Characteristics ESDALC14-1BF4

1 Characteristics

Table 1: Absolute ratings (T_{amb} = 25 °C)

Symbol		Value	Unit		
V _{PP}	Peak pulse voltage	IEC 61000-4-2 contact discharge	25	kV	
		IEC 61000-4-2 air discharge	30	N V	
P_{PP}	Peak pulse power dissipation (8/20 μs)		100	W	
I_{PP}	Peak pulse current (8/20 μs)		5	Α	
Tj	Operating junction temperature range		-40 to +150	°C	
T _{stg}	Storage temperature range		-65 to +150	°C	
TL	Maximum lead tempera	260	°C		

Figure 2: Electrical characteristics (definitions)

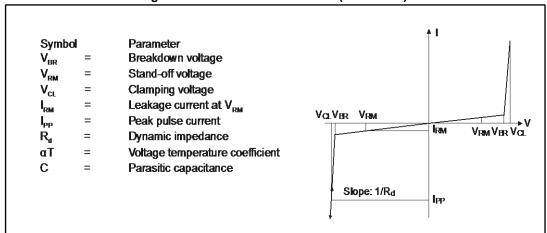
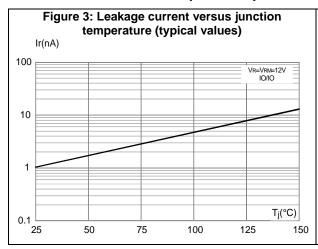
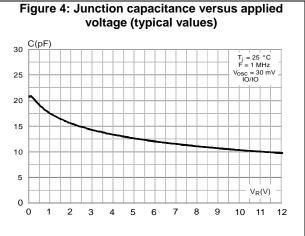



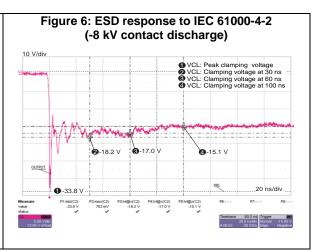
Table 2: Electrical characteristics (T_{amb} = 25 °C)

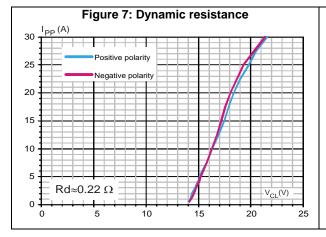
Symbol	Test condition	Min.	Тур.	Max.	Unit
V_{BR}	I _R = 1 mA	13			V
I _{RM}	V _{RM} = 12 V			100	nA
VcL	8 kV contact discharge after 30 ns, IEC 61000-4-2		18		V
CLINE	F = 1 MHz, V _{LINE} = 0 V, V _{OSC} = 30 mV		22	25	pF

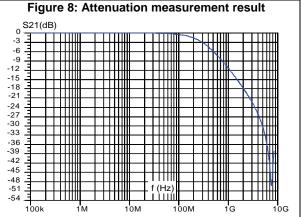
ESDALC14-1BF4 Characteristics

1.1 Characteristics (curves)




Figure 5: ESD response to IEC 61000-4-2 (+8 kV contact discharge)


10 V/div


10 V/div

10 V/div

10 V/CL: Peak clamping voltage at 50 ns (10 V/CL: Clamping voltage at 60 ns (10 V/CL: Clamping voltage at 60 ns (10 V/CL: Clamping voltage at 100 ns (10 V/CL: Clamping voltage at 60 ns (10 V/CL: Clamping voltage at 100 ns (10 V/CL: Clamping voltage at 60 ns (10 V/CL: Clamping voltage at 100 ns (10 V/CL: Clamping voltage at 60 ns (10 V/CL: Clamping voltage at 60 ns (10 V/CL: Clamping voltage at 100 ns (10 V/CL: Clamping voltage a

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

2.1 0201 package information

Top

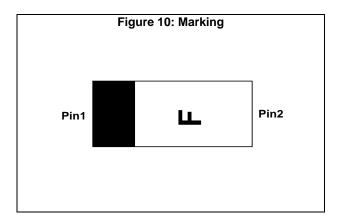
Side

D1

FE

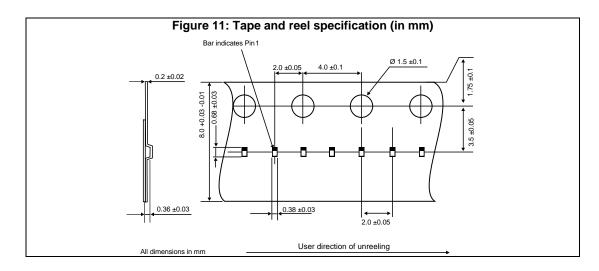
Bottom

Figure 9: 0201 package outline


The marking codes can be rotated by 90° or 180° to differentiate assembly location. In no case should this product marking be used to orient the component for its placement on a PCB. Only pin 1 mark is to be used for this purpose.

