
L4971

Figure 2. Block Diagram

Figure 3. Pin Connections

Table 2. Pin Description

DIP	SO (*)	Name	Function
1	2	GND	Ground
2	3	SS_INH	A logic signal (active low) disables the device (sleep mode operation). A capacitor connected between this pin and ground determines the soft start time. When this pin is grounded disabled the device (driven by open collector/drain).
3	4	OSC	An external resistor connected between the unregulated input voltage and this pin and a capacitor connected from this pin to ground fix the switching frequency. (Line feed forward is automatically obtained)
4	5, 6	OUT	Stepdown regulator output
5	11	Vcc	Unregulated DC input voltage
6	12	BOOT	A capacitor connected between this pin and OUT allows to drive the internal DMOS Transistor
7	13	COMP	E/A output to be used for frequency compensation
8	14	FB	Stepdown feedback input. Connecting directly to this pin results in an output voltage of 3.3V. An external resistive divider is required for higher output voltages.

57

(*) Pins 1, 7, 8, 9, 10, 15 and 16 are not internally, electrically connected to the die.

Symbol		Parameter		Value	11	
Minidip	S016			value	Unit	
V ₅	V ₁₁	Input voltage		58	V	
V4	V ₅ ,V ₆	Output DC voltage		-1	V	
		Output peak voltage at t = 0.1µs f=200KHz		-5	V	
I ₄	I ₅ ,I ₆	Maximum output current		int. limit.		
V ₆ -V ₅	V ₁₂ -V ₁₁		14	V		
V ₆	V ₁₂	Bootstrap voltage	70	V		
V ₇	V ₁₃	Analogs input voltage (V _{CC} = 24V	12	V		
V ₂	V3	Analogs input voltage (V _{CC} = 24V)		13	V	
V ₈	V ₁₄	(V _{CC} = 20V)		6 -0.3	V V	
P _{tot}		Power dissipation a Tamb ≤60°C	DIP8	1	W	
			SO16	0.8	W	
Tj,Tstg		Junction and storage temperature		-40 to 150	°C	

Table 3. Absolute Maximum Ratings

Table 4. Thermal Data

Symbol	Parameter	DIP8	SO16	Unit
R _{th(j-amb)}	Thermal Resistance Junction to ambient Max.	90 (*)	110 (*)	°C/W

(*) Package mounted on board.

3 ELECTRICAL CHARACTERISTCS

Table 5. (T_j = 25°C, Cosc = 2.7nF, Rosc = 20k Ω , V_{CC} = 24V, unless otherwise specified.) * Specification Refered to T_j from 0 to 125°C

Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Unit
DYNAMIC CHARACTERISTIC							
VI	Operating input voltage range	Vo = 3.3 to 50V; lo = 1.5A	*	8		55	V
Vo	Output voltage	lo = 0.5A		3.33	3.36	3.39	V
		lo = 0.2 to 1.5A		3.292	3.36	3.427	V
		Vcc = 8 to 55V	*	3.22	3.36	3.5	V
Vd	Dropout voltage	Vcc = 10V; lo = 1.5A			0.44	0.55	V
			*			0.88	V
I	Maximum limiting current	V _{cc} = 8 to 55V	*	2	2.5	3	А
	Efficiency	Vo = 3.3V; lo = 1.5A			85		%
fs	Switching frequency		*	90	100	110	KHz
SVRR	Supply voltage ripple rejection	$\label{eq:Vi} \begin{array}{l} \text{Vi} = \text{Vcc+2V}_{\text{RMS}} \text{; Vo} = \text{Vref} \text{;} \\ \text{Io} = 1.5\text{A} \text{; } f_{\text{ ripple}} = 100\text{Hz} \end{array}$		60			dB
	Voltage stability of switching frequency	Vcc = 8 to 55V			3	6	%
	Temp. stability of switching frequency	Tj = 0 to 125°C			4		%

L4971

Table 5. (T_j = 25°C, Cosc = 2.7nF, Rosc = 20k Ω , V_{CC} = 24V, unless otherwise specified.) * Specification Refered to T_j from 0 to 125°C

