF	LT1013MJ8	8-Lead CERDIP	-55°C to 125°C (OBSOLETE)
LT1013ACJ8#PBF	LT1013ACJ8#TRPBF	LT1013ACJ8	8-Lead CERDIP	0°C to 70°C (OBSOLETE)
LT1013CJ8#PBF	LT1013CJ8#TRPBF	LT1013CJ8	8-Lead CERDIP	0°C to 70°C (OBSOLETE)
LT1013AMH#PBF	LT1013AMH#TRPBF	LT1013AMH	8-Lead TO-5 Metal Can	-55°C to 125°C (OBSOLETE)
LT1013MH#PBF	LT1013MH#TRPBF	LT1013MH	8-Lead TO-5 Metal Can	-55°C to 125°C (OBSOLETE)
LT1013ACH#PBF	LT1013ACH#TRPBF	LT1013ACH	8-Lead TO-5 Metal Can	0°C to 70°C (OBSOLETE)
LT1013CH#PBF	LT1013CH#TRPBF	LT1013CH	8-Lead TO-5 Metal Can	0°C to 70°C (OBSOLETE)
LT1014AMJ#PBF	LT1014AMJ#TRPBF	LT1014AMJ	14-Lead CERDIP	-55°C to 125°C (OBSOLETE)
LT1014MJ#PBF	LT1014MJ#TRPBF	LT1014MJ	14-Lead CERDIP	-55°C to 125°C (OBSOLETE)
LT1014ACJ#PBF	LT1014ACJ#TRPBF	LT1014ACJ	14-Lead CERDIP	0°C to 70°C (OBSOLETE)
LT1014CJ#PBF	LT1014CJ#TRPBF	LT1014CJ	14-Lead CERDIP	0°C to 70°C (OBSOLETE)

Consult LTC Marketing for parts specified with wider operating temperature ranges.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.

Downloaded from Arrow.com.

ELECTRICAL CHARACTERISTICS $T_A = 25 \, ^{\circ}\text{C}$. $V_S = \pm 15 V$, $V_{CM} = 0 V$ unless otherwise noted.

			l	.T1013AM/ <i>A</i> .T1014AM/ <i>A</i>	/C	L	T1013C/D/I/ T1014C/D/I/	M	
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
V _{0S}	Input Offset Voltage	LT1013 LT1014 LT1013D/I, LT1014D/I		40 50	150 180		60 60 200	300 300 800	μV μV μV
	Long-Term Input Offset Voltage Stability			0.4			0.5		μV/Mo.
I _{SO}	Input Offset Current			0.15	0.8		0.2	1.5	nA
I _B	Input Bias Current			12	20		15	30	nA
e _n	Input Noise Voltage	0.1Hz to 10Hz		0.55			0.55		μV _{P-P}
e _n	Input Noise Voltage Density	f ₀ = 10Hz f ₀ = 1000Hz		24 22			24 22		nV/√Hz nV/√Hz
i _n	Input Noise Current Density	f ₀ = 10Hz		0.07			0.07		pA/√Hz
	Input Resistance – Differential Common Mode	(Note 2)	100	400 5		70	300 4		$M\Omega$
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 2k$ $V_0 = \pm 10V, R_L = 600\Omega$	1.5 0.8	8.0 2.5		1.2 0.5	7.0 2.0		V/μV V/μV
	Input Voltage Range		13.5 -15.0	13.8 -15.3		13.5 -15.0	13.8 -15.3		V
CMRR	Common Mode Rejection Ratio	V _{CM} = 13.5V, -15.0V	100	117		97	114		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 2V$ to $\pm 18V$	103	120		100	117		dB
	Channel Separation	$V_0 = \pm 10V, R_L = 2k$	123	140		120	137		dB
V _{OUT}	Output Voltage Swing	R _L = 2k	±13	±14		±12.5	±14		V
	Slew Rate		0.2	0.4		0.2	0.4		V/µs
Is	Supply Current	Per Amplifier		0.35	0.50		0.35	0.55	mA

$T_A = 25^{\circ} \text{C}.~V_S^{+} = 5 \text{V},~V_S^{-} = 0 \text{V},~V_{OUT} = 1.4 \text{V},~V_{CM} = 0 \text{V}$ unless otherwise noted

				.T1013AM// .T1014AM//			T1013C/D/I, T1014C/D/I,		
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	LT1013 LT1014 LT1013D/I, LT1014D/I		60 70	250 280		90 90 250	450 450 950	μV μV μV
I _{OS}	Input Offset Current			0.2	1.3		0.3	2.0	nA
I _B	Input Bias Current			15	35		18	50	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = 5$ mV to 4V, $R_L = 500\Omega$		1.0			1.0		V/µV
	Input Voltage Range		3.5 0	3.8 -0.3		3.5 0	3.8 -0.3		V
V _{OUT}	Output Voltage Swing	Output Low, No Load Output Low, 600Ω to Ground Output Low, I_{SINK} = 1mA Output High, No Load Output High, 600Ω to Ground	4.0 3.4	15 5 220 4.4 4.0	25 10 350	4.0 3.4	15 5 220 4.4 4.0	25 10 350	mV mV mV V
I _S	Supply Current	Per Amplifier		0.31	0.45		0.32	0.50	mA

/ LINEAR

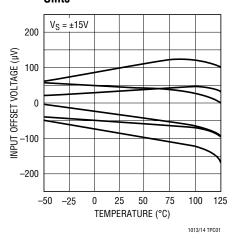
ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the temperature range $-55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 125^{\circ}\text{C}$. $\text{V}_{\text{S}} = \pm 15\text{V}$, $\text{V}_{\text{CM}} = 0\text{V}$ unless otherwise noted.