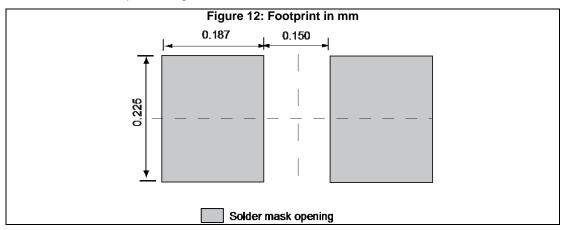
47/

ESDALC14-1BF4 Package information

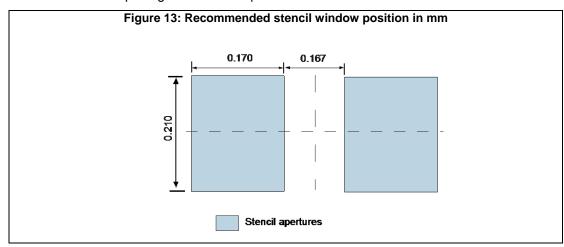

Table 3: 0201 package mechanical data

	Dimensions				
Ref.	Millimeters				
	Min.	Тур.	Max.		
Α	0.280	0.300	0.320		
b	0.125	0.140	0.155		
D	0.570	0.600	0.630		
D1		0.350			
E	0.270	0.300	0.330		
E1	0.175	0.190	0.205		
fD	0.110	0.125	0.140		
fE	0.040	0.055	0.070		

The marking codes can be rotated by 90° or 180° to differentiate assembly location. In no case should this product marking be used to orient the component for its placement on a PCB. Only pin 1 mark is to be used for this purpose.



3 Recommendation on PCB assembly


3.1 Footprint

- 1. Footprint in mm
 - a. SMD footprint design is recommended.

3.2 Stencil opening design

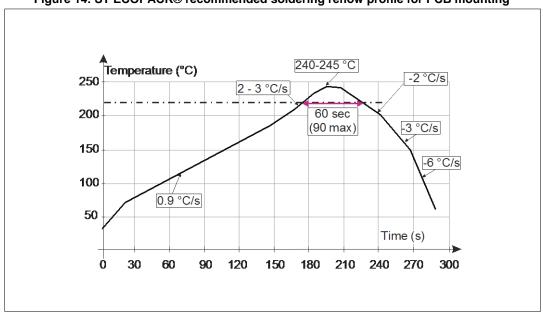
- 1. Reference design
 - a. Stencil opening thickness: 75 µm / 3 mils

3.3 Solder paste

- 1. Halide-free flux qualification ROL0 according to ANSI/J-STD-004.
- 2. "No clean" solder paste is recommended.
- 3. Offers a high tack force to resist component movement during high speed.
- 4. Use solder paste with fine particles: powder particle size 20-38 μm.

577

3.4 Placement

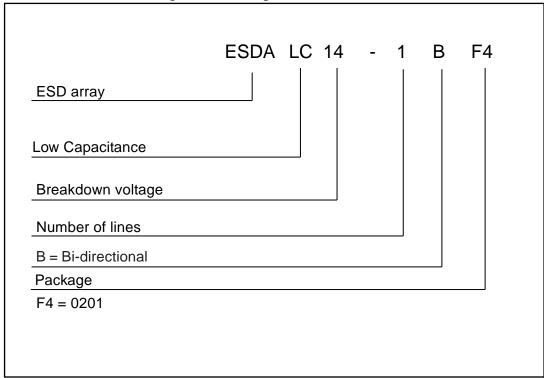

- 1. Manual positioning is not recommended.
- 2. It is recommended to use the lead recognition capabilities of the placement system, not the outline centering
- 3. Standard tolerance of ± 0.05 mm is recommended.
- 4. 1.0 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
- 5. To improve the package placement accuracy, a bottom side optical control should be performed with a high resolution tool.
- 6. For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.

3.5 PCB design preference

- To control the solder paste amount, the closed via is recommended instead of open vias.
- 2. The position of tracks and open vias in the solder area should be well balanced. A symmetrical layout is recommended, to avoid any tilt phenomena caused by asymmetrical solder paste due to solder flow away.

3.6 Reflow profile

Figure 14: ST ECOPACK® recommended soldering reflow profile for PCB mounting


Minimize air convection currents in the reflow oven to avoid component movement.

577

Ordering information ESDALC14-1BF4

4 Ordering information

Figure 15: Ordering information scheme

Table 4: Ordering information

Order code Marking		Package	Weight	Base qty.	Delivery mode	
ESDALC14-1BF4	1 ⁽¹⁾	0201	0.120 mg	15000	Tape and reel	

Notes:

5 Revision history

Table 5: Document revision history

Date	Date Revision Changes	
11-Oct-2013	1	First issue.
03-Sep-2015	2	Updated Table 2.
14-Dec-2017 3 I		Updated weight from 0.116 mg to 0.120 mg.

577

Downloaded from Arrow.com.

 $^{^{(1)} \}mbox{The marking codes can be rotated by 90 °C or 180 °C to differentiate assembly location.}$

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