Soft Start							
	Soft start charge current			30	40	50	μA
	Soft start discharge current			6	10	14	μA
Inhibit							
V_{LL}	Low level voltage		*			0.9	V
I _{sLL}	Isource Low level		*		5	15	μA
DC Characte	eristics						
Iqop	Total operating quiescent current				4	6	mA
lq	Quiescent current	Duty Cycle = 0; V _{FB} = 3.8V			2.5	3.5	mA
lqst-by	Total stand-by quiescent	V _{inh} <0.9V			100	200	μA
	current	Vcc = 55V; Vinh<0.9V			150	300	μA
Error Amplif	ier	•					
V _{FB}	Voltage Feedback Input			3.33	3.36	3.39	V
RL	Line regulation	Vcc = 8 to 55V			5	10	mV
	Ref. voltage stability vs temperature		*		0.4		mV/°C
V _{oH}	High level output voltage	V _{FB} = 2.5V		10.3			V
V _{oL}	Low level output voltage	V _{FB} = 3.8V				0.65	V
lo source	Source output current	$V_{comp} = 6V; V_{FB} = 2.5V$		200	300		μA
lo sink	Sink output current	$V_{comp} = 6V; V_{FB} = 3.8V$		200	300		μA
l _b	Source bias current				2	3	μA
SVRR E/A	Supply voltage ripple rejection	$V_{comp} = V_{fb}; V_{cc} = 8 \text{ to } 55V$		60	80		dB
	DC open loop gain	$R_L = \infty$		50	57		dB
gm	Transconductance	$I_{comp} = -0.1$ to 0.1mA $V_{comp} = 6V$			2.5		ms
Oscillator Se	ection						
	Ramp Valley			0.78	0.85	0.92	V
	Ramp peak	Vcc = 8V		2	2.15	2.3	V
		Vcc = 55V		9	9.6	10.2	V
	Maximum duty cycle			95	97		%
	Maximum Frequency	Duty Cycle = 0% ; $R_{osc} = 13k\Omega$, $C_{osc} = 820pF$				300	kHz

A7/

Output Voltage	Output Ripple	Efficiency V_{CC} =35V I _O = 1.5A	Line Regulation $I_0 = 1.5A V_{CC} = 8 \text{ to } 55V$	Load Regulation V_{CC} =35V I _O = 0.5 to 1.5A
3.3V	10mV	84 (%)	3mV	6mV
5.1V	10mV	86 (%)	3mV	6mV
12V	12mV	93 (%)	3mV (V _{CC} =15 to 55V)	4mV

Table 6. Typical Performance (Using Evaluation Board) fsw = 100kHz

Figure 4. Test and valuation board circuit.

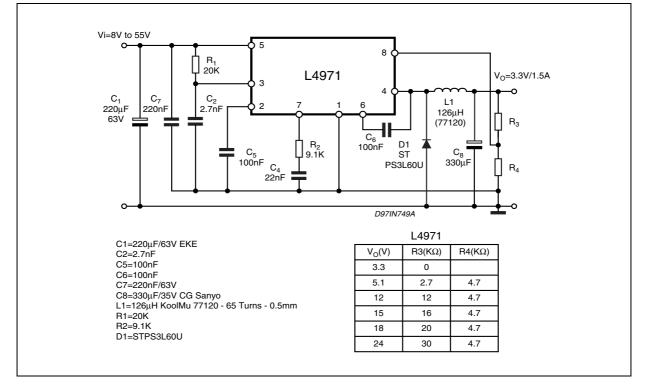


Figure 5. PCB and component layout of the figure 4.

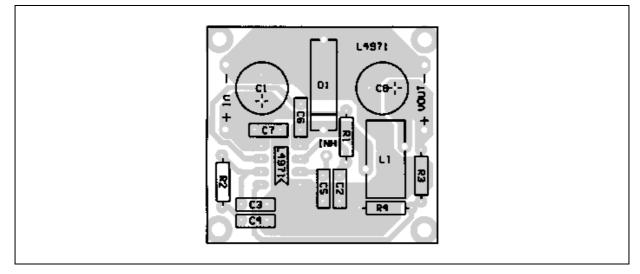
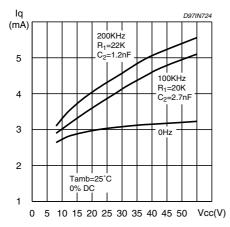
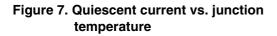




Figure 6. Quiescent drain current vs. input voltage.

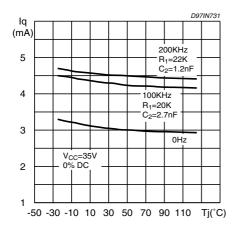
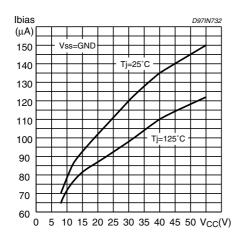



Figure 8. Stand-by drain current vs. input voltage

Figure 9. Line Regulation

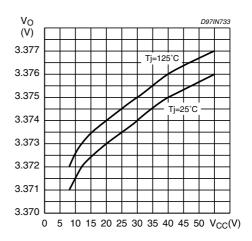


Figure 10. Line Regulation

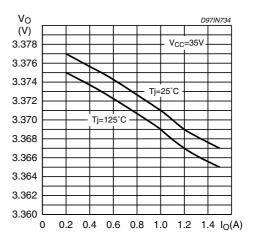
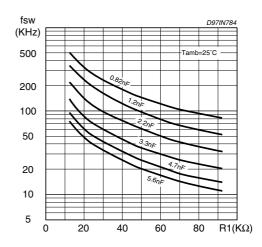



Figure 11. Switching frquency vs. R1 and C2

57

Figure 12. Switching Frequency vs. input voltage.