			L	T1013A	M	LT1014AM			LT101				
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
$\overline{V_{OS}}$	Input Offset Voltage		•		80	300		90	350		110	550	μV
		$\begin{split} &V_S = 5V, 0V; V_0 = 1.4V \\ &-55^{\circ}C \leq T_A \leq 100^{\circ}C \\ &V_{CM} = 0.1V, T_A = 125^{\circ}C \\ &V_{CM} = 0V, T_A = 125^{\circ}C \end{split}$	•		80 120 250	450 450 900		90 150 300	480 480 960		100 200 400	750 750 1500	μV μV μV
	Input Offset Voltage Drift	(Note 3)	•		0.4	2.0		0.4	2.0		0.5	2.5	μV/°C
I _{OS}	Input Offset Current	V _S = 5V, 0V; V ₀ = 1.4V	•		0.3 0.6	2.5 6.0		0.3 0.7	2.8 7.0		0.4 0.9	5.0 10.0	nA nA
I _B	Input Bias Current	V _S = 5V, 0V; V ₀ = 1.4V	•		15 20	30 80		15 25	30 90		18 28	45 120	nA nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 2k$	•	0.5	2.0		0.4	2.0		0.25	2.0		V/µV
CMRR	Common Mode Rejection	V _{CM} = 13.0V, -14.9V	•	97	114		96	114		94	113		dB
PSRR	Power Supply Rejection Ratio	V _S = ±2V to ±18V	•	100	117		100	117		97	116		dB
V _{OUT}	Output Voltage Swing	$R_L = 2k$ $V_S = 5V$, $0V$ $R_L = 600\Omega$ to Ground	•	±12	±13.8		±12	±13.8		±11.5	±13.8		V
		Output Low Output High	•	3.2	6 3.8	15	3.2	6 3.8	15	3.1	6 3.8	18	mV V
Is	Supply Current Per Amplifier	V _S = 5V, 0V; V ₀ = 1.4V	•		0.38 0.34	0.60 0.55		0.38 0.34	0.60 0.55		0.38 0.34	0.7 0.65	mA mA

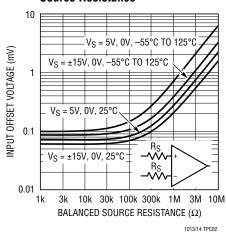
LT1013/LT1014

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the temperature range $-40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 85^{\circ}\text{C}$ for LT1013I, LT1014I, $0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70^{\circ}\text{C}$ for LT1013C, LT1013D, LT1014C, LT1014D. $\text{V}_{\text{S}} = \pm 15\text{V}$, $\text{V}_{\text{CM}} = 0\text{V}$ unless otherwise noted.

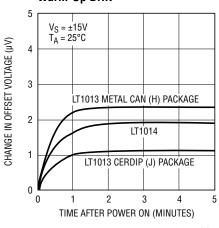
SYMBOL	PARAMETER	CONDITIONS		L MIN	T1013A TYP	C Max	L MIN	T1014A Typ	C MAX		1013C/ 1014C/ TYP		UNITS
V _{OS}	Input Offset Voltage	LT1013D/I, LT1014D/I V _S = 5V, 0V; V ₀ = 1.4V LT1013D/I, LT1014D/I	•		55 75	240 350		65 85	270 380		80 230 110 280	400 1000 570 1200	μV μV μV
	Average Input Offset Voltage Drift	()	•		0.3	2.0		0.3	2.0		0.4 0.7	2.5 5.0	μV/°C μV/°C
I _{OS}	Input Offset Current		•		0.2 0.4	1.5 3.5		0.2 0.4	1.7 4.0		0.3 0.5	2.8 6.0	nA nA
I _B	Input Bias Current		•		13 18	25 55		13 20	25 60		16 24	38 90	nA nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 2k$	•	1.0	5.0		1.0	5.0		0.7	4.0		V/µV
CMRR	Common Mode Rejection Ratio	V _{CM} = 13.0V, -15.0V	•	98	116		98	116		94	113		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 2V$ to $\pm 18V$	•	101	119		101	119		97	116		dB
V _{OUT}	Output Voltage Swing	R_L = 2k V_S = 5V, 0V; R_L = 600 Ω Output Low Output High	•	±12.5	±13.9 6 3.9	13	±12.5	±13.9 6 3.9	13	±12.0	±13.9 6 3.9	13	V mV V
I _S	Supply Current per Amplifier	= =	•		0.36 0.32	0.55 0.50		0.36 0.32	0.55 0.50		0.37 0.34	0.60 0.55	mA mA


Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Rating condition for extended periods may affect device reliability and lifetime.

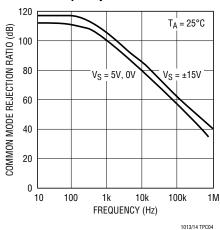
Note 2: This parameter is guaranteed by design and is not tested. Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically 240 op amps (or 120) will be better than the indicated specification.


Note 3: This parameter is not 100% tested.

