
AZV831/2

Pin Configuration

KS/K Package (SC-70-5/SOT-23-5)

M/MM Package (SOIC-8/MSOP-8)

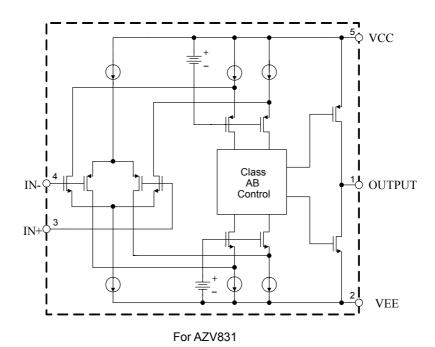

AZV832

Figure 2. Pin Configuration of AZV831/2 (Top View)

AZV831/2

Function Block Diagram

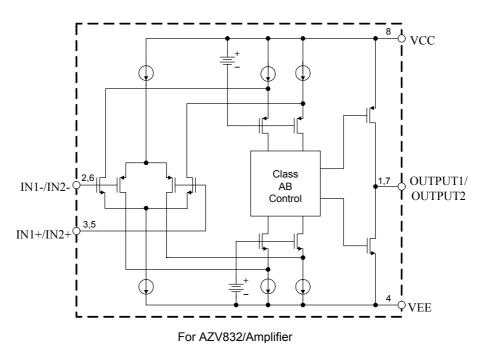
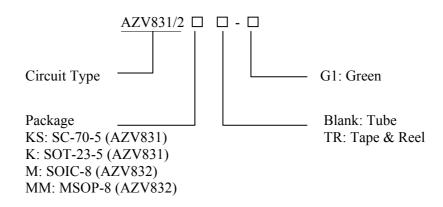



Figure 3. Functional Block Diagram of AZV831/2

AZV831/2

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type
SC-70-5	-40 to 85°C	AZV831KSTR-G1	L3	Tape & Reel
SOT-23-5	-40 to 85°C	AZV831KTR-G1	G4D	Tape & Reel
SOIC-8	40 to 050C	AZV832M-G1	832M-G1	Tube
SOIC-8	-40 to 85°C	AZV832MTR-G1	832M-G1	Tape & Reel
MCOD 9	40 4 0500	AZV832MM-G1	832MM-G1	Tube
MSOP-8	-40 to 85°C	AZV832MMTR-G1	832MM-G1	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

AZV831/2

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value		Unit
Power Supply Voltage	V _{CC}	6.0		V
Differential Input Voltage	V_{ID}	6.	.0	V
Input Voltage	V _{IN}	-0.3 to V	V _{CC} +0.5	V
Operating Junction Temperature	$T_{\rm J}$	150		°C
		SC-70-5	270	
Thermal Resistance	0	SOT-23-5	220	□ °C /W
(Junction to Ambient)	$ heta_{ m JA}$	SOIC-8	150	C/W
		MSOP-8	200	
Storage Temperature Range	T_{STG}	-65 to	o 150	°C
Lead Temperature (Soldering,10 Seconds)	T_{LEAD}	260		°C
ESD (Human Body Model)		4000		V
ESD (Machine Model)		30	00	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{CC}	1.6	5.5	V
Operation Ambient Temperature Range	T _A	-40	85	°C

AZV831/2

1.6V DC Electrical Characteristics

 $V_{CC}=1.6V$, $V_{EE}=0$, $V_{OUT}=V_{CC}/2$, $V_{CM}=V_{CC}/2$, $V_{A}=25^{\circ}C$, unless otherwise noted.

