
BLOCK DIAGRAM

MODE SELECTION(1)(2)

Mode	STORE	RECALL	Software Instruction	Write Enable Latch	Previous Recall Latch
Hardware Recall ⁽³⁾	1	0	NOP	X	X
Software Recall	1	1	RCL	X	Х
Hardware Store ⁽³⁾	0	1	NOP	SET	TRUE
Software Store	1	1	STO	SET	TRUE

X = Don't Care

POWER-UP TIMING(4)

Symbol	Parameter	Min.	Max.	Units
VCCSR	V _{CC} Slew Rate	0.5	0.005	V/m
t _{pur}	Power-Up to Read Operations		200	μs
t _{puw}	Power-Up to Write or Store Operation		5	ms

- (1) The store operation has priority over all the other operations.
- (2) The store operation is inhibited when V_{CC} is below $\approx 3.5 V$.
- (3) NOP designates that the device is not currently executing an instruction.
 (4) This parameter is tested initially and after a design or process change that affects the parameter.

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias55°C to +125°C
Storage Temperature –65°C to +150°C
Voltage on Any Pin with Respect to Ground ⁽²⁾ –2.0 to +VCC +2.0V
V_{CC} with Respect to Ground –2.0V to +7.0V
Package Power Dissipation Capability (Ta = 25°C)
Lead Soldering Temperature (10 secs) 300°C
Output Short Circuit Current ⁽³⁾ 100 mA

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions outside of those listed in the operational sections of this specification is not implied. Exposure to any absolute maximum rating for extended periods may affect device performance and reliability.

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Min.	Тур.	Max.	Units
N _{END} ⁽¹⁾	Endurance	100,000			Cycles/Byte
T _{DR} ⁽¹⁾	Data Retention	10			Years
Vzap ⁽¹⁾	ESD Susceptibility	2000			Volts
I _{LTH} ⁽¹⁾⁽⁴⁾	Latch-up	100			mA

D.C. OPERATING CHARACTERISTICS

 V_{CC} = 5V ±10%, unless otherwise specified.

			Limits			
Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
Icco	Current Consumption (Operating)			3	mA	Inputs = $5.5V$, $T_A = 0$ °C All Outputs Unloaded
I _{SB}	Current Consumption (Standby)			30	μΑ	CE = V _{IL}
ILI	Input Current			2	μΑ	$0 \le V_{IN} \le 5.5V$
I _{LO}	Output Leakage Current			10	μΑ	$0 \le V_{OUT} \le 5.5V$
V _{IH}	High Level Input Voltage	2		Vcc	V	
VIL	Low Level Input Voltage	0		0.8	V	
V _{OH}	High Level Output Voltage	2.4			V	I _{OH} = -2mA
V _{OL}	Low Level Output Voltage			0.4	V	I _{OL} = 4.2mA

CAPACITANCE $T_A = 25^{\circ}C$, f = 1.0 MHz, $V_{CC} = 5V$

Symbol	Parameter	Max.	Unit	Conditions
C _{I/O} ⁽¹⁾	Input/Output Capacitance	10	pF	$V_{I/O} = 0V$
C _{IN} ⁽¹⁾	Input Capacitance	6	pF	V _{IN} = 0V

Note:

- (1) These parameter are tested initially and after a design or process change that affects the parameter according to appropriate AEC-Q100 and JEDEC test methods.
- (2) The minimum DC input voltage is –0.5V. During transitions, inputs may undershoot to –2.0V for periods of less than 20 ns. Maximum DC voltage on output pins is V_{CC} +0.5V, which may overshoot to V_{CC} +2.0V for periods of less than 20 ns.
- (3) Output shorted for no more than one second. No more than one output shorted at a time.
- (4) Latch-up protection is provided for stresses up to 100 mA on address and data pins from -1V to $V_{CC} + 1V$.

A.C. CHARACTERISTICS

 V_{CC} = 5V ±10%, unless otherwise specified.

Symbol	Parameter Min. Max. Units		Conditions		
F _{SK}	SK Frequency	DC	1	MHz	
tsĸн	SK Positive Pulse Width	400		ns	
tskl	SK Negative Pulse Width	400		ns	C _L = 100pF + 1TTL gate
t _{DS}	Data Setup Time	400		ns	V _{OH} = 2.2V, V _{OL} = 0.65V
tDH	Data Hold Time	80		ns	V _{IH} = 2.2V, V _{IL} = 0.65V
t _{PD}	SK Data Valid Time		375	ns	Input rise and fall times = 10ns
tz	CE Disable Time		1	μs	
tces	CE Enable Setup Time	800		ns	
tceh	CE Enable Hold Time	400		ns	
tcds	CE De-Select Time	800		ns	

A.C. CHARACTERISTICS, Store Cycle

 V_{CC} = 5V ±10%, unless otherwise specified.