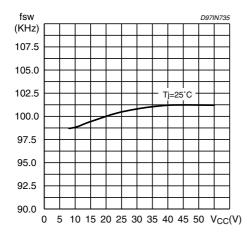
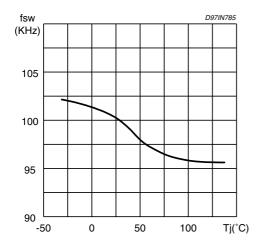
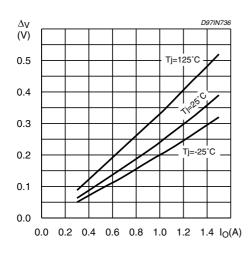




Figure 13. Switching frequency vs. junction temperature.

57

Figure 15. Efficiency vs output voltage.

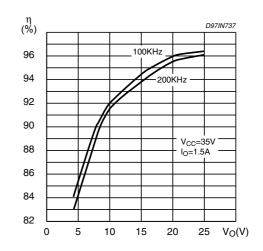


Figure 16. Efficiency vs. output current.

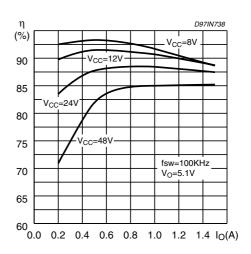
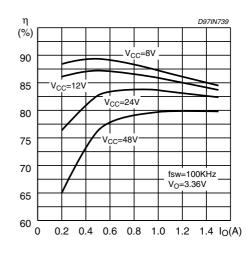



Figure 17. Efficiency vs. output current.

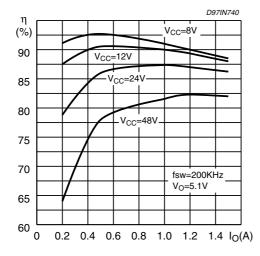
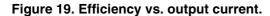
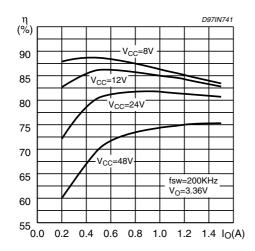
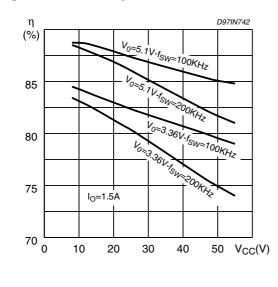





Figure 18. Efficiency vs. output current.

8/13

Figure 21. Power dissipation vs. Vcc.

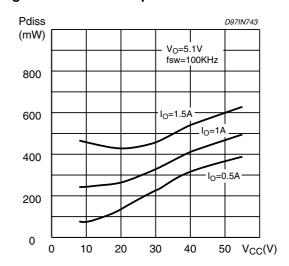


Figure 22. Efficiency vs. V_O

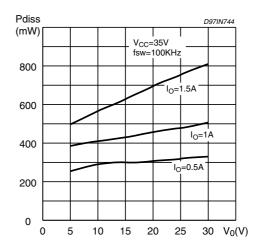
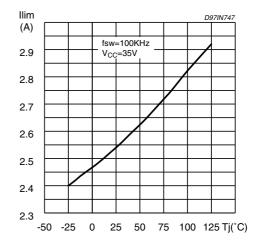
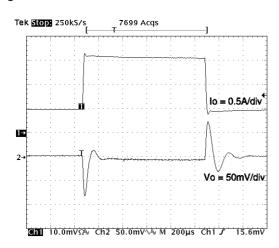
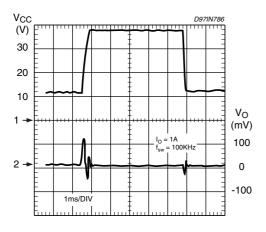
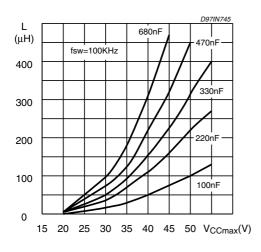
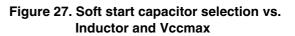
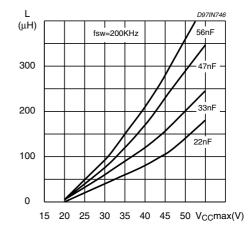




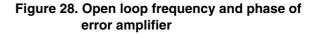
Figure 23. Pulse by pulse limiting current vs. junction temperature.