Parameter		Symbol	Conditions	Min	Тур	Max	Unit
Input Offset Volta	ge	V _{OS}			0.5	2.5	mV
Input Bias Curren	t	I_{B}			1.0		pA
Input Offset Curre	ent	I_{OS}			1.0		pA
Input Common-m	ode Voltage Range	V_{CM}		-0.2		1.8	V
Common-mode R	ejection Ratio	CMRR	V _{CM} =-0.2V to 1.8V	55	75		dB
Large Signal Volta	nge Gain	G_{V}	R_L =10k Ω to $V_{CC}/2$, V_{OUT} =0.2V to 1.4V	90	110		dB
Input Offset Volta	ge Drift	$\Delta V_{OS}/\Delta T$			2.0		μV/°C
Ontrod Walter of Co		X 7 / X 7	$R_L=1k\Omega$ to $V_{CC}/2$		30	50	
Output Voltage Sv	ving from Kan	V_{OL}/V_{OH}	R_L =10k Ω to $V_{CC}/2$		3	15	mV
O-to-t Comment	Sink	I _{SINK}	$V_{OUT}=V_{CC}$	8	10		4
Output Current	Source	I _{SOURCE}	V _{OUT} =0V	5	8.5		mA
Closed-loop Outp	ut Impedance	Z _{OUT}	f=10kHz, A _V =1		9		Ω
Power Supply Rej	ection Ratio	PSRR	V _{CC} =1.6V to 5.0V	66	80		dB
Supply Current (P	er Amplifier)	I_{CC}	$V_{OUT}=V_{CC}/2$, $I_{OUT}=0$		70	90	μΑ

1.6V AC Electrical Characteristics

 V_{CC} =1.6V, V_{EE} =0, V_{OUT} = V_{CC} /2, V_{CM} = V_{CC} /2, T_A =25°C, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Gain Bandwidth Product	GBP	$R_L=100k\Omega$		1.0		MHz
Slew Rate (Note 2)	SR	1V Step, C_L =100pF, R_L =10k Ω		0.32		V/µs
Phase Margin	ϕ_{M}	$R_L=100k\Omega$		67		Degrees
Total Harmonic Distortion+Noise	THD+N	f=1kHz, A_V =1, V_{IN} =1 V_{pp} R_L =10k Ω , C_L =100pF		-70		dB
Voltage Noise Density	e_n	f=1kHz		27		nV/\sqrt{Hz}

Note 2: Number specified is the positive slew rate.

.

AZV831/2

1.8V DC Electrical Characteristics

 V_{CC} =1.8V, V_{EE} =0, V_{OUT} = V_{CC} /2, V_{CM} = V_{CC} /2, T_A =25°C, unless otherwise noted.

Parameter		Symbol	Conditions	Min	Тур	Max	Unit
Input Offset Volta	ge	V_{OS}			0.5	2.5	mV
Input Bias Curren	t	I_{B}			1.0		pA
Input Offset Curre	ent	I_{OS}			1.0		pA
Input Common-m	ode Voltage Range	V_{CM}		-0.2		2.0	V
Common-mode R	ejection Ratio	CMRR	V _{CM} =-0.2V to 2.0V	55	75		dB
Large Signal Volta	ige Gain	G_{V}	R_L =10k Ω to $V_{CC}/2$, V_{OUT} =0.2V to 1.6V	90	112		dB
Input Offset Volta	ge Drift	$\Delta V_{OS}/\Delta T$			2.0		μV/ °C
Output Valtage Su	vina fram Dail	X7 /X7	$R_L=1k\Omega$ to $V_{CC}/2$		25	50	
Output Voltage Sv	ving from Kan	V_{OL}/V_{OH}	R_L =10k Ω to $V_{CC}/2$		3	15	mV
Output Cumont	Sink	I_{SINK}	$V_{OUT}=V_{CC}$	12	16		A
Output Current	Source	I_{SOURCE}	$V_{OUT}=0V$	10	14		mA
Closed-loop Outp	ut Impedance	Z _{OUT}	f=10kHz		9		Ω
Power Supply Rej	ection Ratio	PSRR	V _{CC} =1.6V to 5.0V	66	80		dB
Supply Current (P	er Amplifier)	I_{CC}	$V_{OUT}=V_{CC}/2$, $I_{OUT}=0$		70	90	μΑ

1.8V AC Electrical Characteristics

 V_{CC} =1.8V, V_{EE} =0, V_{OUT} = V_{CC} /2, V_{CM} = V_{CC} /2, T_A =25°C, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Gain Bandwidth Product	GBP	$R_L=100k\Omega$		1.0		MHz
Slew Rate (Note 2)	SR	1V Step, C_L =100pF, R_L =10k Ω		0.34		V/µs
Phase Margin	ϕ_{M}	$R_L=100k\Omega$		67		Degrees
Total Harmonic Distortion+Noise	THD+N	f=1kHz, A_V =1, V_{IN} =1 V_{pp} R_L =10k Ω , C_L =100pF		-70		dB
Voltage Noise Density	e_n	f=1kHz		27		nV/\sqrt{Hz}

Note 2: Number specified is the positive slew rate.

