Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDP7N50	FDP7N50	TO-220			50
FDPF7N50	FDPF7N50	TO-220F			50

Electrical Characteristics $T_C = 25$ °C unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max	Units			
Off Charac	Off Characteristics								
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	500			V			
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C		0.5		V/°C			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 500V, V _{GS} = 0V V _{DS} = 400V, T _C = 125°C			1 10	μA μA			
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30V, V_{DS} = 0V$			100	nA			
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30V$, $V_{DS} = 0V$			-100	nA			
On Charac	teristics	•				•			
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.0		5.0	V			
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10V, I _D = 3.5A		0.76	0.9	Ω			
9 _{FS}	Forward Transconductance	$V_{DS} = 40V, I_D = 3.5A$ (Note 4)		2.5		S			
Dynamic C	Characteristics	•							
C _{iss}	Input Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$		720	940	pF			
C _{oss}	Output Capacitance	f = 1.0MHz		95	190	pF			
C _{rss}	Reverse Transfer Capacitance	7		9	13.5	pF			
Switching	Characteristics								
t _{d(on)}	Turn-On Delay Time	V _{DD} = 250V, I _D = 7A		6	20	ns			
t _r	Turn-On Rise Time	$R_G = 25\Omega$		55	120	ns			
t _{d(off)}	Turn-Off Delay Time			25	60	ns			
t _f	Turn-Off Fall Time	(Note 4, 5)		35	80	ns			
Qg	Total Gate Charge	V _{DS} = 400V, I _D = 7A		12.8	16.6	nC			
Q _{gs}	Gate-Source Charge	$V_{GS} = 10V$		3.7		nC			
Q_{gd}	Gate-Drain Charge	(Note 4, 5)		5.8		nC			
Drain-Sour	rce Diode Characteristics and Maximum	n Ratings				ı			
I _S	Maximum Continuous Drain-Source Diode Forward Current				7	Α			
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				28	Α			
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0V, I _S = 7A			1.4	V			
t _{rr}	Reverse Recovery Time	V _{GS} = 0V, I _S = 7A		275		ns			
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100A/\mu s $ (Note 4)		1.7		μС			

NOTES

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. I_{AS} = 7A, V_{DD} = 50V, L=10mH, R_G = 25 $\!\Omega$, Starting T_J = 25 $^{\circ}C$
- 3. $I_{SD} \le 7 A$, $di/dt \le 200 A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$
- 4. Pulse Test: Pulse width $\leq 300 \mu s, \ \text{Duty Cycle} \leq 2\%$
- 5. Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics

Figure 1. On-Region Characteristics

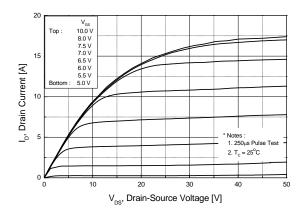


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

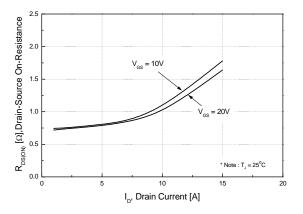


Figure 5. Capacitance Characteristics

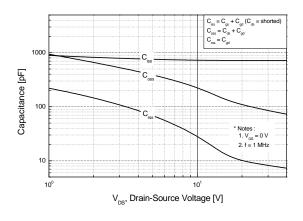


Figure 2. Transfer Characteristics

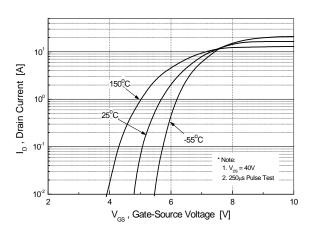


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

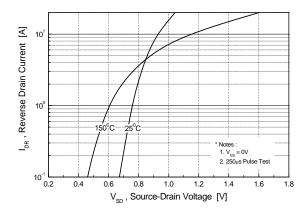
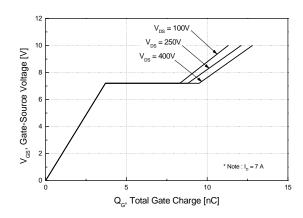



Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

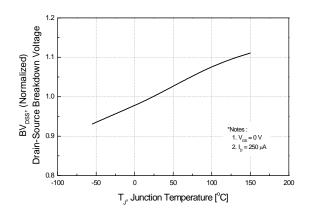


Figure 8. On-Resistance Variation vs. Temperature

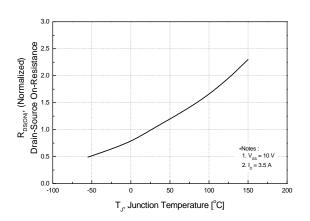


Figure 9-1. Maximum Safe Operating Area - FDP7N50

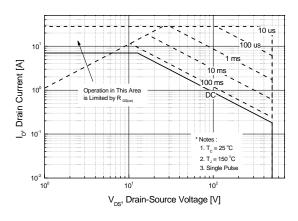


Figure 9-2. Maximum Safe Operating Area - FDPF7N50

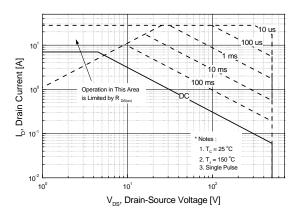
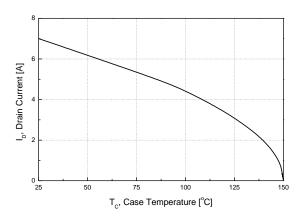
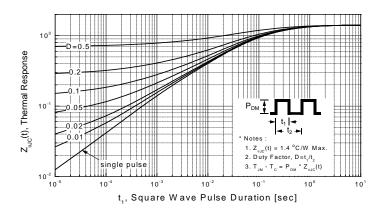
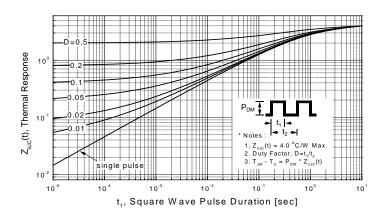
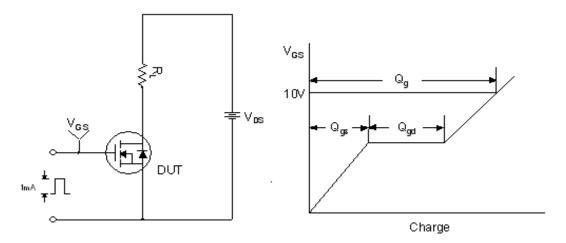
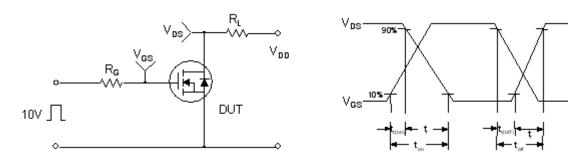



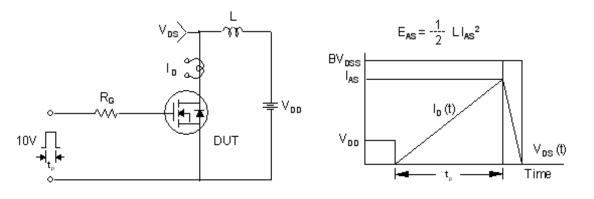
Figure 10. Maximum Drain Current Vs. Case Temperature

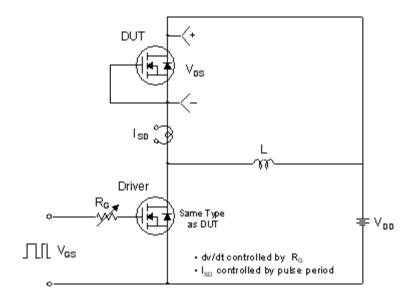
www.fairchildsemi.com

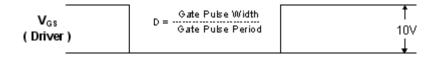
Figure 11-1. Transient Thermal Response Curve - FDP7N50