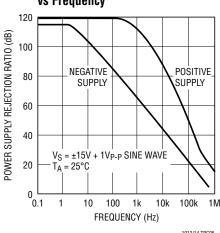
TYPICAL PERFORMANCE CHARACTERISTICS


Offset Voltage Drift with **Temperature of Representative** Units

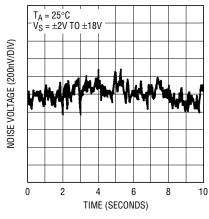
Offset Voltage vs Balanced Source Resistance

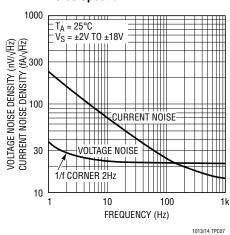


Warm-Up Drift

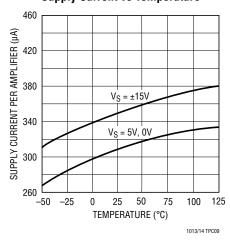


1013/14 TPC03

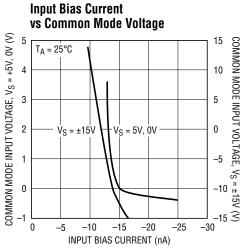

Common Mode Rejection Ratio vs Frequency

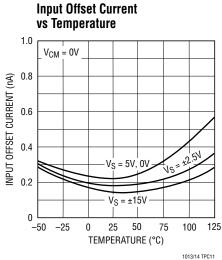

Power Supply Rejection Ratio vs Frequency

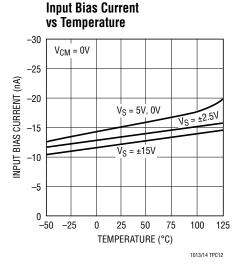
0.1Hz to 10Hz Noise


Noise Spectrum

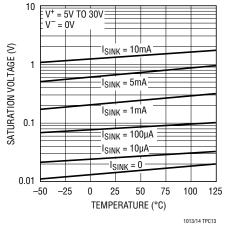
10Hz Voltage Noise Distribution

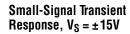

Supply Current vs Temperature

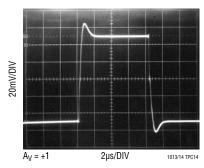


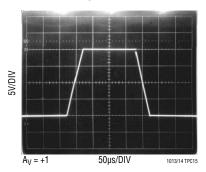

10134fe

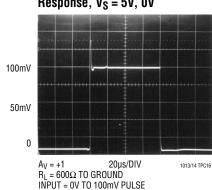
Downloaded from **Arrow.com**.

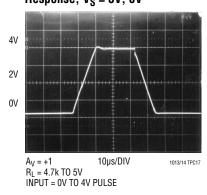

TYPICAL PERFORMANCE CHARACTERISTICS

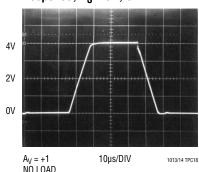




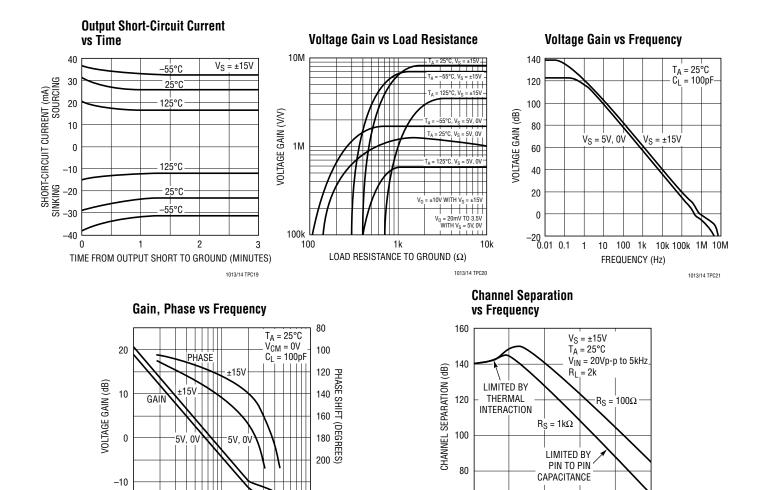

Output Saturation vs Sink Current vs Temperature




Large-Signal Transient Response, $V_S = \pm 15V$


Small-Signal Transient Response, $V_S = 5V$, 0V

Large-Signal Transient Response, V_S = 5V, 0V


Large-Signal Transient Response, $V_S = 5V$, 0V

NO LOAD INPUT = 0V TO 4V PULSE

TYPICAL PERFORMANCE CHARACTERISTICS

10

1013/14 TPC22

APPLICATIONS INFORMATION

FREQUENCY (MHz)

0.3

Single Supply Operation

0.1

The LT1013/LT1014 are fully specified for single supply operation, i.e., when the negative supply is OV. Input common mode range includes ground; the output swings within a few millivolts of ground. Single supply operation, however, can create special difficulties, both at the input and at the output. The LT1013/LT1014 have specific circuitry which addresses these problems.

At the input, the driving signal can fall below OV—inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, two distinct problems

can occur on previous single supply designs, such as the LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP-420:

10k

FREQUENCY (Hz)

100k

1M

1013/14 TPC23

60

10

100

a) When the input is more than a diode drop below ground, unlimited current will flow from the substrate (V $^-$ terminal) to the input. This can destroy the unit. On the LT1013/LT1014, the 400Ω resistors, in series with the input (see Schematic Diagram), protect the devices even when the input is 5V below ground.