AZV831/2

3.0V DC Electrical Characteristics

 V_{CC} =3.0V, V_{EE} =0, V_{OUT} = V_{CC} /2, V_{CM} = V_{CC} /2, T_A =25°C, unless otherwise noted.

Parameter		Symbol	Conditions	Min	Тур	Max	Unit
Input Offset Volta	ge	V_{OS}			0.5	2.5	mV
Input Bias Curren	t	I_B			1.0		pA
Input Offset Curre	ent	I_{OS}			1.0		pA
Input Common-m	ode Voltage Range	V_{CM}		-0.3		3.3	V
Common-mode R	aiastian Patia	CMRR	V_{CM} =-0.3V to 1.8V	62	80		dB
Common-mode K	ejection Katio	CIVIKK	V_{CM} =-0.3V to 3.3V	58	75		uБ
Large Cional Valt			R_L =1k Ω to $V_{CC}/2$, V_{OUT} =0.2V to 2.8V	90	110		dB
Large Signal Volta	ige Gain	Uγ	R_L =10k Ω to $V_{CC}/2$, V_{OUT} =0.1V to 2.9V	95	115		ав
Input Offset Volta	ge Drift	$\Delta V_{OS}/\Delta T$			2.0		μV/°C
Ontario Valta da Ca	oin o Coon Doil	X 7 / X 7	$R_L=1 k\Omega$ to $V_{CC}/2$		20	50	
Output Voltage Sv	ving from Kall	V_{OL}/V_{OH}	R_L =10k Ω to $V_{CC}/2$		3	15	mV
Output Cumant	Sink	I_{SINK}	$V_{OUT} = V_{CC}$	50	60		A
Output Current	Source	I _{SOURCE}	V _{OUT} =0V	50	65		mA
Closed-loop Outp	ut Impedance	Z _{OUT}	f=10kHz		9		Ω
Power Supply Rej	ection Ratio	PSRR	V _{CC} =1.6V to 5.0V	66	80		dB
Supply Current (P	er Amplifier)	I_{CC}	$V_{OUT}=V_{CC}/2$, $I_{OUT}=0$		70	90	μΑ

3.0V AC Electrical Characteristics

 $V_{CC}\!\!=\!\!3.0V, V_{EE}\!\!=\!\!0, V_{OUT}\!\!=\!\!V_{CC}\!/2, V_{CM}\!\!=\!\!V_{CC}\!/2, T_{A}\!\!=\!\!25^{\circ}C, unless otherwise noted.$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Gain Bandwidth Product	GBP	$R_L=100k\Omega$		1.0		MHz
Slew Rate (Note 2)	SR	G=1, 2V Step, C _L =100pF, R _L =10kΩ		0.40		V/µs
Phase Margin	ϕ_{M}	$R_L=100k\Omega$		67		Degrees
Total Harmonic Distortion+Noise	THD+N	$f=1kHz$, $G=1$, $V_{IN}=1V_{pp}$ $R_L=10kΩ$, $C_L=100pF$		-70		dB
Voltage Noise Density	e_n	f=1kHz		27		nV/\sqrt{Hz}

Note 2: Number specified is the positive slew rate.

AZV831/2

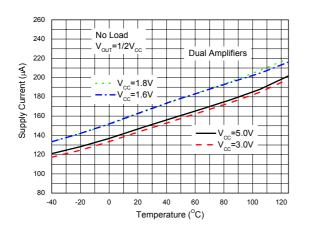
5.0V DC Electrical Characteristics

 V_{CC} =5.0V, V_{EE} =0, V_{OUT} = V_{CC} /2, V_{CM} = V_{CC} /2, T_A =25°C, unless otherwise noted.