		Limits			
Symbol	Parameter	Min.	Max.	Units	Conditions
tst	Store Time		10	ms	C _L = 100pF + 1TTL gate
t _{STP}	Store Pulse Width	200		ns	$V_{OH} = 2.2V, V_{OL} = 0.65V$
t _{STZ}	Store Disable Time		100	ns	$V_{IH} = 2.2V, V_{IL} = 0.65V$

A.C. CHARACTERISTICS, Recall Cycle

 $V_{CC} = 5V \pm 10\%$, unless otherwise specified.

Symbol	Parameter	Min.	Max.	Units	Conditions
tRCC	Recall Cycle Time	2.5		μs	
tRCP	Recall Pulse Width	500		ns	C _L = 100pF + 1TTL gate
t _{RCZ}	Recall Disable Time		500	ns	$V_{OH} = 2.2V, V_{OL} = 0.65V$
torc	Recall Enable Time	10		ns	$V_{IH} = 2.2V, V_{IL} = 0.65V$
tARC	Recall Data Access Time		1.5	μs	

INSTRUCTION SET

		Format		
Instruction	Start Bit	Address	OP Code	Operation
WRDS	1	XXXX	000	Reset Write Enable Latch (Disables, Writes and Stores)
STO	1	XXXX	0 0 1	Store RAM Data in EEPROM
WRITE	1	AAAA	011	Write Data into RAM Address AAAA
WREN	1	XXXX	100	Set Write Enable Latch (Enables, Writes and Stores)
RCL	1	XXXX	101	Recall EEPROM Data into RAM
READ	1	AAAA	1 1 X	Read Data From RAM Address AAAA

X = Don't care

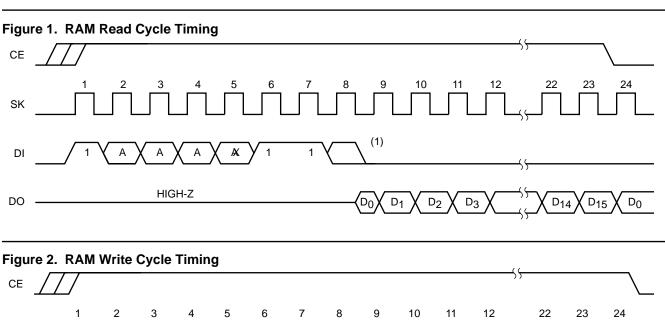
A = Address bit

DEVICE OPERATION

The CAT24C44 is intended for use with standard microprocessors. The CAT24C44 is organized as 16 registers by 16 bits. Seven 8-bit instructions control the device's operating modes, the RAM reading and writing, and the EEPROM storing and recalling. It is also possible to control the EEPROM store and recall functions in hardware with the STORE and RECALL pins. The CAT24C44 operates on a single 5V supply and will generate, on chip, the high voltage required during a RAM to EEPROM storing operation.

Instructions, addresses and write data are clocked into the DI pin on the rising edge of the clock (SK). The DO pin remains in a high impedance state except when outputting data from the device. The $\overline{\text{CE}}$ (Chip Enable) pin must remain high during the entire data transfer.

The format for all instructions sent to the CAT24C44 is a logical '1' start bit, 4 address bits (data read or write operations) or 4 "Don't Care" bits (device mode operations), and a 3-bit op code (see Instruction Set). For data write operations, the 8-bit instruction is followed by 16 bits of data. For data read instructions, DO will come out of the high impedance state and enable 16 bits of data to be clocked from the device. The 8th bit of the read instruction is a "Don't Care" bit. This is to eliminate any bus contention that would occur in applications where the DI and DO pins are tied together to form a common DI/DO line. A word of caution while clocking data to and


from the device: If the $\overline{\text{CE}}$ pin is prematurely deselected while shifting in an instruction, that instruction will not be executed, and the shift register internal to the CAT24C44 will be cleared. If there are more than or less than 16 clocks during a memory data transfer, an improper data transfer will result. The SK clock is completely static allowing the user to stop the clock and restart it to resume shifting of data.

Read

Upon receiving a start bit, 4 address bits, and the 3-bit read command (clocked into the DI pin), the DO pin of the CAT24C44 will come out of the high impedance state and the 16 bits of data, located at the address specified in the instructions, will be clocked out of the device. When clocking data from the device, the first bit clocked out (DO) is timed from the falling edge of the 8th clock, all succeeding bits (D1–D15) are timed from the rising edge of the clock.

Write

After receiving a start bit, 4 address bits, and the 3-bit WRITE command, the 16-bit word is clocked into the device for storage into the RAM memory location specified. The $\overline{\text{CE}}$ pin must remain high during the entire write operation.

DI

WREN/WRDS

The CAT24C44 powers up in the program disable state (the "write enable latch" is reset). Any programming after power-up or after a WRDS (RAM write/EEPROM store disable) instruction must first be preceded by the WREN (RAM write/EEPROM store enable) instruction. Once writing/storing is enabled, it will remain enabled until power to the device is removed, the WRDS instruction is sent, or an EEPROM store has been executed (STO).