APPLICATIONS INFORMATION

b) When the input is more than 400mV below ground (at 25°C), the input stage saturates (transistors Q3 and Q4) and phase reversal occurs at the output. This can cause lock-up in servo systems. Due to a unique phase reversal protection circuitry (Q21, Q22, Q27, Q28), the LT1013/LT1014's outputs do not reverse, as illustrated below, even when the inputs are at -1.5V.

There is one circumstance, however, under which the phase reversal protection circuitry does not function: when the other op amp on the LT1013, or one specific amplifier of the other three on the LT1014, is driven hard into negative saturation at the output.

Phase reversal protection does not work on amplifier:

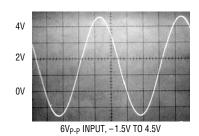
A when D's output is in negative saturation. B's and C's outputs have no effect.

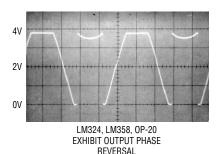
B when C's output is in negative saturation. A's and D's outputs have no effect.

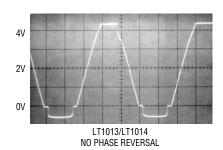
C when B's output is in negative saturation. A's and D's outputs have no effect.

D when A's output is negative saturation. B's and C's outputs have no effect.

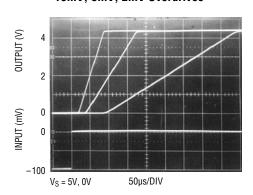
At the output, the aforementioned single supply designs either cannot swing to within 600mV of ground (OP-20) or cannot sink more than a few microamperes while swinging to ground (LM124, LM158). The LT1013/LT1014's all-NPN output stage maintains its low output resistance and high gain characteristics until the output is saturated.

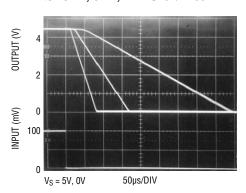

In dual supply operations, the output stage is crossover distortion-free.


Comparator Applications


The single supply operation of the LT1013/LT1014 lends itself to its use as a precision comparator with TTL compatible output:

In systems using both op amps and comparators, the LT1013/LT1014 can perform multiple duties; for example, on the LT1014, two of the devices can be used as op amps and the other two as comparators.

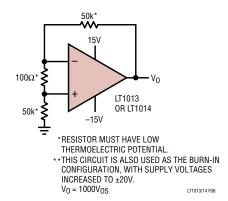

Voltage Follower with Input Exceeding the Negative Common Mode Range



Comparator Rise Response Time 10mV, 5mV, 2mV Overdrives

Comparator Fall Response Time to 10mV, 5mV, 2mV Overdrives

APPLICATIONS INFORMATION


Low Supply Operation

The minimum supply voltage for proper operation of the LT1013/LT1014 is 3.4V (three Ni-Cad batteries). Typical supply current at this voltage is $290\mu A$, therefore power dissipation is only one milliwatt per amplifier.

Noise Testing

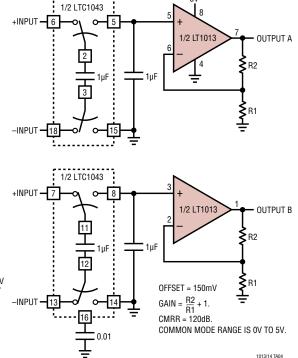
For applications information on noise testing and calculations, please see the LT1007 or LT1008 data sheet.

Test Circuit for Offset Voltage and Offset Drift with Temperature

TYPICAL APPLICATIONS

0.1% RESISTOR.

7.5mW DISSIPATION.

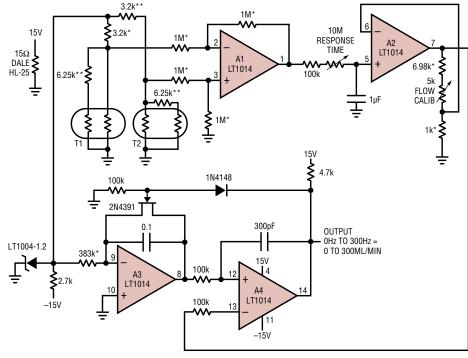

ENCLOSE T1 AND T2 IN STYROFOAM.

50MHz Thermal RMS-to-DC Converter

5V 0.01 **₹**30k³ LT1014 10k **≤**300Ω* LT1014 10k 100k 0.01 0.01 LT1014 INPUT 300mV-10V_{RMS} BRN 20k FULL-0V TO 4V LT1014 2% ACCURACY, DC-50MHz. 100:1 CREST FACTOR CAPABILITY.

T1-T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018.