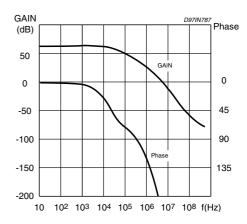
57

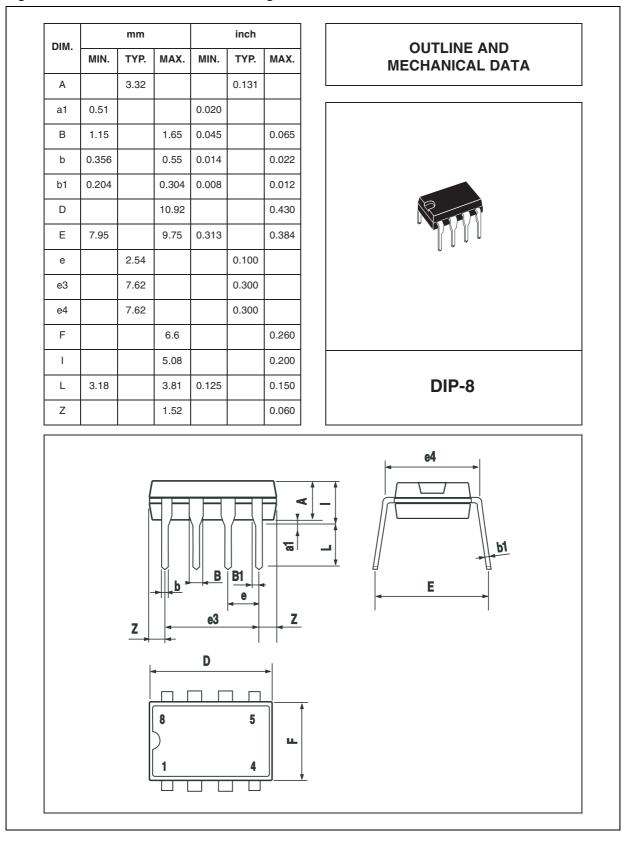
Downloaded from Arrow.com.

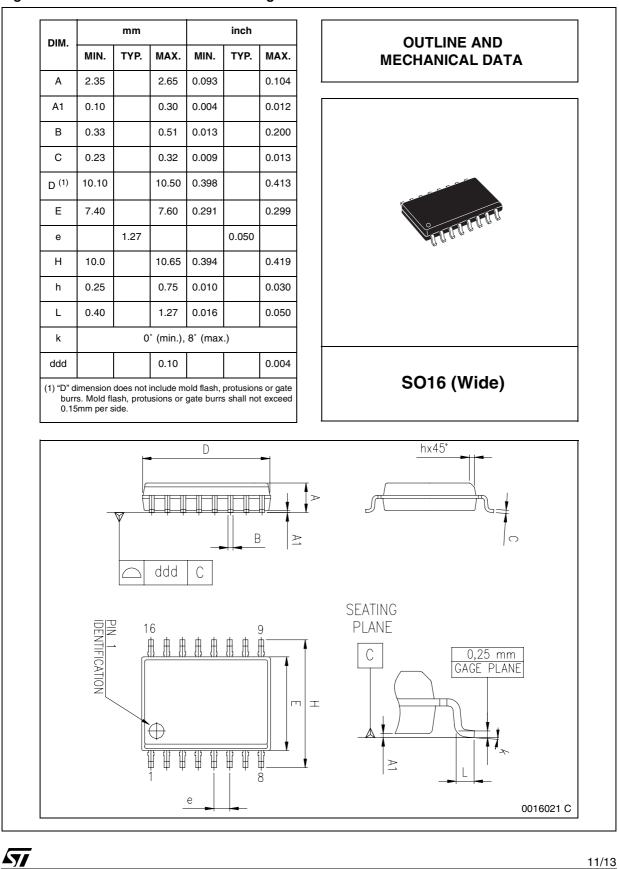
Figure 24. Load transient.


Figure 26. Soft start capacitor selection Vs inductor and Vccmax.






L4971

57

Figure 29. DIP8 Mechanical Data & Package Dimensions

10/13

Figure 30. SO16 Mechanical Data & Package Dimensions

4 REVISION HISTORY

Table 7. Revision History

Date	Revision	Description of Changes
October 2004	10	First Issue in EDOCS
May 2005	11	Updated the Layout look & feel. Changed name of the D1 on the figs. 1 and 4.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