Parameter		Symbol	Conditions	Min	Тур	Max	Unit
Input Offset Volta	ige	V_{OS}			0.5	2.5	mV
Input Bias Currer	nt	I_{B}			1.0		pA
Input Offset Curr	ent	I _{OS}			1.0		pA
Input Common-n	node Voltage Range	V_{CM}		-0.3		5.3	V
Common mode I	Laination Datia	CMRR	V _{CM} =-0.3V to 3.8V	70	85		4D
Common-mode F	Rejection Ratio	CMRR	V _{CM} =-0.3V to 5.3V	65	90		dB
Langa Signal Volt	aga Cain	C	R_L =1k Ω to $V_{CC}/2$, V_{OUT} =0.2V to 4.8V	80	92		dB
Large Signal Volt	age Gain	G_{V}	R_L =10k Ω to $V_{CC}/2$, V_{OUT} =0.05V to 4.95V	85	98		ав
Input Offset Volta	nge Drift	$\Delta V_{OS}/\Delta T$			2.0		μV/°C
Outmut Valtage C	vina fram Dail	X1 /X1	$R_L=1 k\Omega$ to $V_{CC}/2$		25	50	mV.
Output Voltage S	wing from Kan	V_{OL}/V_{OH}	$R_L=10$ k Ω to $V_{CC}/2$		4	15	mV
Outmut Cumont	Sink	I_{SINK}	$V_{OUT}=V_{CC}$	100	150		A
Output Current	Source	I _{SOURCE}	V _{OUT} =0V	110	185		mA
Closed-loop Outp	out Impedance		f=1kHz, A _V =1		9		Ω
Power Supply Re	jection Ratio	PSRR	V _{CC} =1.6V to 5.0V	66	80		dB
Supply Current (l	Per Amplifier)	I_{CC}	$V_{OUT}=V_{CC}/2$, $I_{OUT}=0$		70	90	μΑ

5V AC Electrical Characteristics

 V_{CC} =5.0V, V_{EE} =0, V_{OUT} = V_{CC} /2, V_{CM} = V_{CC} /2, V_{A} =25°C, unless otherwise noted.


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Gain Bandwidth Product	GBP	$R_L=100k\Omega$		1.0		MHz
Slew Rate (Note 2)	SR	2V Step, C _L =100pF, R _L =10kΩ		0.45		V/µs
Phase Margin	ϕ_{M}	$R_L=100k\Omega$		67		Degrees
THD+N		$f=1kHz$, $A_V=1$, $V_{IN}=1V_{PP}$ $R_L=10k\Omega$, $C_L=100pF$		-70		dB
Voltage Noise Density	e_n	f=1kHz		27		nV/\sqrt{Hz}

Note 2: Number specified is the positive slew rate.

AZV831/2

Typical Performance Characteristics

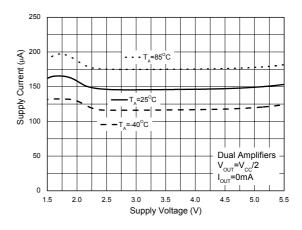
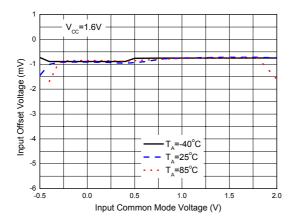



Figure 4. Supply Current vs. Temperature

Figure 5. Supply Current vs. Supply Voltage

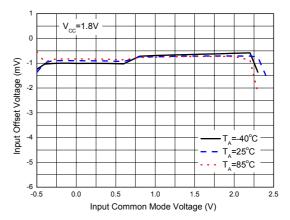


Figure 6. Input Offset Voltage vs. Input Common Mode Voltage

Figure 7. Input Offset Voltage vs. Input Common Mode Voltage

AZV831/2

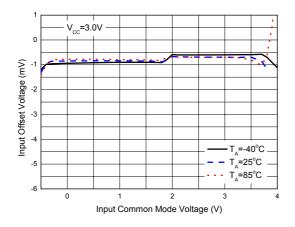


Figure 8. Input Offset Voltage vs. Input Common Mode Voltage

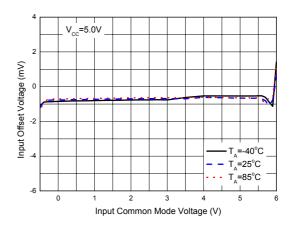


Figure 9. Input Offset Voltage vs. Input Common Mode Voltage

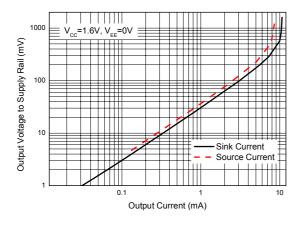


Figure 10. Output Voltage vs. Output Current

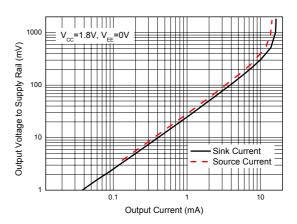
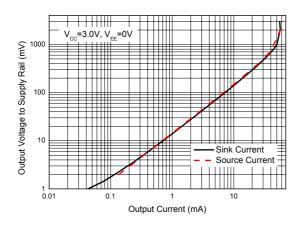