5V Single Supply Dual Instrumentation Amplifier

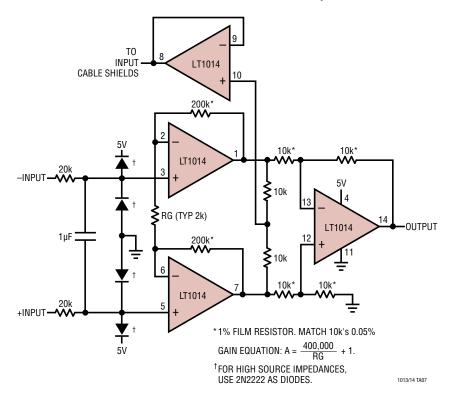


10134fe

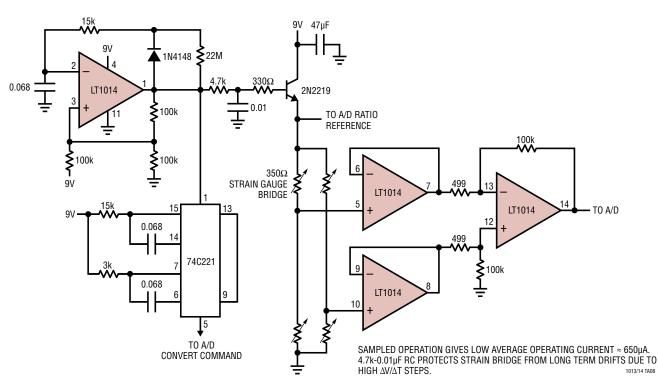
1013/14 TA03

Hot-Wire Anemometer 500pF TIE CA3046 PIN 13 Q5 TO –15V. DO NOT USE Q5 Q1-Q4 Q6 TIP120 OR CA3046 13 Q3 **EQUIVALENT** -15V Q4 Q1 **€**220 1000pF 150k* 0.01µF LT1014 **≨**10k* **≶**33k LT1014 27Ω 1W 0V TO 10V = 0 TO 1000 FEET/MINUTE 15V 10M RESPONSE 2M FULL-SCALE TIME A1 LT1014 **ADJUST** ZERO FLOW **₹**3.3k LT1004-1.2 #328 **≨**100k FLOW -15V REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP. A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE. A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE. *1% RESISTOR. A3 LT1014

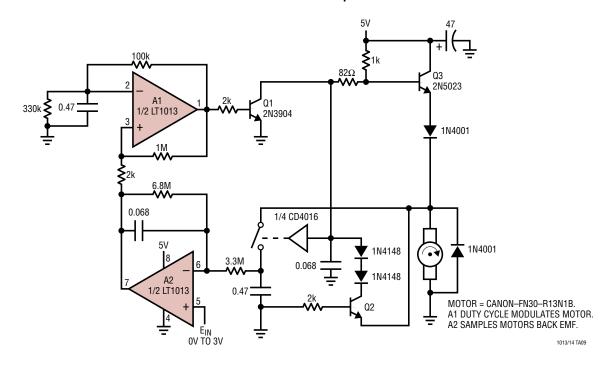
Liquid Flowmeter

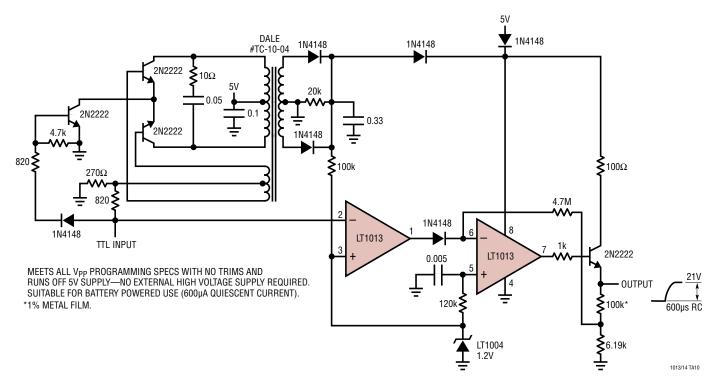


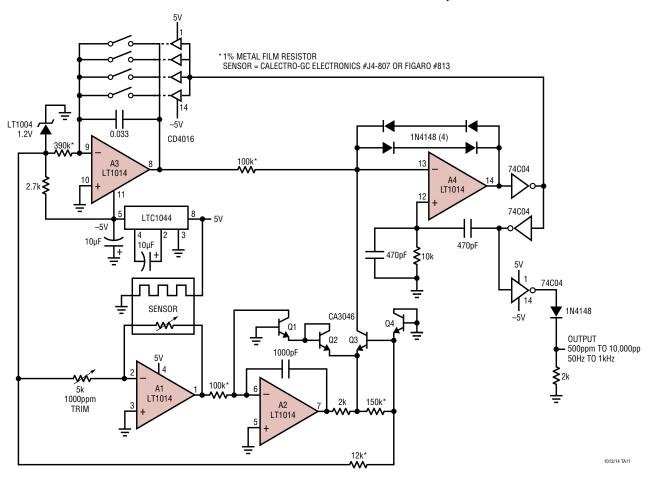
- * 1% FILM RESISTOR.
- ** SUPPLIED WITH YSI THERMISTOR NETWORK. T1, T2 YSI THERMISTOR NETWORK = #44201. FLOW IN PIPE IS INVERSELY PROPORTIONAL TO RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE. A1-A2 PROVIDE GAIN. A3-A4 PROVIDE LINEARIZED FREQUENCY OUTPUT.

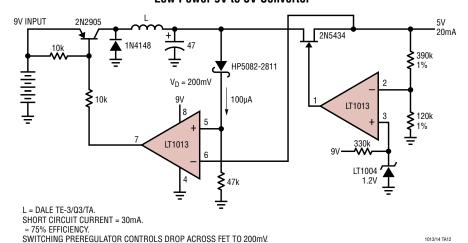

10134fe

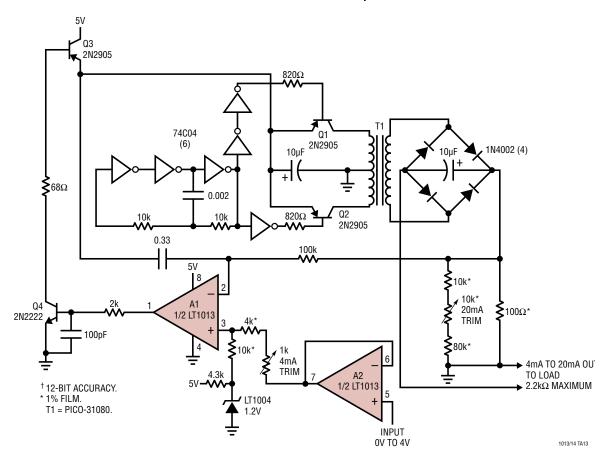
1013/14 TA05

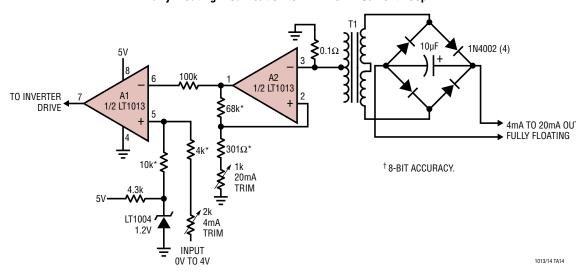

5V Powered Precision Instrumentation Amplifier


9V Battery Powered Strain Gauge Signal Conditioner

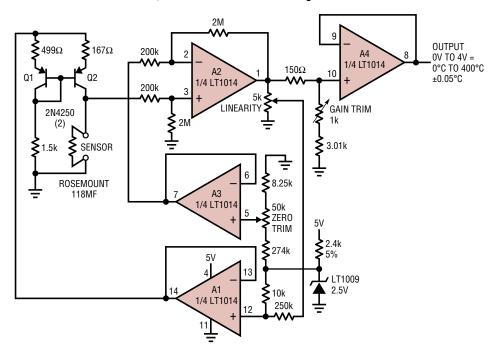

5V Powered Motor Speed Controller No Tachometer Required


5V Powered EEPROM Pulse Generator


Methane Concentration Detector with Linearized Output


Low Power 9V to 5V Converter

5V Powered 4mA to 20mA Current Loop Transmitter[†]



Fully Floating Modification to 4mA-20mA Current Loop[†]

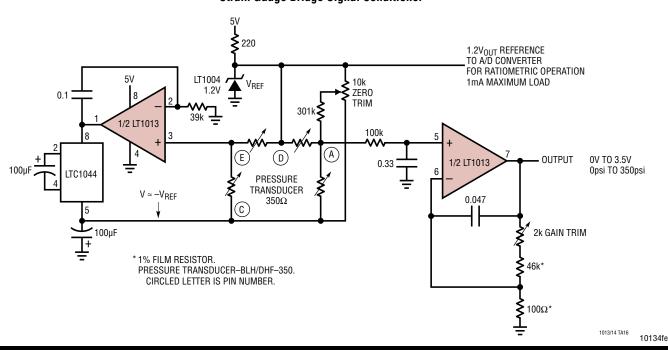
5V Powered, Linearized Platinum RTD Signal Conditioner

ALL RESISTORS ARE TRW-MAR-6 METAL FILM.

RATIO MATCH 2M-200K ± 0.01%.

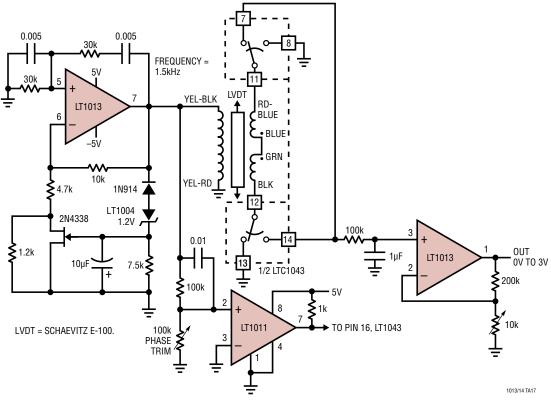
TRIM SEQUENCE:

SET SENSOR TO 0° VALUE.

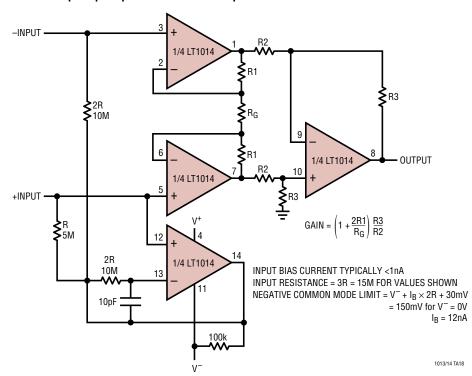

ADJUST ZERO FOR OV OUT.

SET SENSOR TO 100°C VALUE. ADJUST GAIN FOR 1.000V OUT.

SET SENSOR TO 400°C.