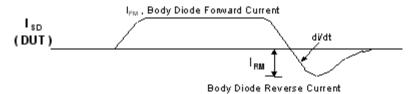




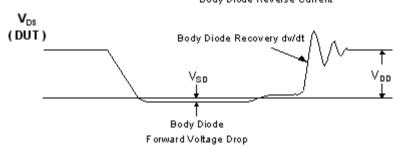

Figure 11-2. Transient Thermal Response Curve - FDPF7N50


Gate Charge Test Circuit & Waveform

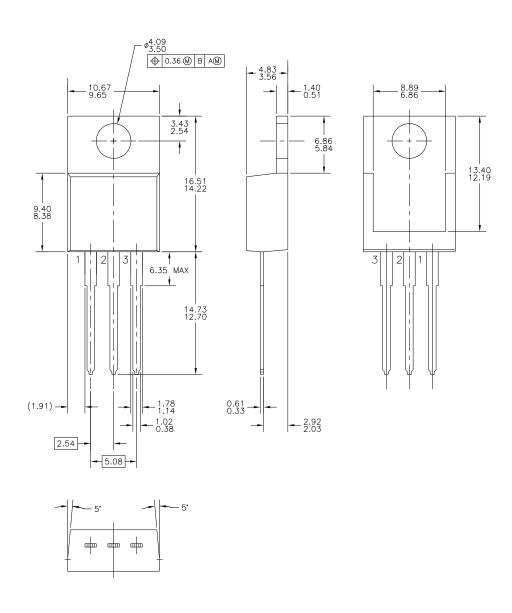

Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching Test Circuit & Waveforms



Peak Diode Recovery dv/dt Test Circuit & Waveforms



7

Mechanical Dimensions

TO-220

Dimensions in Millimeters

Mechanical Dimensions (Continued) TO-220F 3.30 ± 0.10 2.54 ± 0.20 $10.16 \; {\pm}0.20$ $\emptyset 3.18 \pm 0.10$ (7.00)(0.70) 6.68 ± 0.20 15.87 ± 0.20 15.80 ± 0.20 (1.00x45°) MAX1.47 9.75 ±0.30 0.80 ± 0.10 #1 0.35 ± 0.10 $0.50^{\,+0.10}_{\,-0.05}$ 2.76 ± 0.20 2.54TYP 2.54TYP [2.54 ±0.20] [2.54 ±0.20] 4.70 ± 0.20 $9.40 \; \pm 0.20$

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® Green FPSTM
Build it NowTM Green FPSTM e-SeriesTM
CorePLUSTM GTOTM CROSSVOLTTM $i-Lo^{TM}$ CUrrent Transfer LogicTM ISOPLANARTM CSSPAPK® Mass Park TM

EcoSPARK® MegaBuck™ MICROCOUPLER™ Fairchild® MicroFET™ Fairchild Semiconductor® MicroPak™ FACT Quiet Series™ MillerDrive™ **FACT**[©] Motion-SPM™ FAST® OPTOLOGIC® OPTOPLANAR® FastvCore™ FPS™

FRFET[®] PDP-SPM™ Global Power ResourceSM Power220[®] Power247[®]
POWEREDGE[®]
Power-SPM[™]
PowerTrench[®]

Programmable Active $\mathsf{Droop}^\mathsf{TM}$ $\mathsf{QFET}^{^{\circledR}}$

QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™

SPM[®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™

The Power Franchise®

the wer' franchise
TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyPWire™
µSerDes™
UHC®
UniFET™
VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary First Production		This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed Full Production		This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.		

Rev. I31