

BCY70 BCY71 BCY72

ParameterTest ConditionsMin. $V_{CE} = -20V$ $V_{CE} = -20V$ $V_{CE} = -50V$ $V_{CE} = -50V$ $V_{CE} = -20V$ $V_{CE} = -20V$	Тур.	Max. -10	Unit
$V_{CE} = -50V \qquad BCY70$ $V_{CE} = -20V$			
$V_{CE} = -20V$		-500	nA
1 = -2 (`olloctor (`ut-ott (`urropt ()/ ()) = -2 = -2 = -2 = -2 = -2 = -2 = -2 =		-100	nA
I_{CES} Collector Cut-off Current ($V_{BE} = 0$) $V_{CE} = -45V$ BCY71		-10	μA
$V_{CE} = -20V$		-100	nA
V _{CE} = -25V BCY72		-10	μA
I_{EBO} Emitter Cutoff Current ($I_C = 0$) $V_{EB} = -5V$		-10	μA
$V_{CE(sat)}^{*}$ Collector – Emitter Saturation Voltage		-0.25	V
$V_{CE(sat)}$ Collector – Emitter Saturation Voltage $I_C = -50mA$ $I_B = -5mA$		-0.5	
$I_{\rm C} = -10 {\rm mA}$ $I_{\rm B} = -1 {\rm mA}$			V
V _{BE(sat)} * Base – Emitter Saturation Voltage BCY70 AND BCY71 ONLY -0.6		-0.9	
$I_{\rm C} = -50 \text{mA}$ $I_{\rm B} = -5 \text{mA}$		-1.2	
BCY70			
$I_{C} = -0.1 \text{mA} V_{CE} = -1 \text{V} \qquad 40$			
$I_{\rm C} = -1 \rm{mA} \qquad V_{\rm CE} = -1 \rm{V} \qquad 45$			
I _C = -10mA V _{CE} = -1V 50			
I _C = -50mA V _{CE} = -1V 15			
BCY71			
$I_{C} = -0.01 \text{mA}$ $V_{CE} = -1 \text{V}$	60		_
h_{FE}^{*} DC Current Gain $I_{C} = -0.1 \text{mA}$ $V_{CE} = -1V$ 80			
I _C = -1mA V _{CE} = -1V 90			
I _C = -10mA V _{CE} = 1V 100		600	
$I_{\rm C} = -50 {\rm mA}$ $V_{\rm CE} = -1 {\rm V}$ 15			
BCY72			
I _C = -1mA V _{CE} = -1V 40			
$I_{\rm C} = -10 \text{mA} \qquad V_{\rm CE} = -1 \text{V} \qquad 50$			
$I_{C} = -1mA$ $V_{CE} = -10V$		400	_
h _{fe} Small Signal Current f = 1KHz 100		400	
$I_{C} = -0.1 \text{mA}$ $V_{CE} = -20 \text{V}$ 15			MHz
f = 10.7MHz BCY71			
f_T Transition Frequency $I_C = -10 \text{mA}$ $V_{CE} = -20 \text{V}$			
f = 100MHz BCY70 250			
BCY71 and BCY72 200			
C_{EBO} Emitter-Base Capacitance $I_C = 0$ $V_{EB} = -1V$		8	– pF
C _{EBO} Emitter-Base Capacitance f = 1MHz		0	
C_{CBO} Collector-Base Capacitance $I_E = 0$ $V_{CB} = -10V$		6	
C _{CBO} Collector-Base Capacitance f = 1MHz		0	

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk

ELECTRICAL CHARACTERISTICS continued (T_A = 25°C unless otherwise stated)

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
		$I_{C} = -0.1 \text{mA}$ $V_{CE} = -5 \text{V}$				
		$R_g = 2K\Omega$				
NF Noise	Noise Figure	f = 10 to 10000 Hz				dB
		BCY70 AND BCY71			6	
		BCY70			2	
h _{ie}	Input Impedance	$I_{C} = -1mA$ $V_{CE} = -10V$	2		12	KΩ
		f = 1kHz BCY71 ONLY	2		12	
h _{re}	Reverse Voltage Ratio	$I_{C} = -1mA$ $V_{CE} = -10V$			20 x 10 ⁻⁴	
		f = 1kHz BCY71 ONLY			20 × 10	
h _{oe}	Output Admittance	$I_{\rm C} = -1 {\rm mA}$ $V_{\rm CE} = -10 {\rm V}$	10		60	μS
		f = 1kHz BCY71 ONLY				
t _d Delay Tir		$I_{C} = -10 \text{mA}$ $V_{EE} = 3 \text{V}$				
	Delay Time	I _{B1} = -1mA		23	35	ns
		BCY70 AND BCY72 ONLY				
t _r Rise Time		$I_{C} = -10 \text{mA}$ $V_{EE} = 3 \text{V}$				
	Rise Time	I _{B1} = -1mA		25	35	ns
		BCY70 AND BCY72 ONLY				
t _s	Storage Time	$I_{C} = -10 \text{mA}$ $V_{EE} = 3 \text{V}$	7	270	350	ns
		$I_{B1} = -I_{B2} = -1mA$				
		BCY70 AND BCY72 ONLY				
t _f	Fall Time	$I_{C} = -10 \text{mA}$ $V_{EE} = 3 \text{V}$		50	80	ns
		$I_{B1} = -I_{B2} = -1mA$				
		BCY70 AND BCY72 ONLY				
t _{on}	Turn-on Time	$I_{C} = -10 \text{mA}$ $V_{EE} = 3 \text{V}$				
		I _{B1} = -1mA		48	65	ns
		BCY70 AND BCY72 ONLY				
t _{off}	Turn-Off Time	$I_{C} = -10 \text{mA}$ $V_{EE} = 3 \text{V}$		320	420	ns
		$I_{B1} = -I_{B2} = -1mA$				
		BCY70 AND BCY72 ONLY				

NOTES:

* Pulse test: $t_p \leq 300 \mu s$, $\delta \leq 1\%$

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: <u>sales@semelab.co.uk</u>