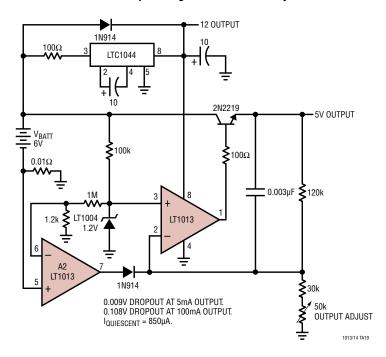

ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED.

Strain Gauge Bridge Signal Conditioner

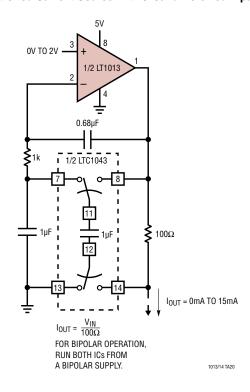


Downloaded from **Arrow.com**.

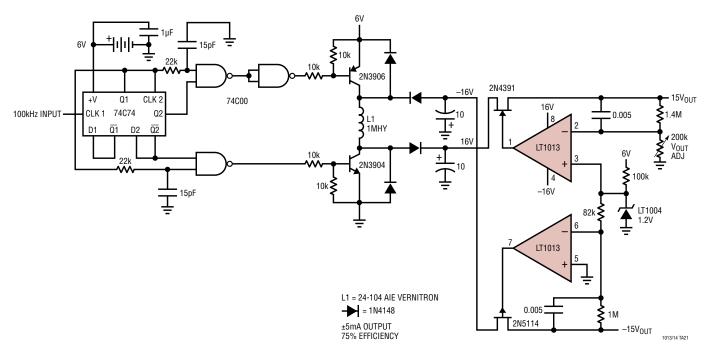
LVDT Signal Conditioner

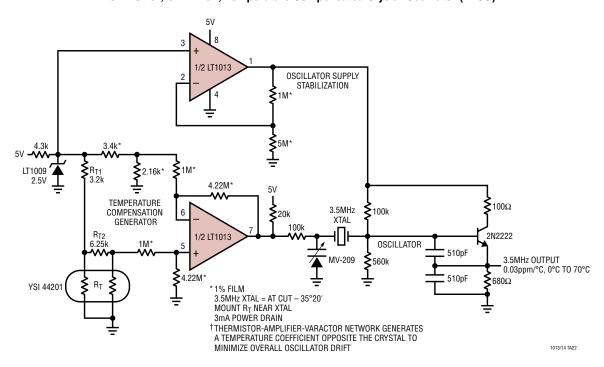


Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation

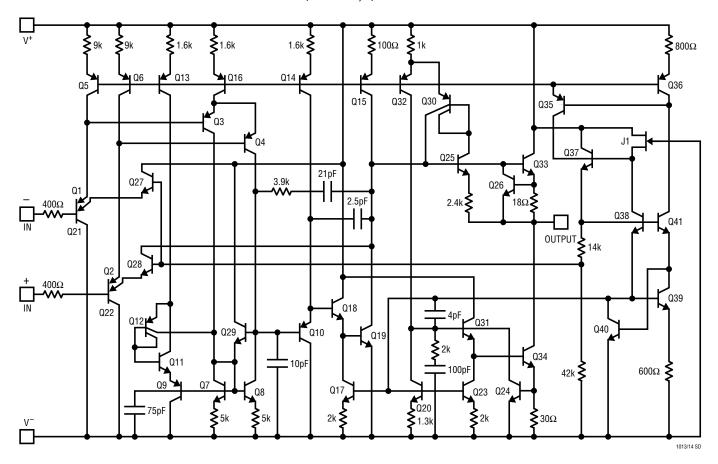


T LINEAR

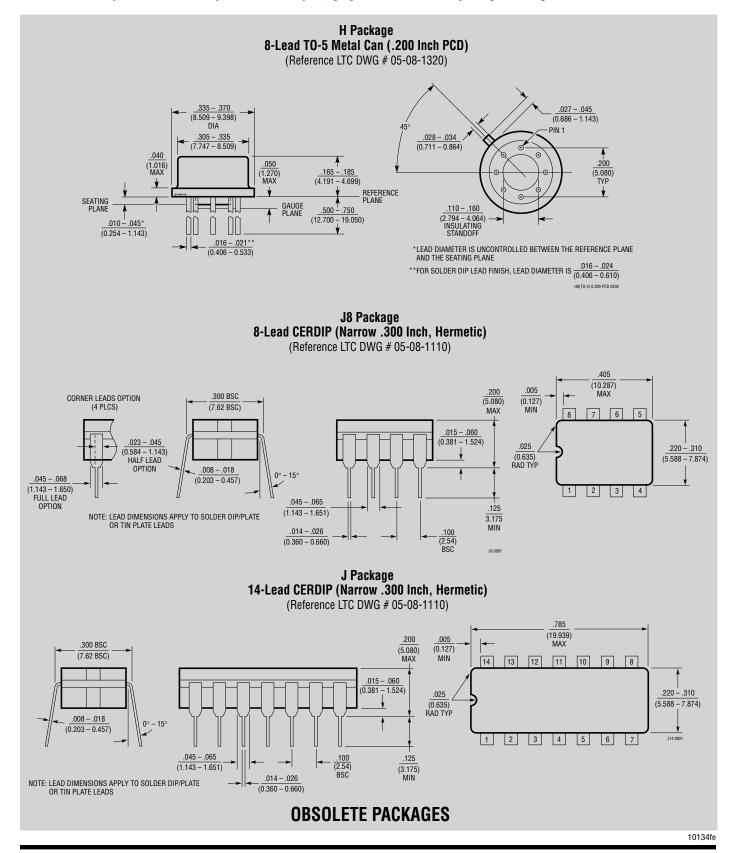

Low Dropout Regulator for 6V Battery


Voltage Controlled Current Source with Ground Referred Input and Output

6V to ±15V Regulating Converter


Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)[†]

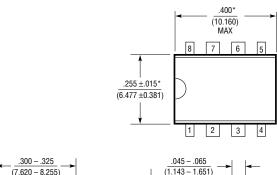
/ LINEAR

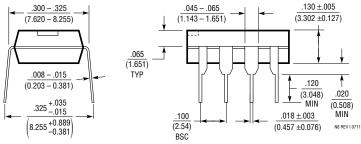

SCHEMATIC DIAGRAM

1/2 LT1013, 1/4 LT1014

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/product/LT1013#packaging for the most recent package drawings.

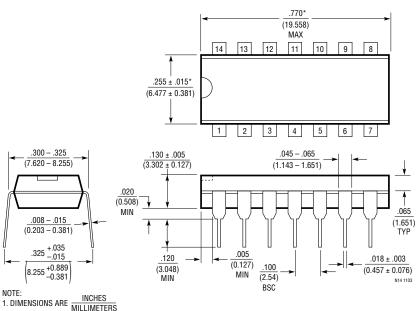



PACKAGE DESCRIPTION

Please refer to http://www.linear.com/product/LT1013#packaging for the most recent package drawings.

N8 Package 8-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510 Rev I)



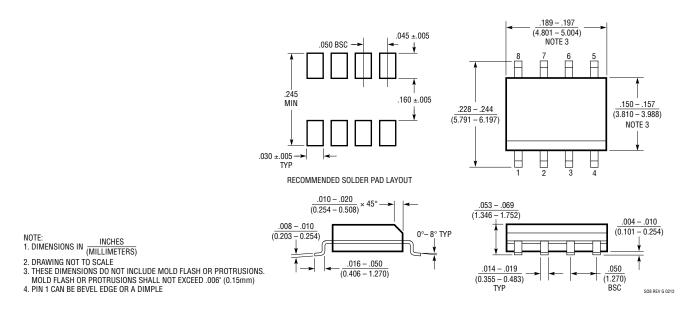
NOTE:

N Package 14-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)

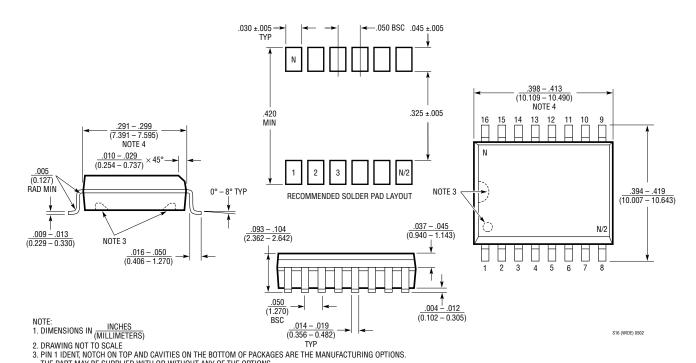
^{*}THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

Downloaded from Arrow.com.


NOTE:
1. DIMENSIONS ARE INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

PACKAGE DESCRIPTION

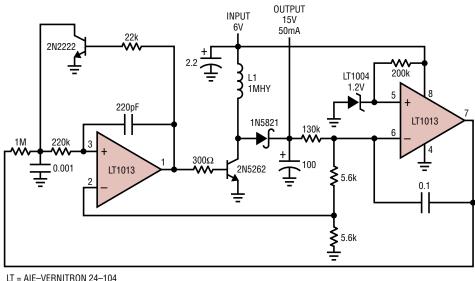
Please refer to http://www.linear.com/product/LT1013#packaging for the most recent package drawings.


S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610 Rev G)

SW Package XX-Lead Plastic Small Outline (Wide .300 Inch)

(Reference LTC DWG # 05-08-1620)


THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS 4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

REVISION HISTORY (Revision history begins at Rev D)

REV	DATE	DESCRIPTION	PAGE NUMBER
D	05/10	Updates to Typical Application "Hot-Wire Anemometer"	12
		Updated Related Parts	26
Е	05/16	Corrected Package Drawing	24

Step-Up Switching Regulator for 6V Battery

LT = AIE-VERNITRON 24-104 78% EFFICIENCY

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT2078/LT2079	Dual/Quad 50µA Single Supply Precision Amplifier	50μA Max I _S , 70μV Max V _{OS}
LT2178/LT2179	Dual/Quad 17μA Single Supply Precision Amplifier	17µA Max I _S , 70µV Max V _{OS}
LTC6081/LTC6082	Dual/Quad 400µA Precision Rail-to-Rail Amplifier	V_S = 2.7V to 6V, 400 μ A Max I_S , 70 μ V V_{OS} 0.8 μ V/°C TCV $_{OS}$
LTC6078/LTC6079	Dual/Quad 72µA Precision Rail-to-Rail Amplifier	V_S = 2.7V to 6V, 72 μ A Max I _S , 25 μ V V _{OS} 0.7 μ V/°C TCV _{OS}