Figure 11. Output Voltage vs. Output Current

AZV831/2

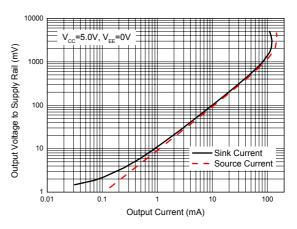
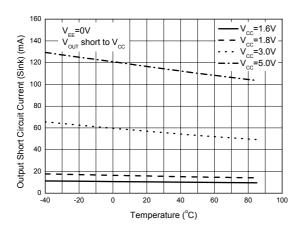



Figure 12. Output Voltage vs. Output Current

Figure 13. Output Voltage vs. Output Current

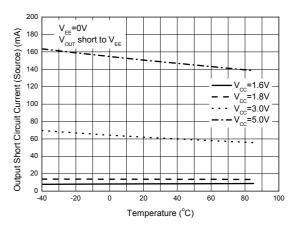
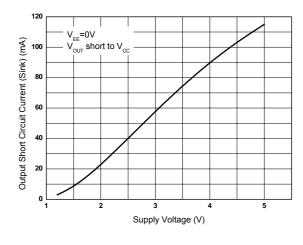



Figure 14. Output Short Circuit Current vs. Temperature Figure 15. Output Short Circuit Current vs. Temperature

AZV831/2

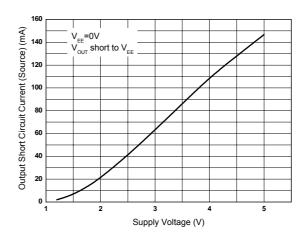
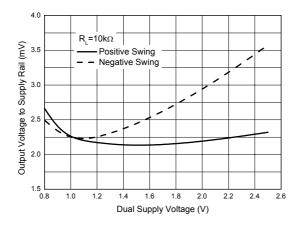



Figure 16. Output Short Circuit Current vs. Supply Voltage

Figure 17. Output Short Circuit Current vs. Supply Voltage

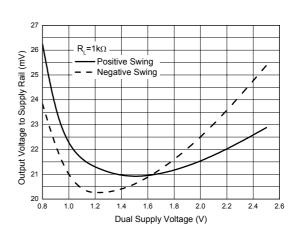
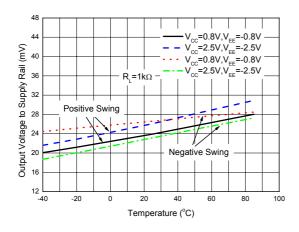



Figure 18. Output Voltage Swing vs. Supply Voltage

Figure 19. Output Voltage Swing vs. Supply Voltage

AZV831/2

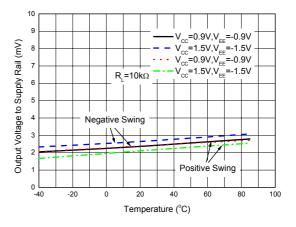
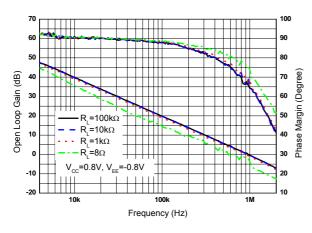



Figure 20. Output Voltage Swing vs. Temperature

Figure 21. Output Voltage Swing vs. Temperature

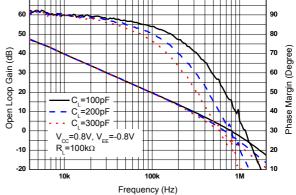
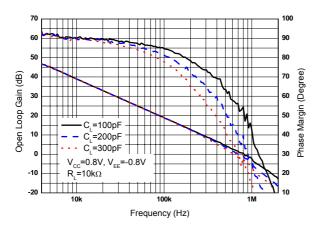



Figure 22. Gain and Phase vs. Frequency with Resistive Load

Figure 23. Gain and Phase vs. Frequency with Capacitive Load

AZV831/2

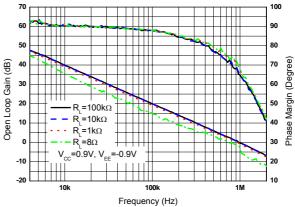


Figure 24. Gain and Phase vs. Frequency with Capacitive Load

Figure 25. Gain and Phase vs. Frequency with Resistive Load

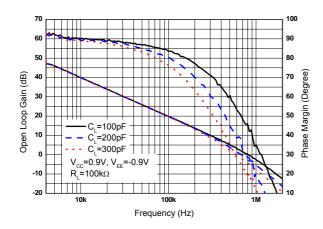


Figure 26. Gain and Phase vs. Frequency with Capacitive Load

Figure 27. Gain and Phase vs. Frequency with Capacitive Load

AZV831/2

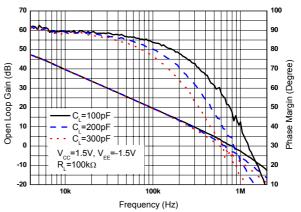


Figure 28. Gain and Phase vs. Frequency with Resistive Load

Figure 29. Gain and Phase vs. Frequency with Capacitive Load

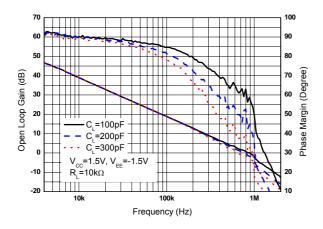
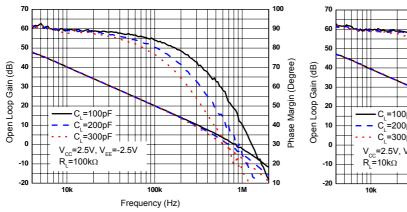



Figure 30. Gain and Phase vs. Frequency with Capacitive Load

Figure 31. Gain and Phase vs. Frequency with Resistive Load

AZV831/2

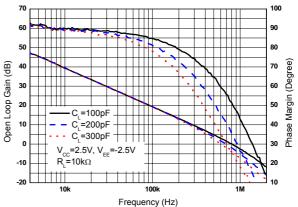


Figure 32. Gain and Phase vs. Frequency with Capacitive Load

Figure 33. Gain and Phase vs. Frequency with Capacitive Load

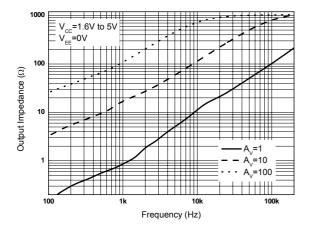
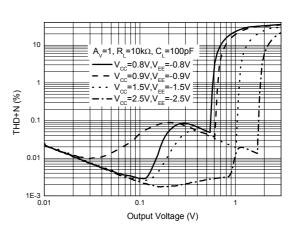
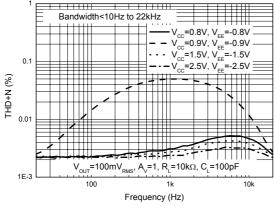


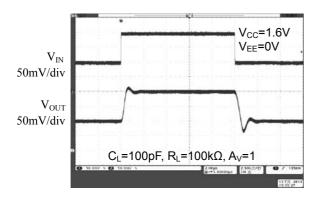
Figure 34. Output Impedance vs. Frequency




Figure 35. THD+N vs. Output Voltage

AZV831/2

10k


Typical Performance Characteristics (Continued)



 $V_{\rm C}=0.9$ $V_{\rm C}=0.9$ $V_{\rm C}=0.9$ $V_{\rm C}=0.9$ $V_{\rm C}=0.5$ $V_{\rm C}=0.5$

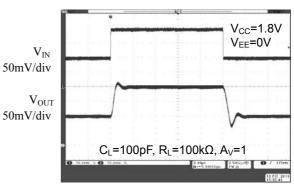

Figure 36. THD+N vs. Frequency

Figure 37. Input Voltage Noise Density

Time (2µs/div)

Time (2µs/div)

Figure 39. Small Signal Pulse Response

AZV831/2

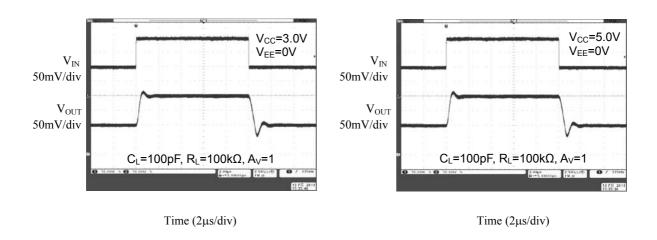
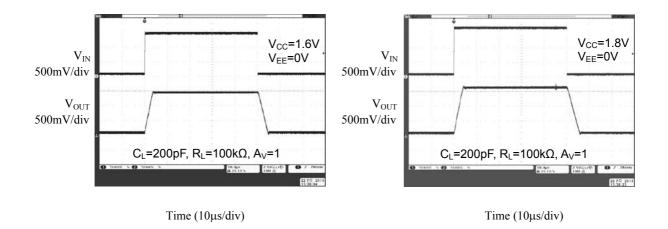


Figure 40. Small Signal Pulse Response

Figure 41. Small Signal Pulse Response



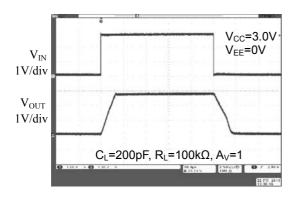
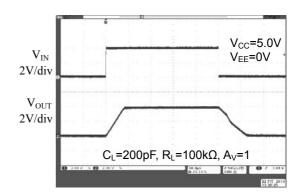
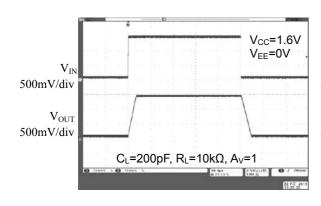

Figure 42. Large Signal Pulse Response

Figure 43. Large Signal Pulse Response



AZV831/2

Typical Performance Characteristics (Continued)


Time (10µs/div)

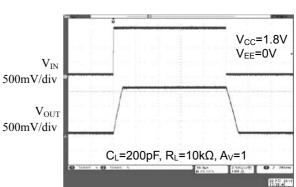
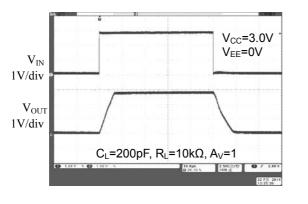

Time (10µs/div)

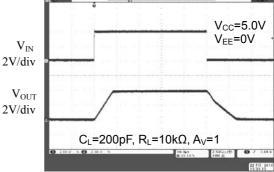
Figure 44. Large Signal Pulse Response

Figure 45. Large Signal Pulse Response

Time $(10\mu s/div)$

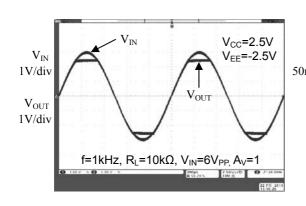
Time $(10\mu s/div)$

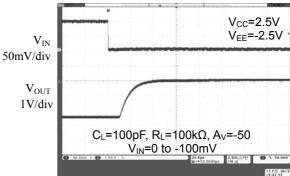

Figure 46. Large Signal Pulse Response


Figure 47. Large Signal Pulse Response

AZV831/2

Typical Performance Characteristics (Continued)




Time (10µs/div)

Time (10µs/div)

Figure 48. Large Signal Pulse Response

Figure 49. Large Signal Pulse Response

 $Time~(200\mu s/div)$

Time (20µs/div)

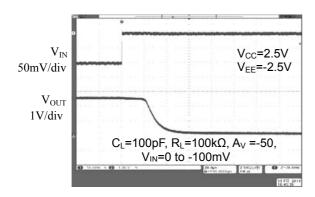
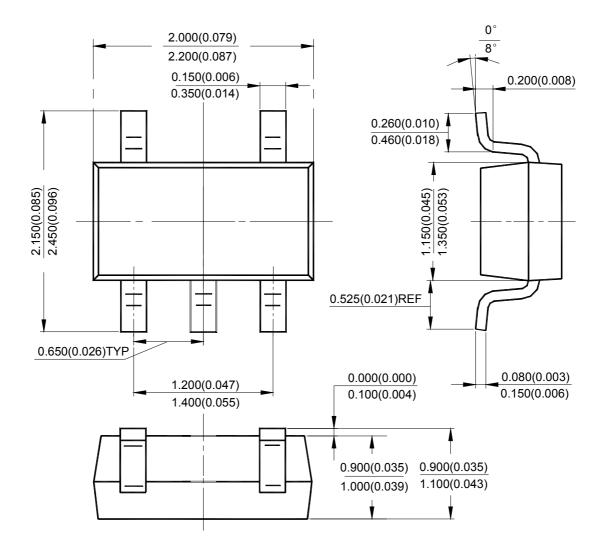

Figure 50. No Phase Reversal

Figure 51. Overload Recovery Time

AZV831/2

Typical Performance Characteristics (Continued)

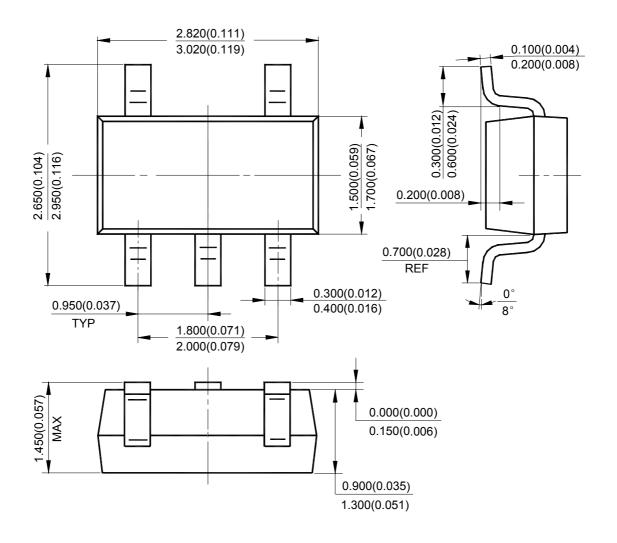
Time (20µs/div)


Figure 52. Overload Recovery Time

AZV831/2

Mechanical Dimensions

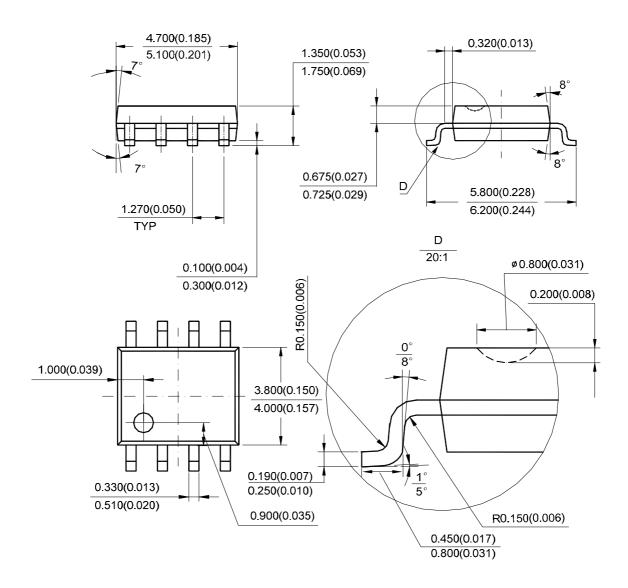
SC-70-5 Unit: mm(inch)



AZV831/2

Mechanical Dimensions (Continued)

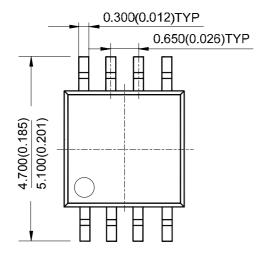
SOT-23-5 Unit: mm(inch)

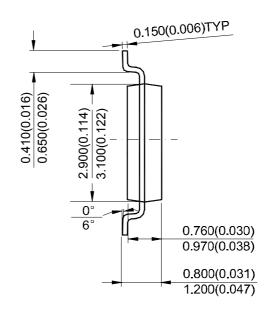


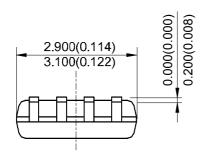
AZV831/2

Mechanical Dimensions (Continued)

SOIC-8 Unit: mm(inch)


Note: Eject hole, oriented hole and mold mark is optional.




AZV831/2

Mechanical Dimensions (Continued)

MSOP-8 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen, China Tel: +86-755-8826 7951

Tel: +86-755-8826 7951 Fax: +86-755-8826 7865 - Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806 USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788