The WRDS (write/store disable) can be used to disable all CAT24C44 programming functions, and will prevent any accidental writing to the RAM, or storing to the EEPROM.

Data can be read normally from the CAT24C44 regardless of the "write enable latch" status.

Figure 3. Read Cycle Timing

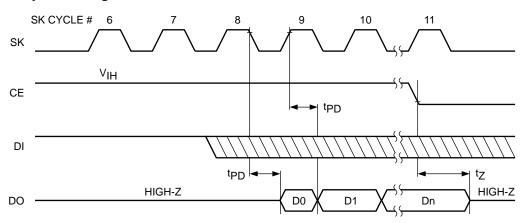
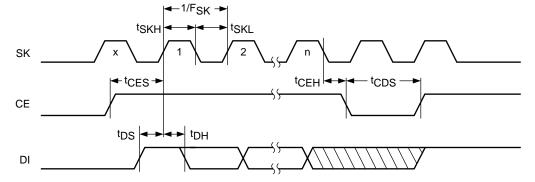



Figure 4. Write Cycle Timing

RCL/RECALL

Data is transferred from the EEPROM data memory to RAM by either sending the RCL instruction or by pulling the RECALL input pin low. A recall operation must be performed before the EEPROM store, or RAM write operations can be executed. Either a hardware or software recall operation will set the "previous recall" latch internal to the CAT24C44.

POWER-ON RECALL

The CAT24C44 has a power-on recall function that transfers the EEPROM data to the RAM. After Power-up, all functions are inhibited for at least 200ns (T_{pur}) from stable V_{cc} .

STO/STORE

Data in the RAM memory area is stored in the EEPROM memory either by sending the STO instruction or by pulling the STORE input pin low. As security against any

inadvertent store operations, the following conditions must each be met before data can be transferred into nonvolatile storage:

- The "previous recall" latch must be set (either a software or hardware recall operation).
- The "write enable" latch must be set (WREN instruction issued).
- STO instruction issued or STORE input low.

During the store operation, all other CAT24C44 functions are inhibited. Upon completion of the store operation, the "write enable" latch is reset. The device also provides false store protection whenever $V_{\rm CC}$ falls below a 3.5V level. If $V_{\rm CC}$ falls below this level, the store operation is disabled and the "write enable" latch is reset.

Figure 5. Recall Cycle Timing

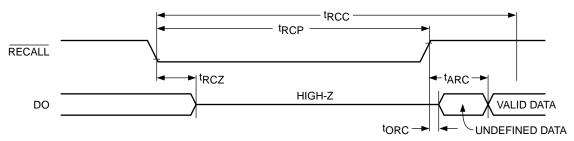


Figure 6. Hardware Store Cycle Timing

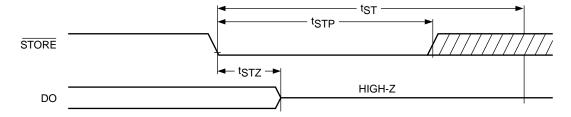
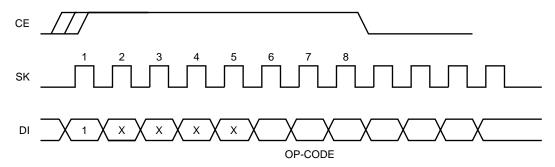
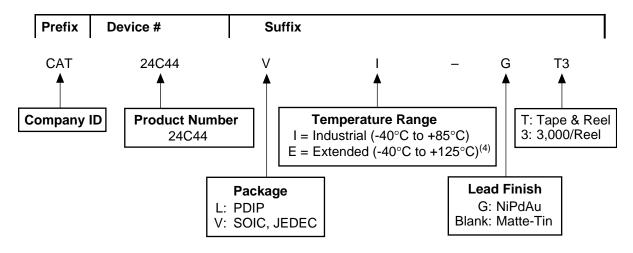




Figure 7. Non-Data Operations

ORDERING INFORMATION

Notes

- (1) All packages are RoHS-compliant (Lead-free, Halogen-free).
- (2) The device used in the above example is a CAT24C44VI-GT3 (SOIC, Industrial Temperature, NiPdAu, Tape & Reel, 3,000/Reel).
- (3) For additional package option please contact your nearest ON Semiconductor Sales office.
- (4) Extended Temperature available upon request.

REVISION HISTORY

Date	Revision	Description
17-Apr-04	0	Add Lead Free Logo Update Features Update Pin Configuration Update Block Diagram Update Instruction Set Update Device Operation Update Ordering Information Add Revision History Update Rev Number
16-Nov-04	Р	Update Pin Configuration Update Ordering Information
17-Apr-04	Q	Update Ordering Information
03-Aug-05	R	Update Pin Configuration Update Reliability Characteristics Update Ordering Information
24-Jun-08	S	Update Pin Configuration Update Example of Ordering Information
04-Dec-08	Т	Change logo and fine print to ON Semiconductor

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center: Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative