ADA8282* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

EVALUATION KITS

· ADA8282 Evaluation Board

DOCUMENTATION

Data Sheet

 ADA8282: Radar Receive Path AFE: 4-Channel LNA and PGA Data Sheet

User Guides

• UG-846: Evaluating the ADA8282 Radar Receive Path AFE

TOOLS AND SIMULATIONS .

ADA8282 SPICE Macro-Model

DESIGN RESOURCES

- ADA8282 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADA8282 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	3
Digital Specifications	4
Absolute Maximum Ratings	5
Thermal Resistance	5
ESD Caution	5
Pin Configuration and Function Descriptions	6
Typical Performance Characteristics	7
Theory of Operation.	11
Radar Reœive Path AFE	11
Default SPI Settings	11
Input Impedance	11
Power Modes	11
Programmable Gain Range	12

Output Swing Variation with Gain
Offset Voltage Adjustments
Single-Ended or Differential Input
Short-Circuit Currents
SPI Interface12
Channel to Channel Phase Matching
Applications14
Increased Gain Using Two ADA8282 Devices in Series 14
Multiplexing Inputs Using Multiple ADA8282 Devices 15
Basic Connections for a Typical Application16
Register Map17
Register Summary
Register Details
Outline Dimensions
Ordering Guide21
Automotive Products

REVISION HISTORY

7/15—Revision 0: Initial Version

SPECIFICATIONS

 $AVDD = 3.3 \text{ V, LNA} + PGA \text{ gain} = 36 \text{ dB (LNA gain} = 24 \text{ dB, PGA gain} = 12 \text{ dB)}, T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C, PGA_BIAS_SEL} = b'10, LNA_BIAS_SEL = b'10, unless otherwise noted.}$

Table 1.

arameter	Test Conditions/Comments	Min	Тур	Max	Unit
NALOG CHANNEL CHARACTERISTICS					
Gain			18/24/30/36		dB
Gain Range			18		dB
Gain Error				±0.5	dB
–3 dB Bandwidth	$V_{OUT} = 100 \text{ mV p-p, gain} = 36 \text{ dB}$				
	PGA_BIAS_SEL = b'00, LNA_BIAS_SEL = b'00	5	20.5		MHz
	PGA_BIAS_SEL = b'01, LNA_BIAS_SEL = b'01	5	34.2		MHz
	PGA_BIAS_SEL = b'01, LNA_BIAS_SEL = b'10	5	42.3		MHz
	PGA_BIAS_SEL = b'11, LNA_BIAS_SEL = b'11	5	52.3		MHz
Channel to Channel Gain Matching	Frequencies up to 5 MHz		0.1	±0.25	dB
Channel to Channel Phase Matching ¹	Frequencies up to 5 MHz		0.1	±1	Degre
Slew Rate			28		V/µs
Input Referred Noise	Gain = 36 dB at 2 MHz				
	PGA_BIAS_SEL = b'00, LNA_BIAS_SEL = b'00		4.5		nV/√⊦
	PGA_BIAS_SEL = b'01, LNA_BIAS_SEL = b'01		3.8		nV/√⊦
	PGA_BIAS_SEL = b'01, LNA_BIAS_SEL = b'10		3.6		nV/√⊦
	PGA_BIAS_SEL = b'11, LNA_BIAS_SEL = b'11		3.4		nV/√F
	50Ω impedance used for voltage to power conversion		-156		dBm/
Output Referred Noise	Gain = 18 dB		36		nV/√ŀ
•	Gain = 24 dB		61		nV/√⊦
	Gain = 30 dB		115		nV/√⊦
	Gain = 36 dB		218		nV/√⊦
Offset Voltage					
Referred to Input	Gain = 36 dB		±0.8	±3	mV
Referred to Output	Gain = 36 dB		±50	±200	mV
SPI Offset Adjustment Resolution (Relative to Input)	LNA_BIAS_SEL = b'00		113		μV
	LNA_BIAS_SEL = b'01		186		μV
	LNA_BIAS_SEL = b'10		250		μV
	LNA_BIAS_SEL = b'11		440		μV
SPI Offset Adjustment Range (Relative to Input)	LNA_BIAS_SEL = b'00		±4		mV
	LNA_BIAS_SEL = b'01		±6		mV
	LNA_BIAS_SEL = b'10		±8		mV
	LNA_BIAS_SEL = b'11		±14		mV
Harmonic Distortion					
Second Harmonic (HD2)	$V_{OUT} = 2 \text{ V p-p, } f_{IN} = 100 \text{ kHz}$		-70		dBc
	$V_{OUT} = 100 \text{ mV p-p, } f_{IN} = 2 \text{ MHz}$		-85		dBc
Third Harmonic (HD3)	$V_{OUT} = 2 \text{ V p-p, } f_{IN} = 100 \text{ kHz}$		-85		dBc
. ,	$V_{OUT} = 100 \text{ mV p-p, } f_{IN} = 2 \text{ MHz}$		-95		dBc
Intermodulation Distortion	$V_{OUT} = 2 \text{ V p-p, } f_{IN1} = 100 \text{ kHz, } f_{IN2} = 150 \text{ kHz}$		-72		dBc
	$V_{OUT} = 100 \text{ mV p-p, } f_{IN1} = 2 \text{ MHz, } f_{IN2} = 2.1 \text{ MHz}$		-83		dBc
Common-Mode Rejection Ratio (CMRR)	, az za		-80		dB
Crosstalk		1	-105		dBc

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
POWER SUPPLY					
Total Power Dissipation					
	PGA_BIAS_SEL = b'00, LNA_BIAS_SEL = b'00			73	mW
	PGA_BIAS_SEL = b'01, LNA_BIAS_SEL = b'01			106	mW
	PGA_BIAS_SEL = b'01, LNA_BIAS_SEL = b'10			139	mW
	PGA_BIAS_SEL = b'11, LNA_BIAS_SEL = b'11			219	mW
Power Dissipation per Channel			31		mW
AVDD		3.0		3.6	V
VIO		1.8		3.6	V
lavdd	Four channels active				
	PGA_BIAS_SEL = b'00, LNA_BIAS_SEL = b'00		19.6	22	mA
	PGA_BIAS_SEL = b'01, LNA_BIAS_SEL = b'01		29	32	mA
	PGA_BIAS_SEL = b'01, LNA_BIAS_SEL = b'10		37.7	42	mA
	PGA_BIAS_SEL = b'11, LNA_BIAS_SEL = b'11		60	66.3	mA
	One channel active		9.8	11	mA
Ivio			10	12	μΑ
Power-Down Current	I _{AVDD} and I _{VIO}		20	100	μΑ
Power-Down Dissipation			0.07	0.33	mW
Power-Up Time	Time to operational after chip is enabled		5		μs
Power Supply Rejection Ratio (PSRR)	At dc	-80			dB
	At 1 MHz		-80		dB
INPUT					
Input Resistance					
Differential Input Resistance		1.45	1.57	1.7	kΩ
Common-Mode Input Resistance		0.37	0.39	0.42	kΩ
Differential Input Capacitance		10.8	12	13.2	pF
OUTPUT					
Output Voltage Swing	+OUTx (-OUTx), gain = 18 dB	3.1			V p-p
	+OUTx (-OUTx), gain = 24 dB, 30 dB, or 36 dB	6.3			V p-p
Output Balance	f _{IN} = 100 kHz		-70		dB
Short-Circuit Current	Per output at 25°C		205		mA
Capacitive Load	20% overshoot		30		pF

¹ Normalized to 0° phase matching at 25°C; see the Theory of Operation section for details.

DIGITAL SPECIFICATIONS

AVDD = 3.3 V, $T_A = -40$ °C to +125°C, unless otherwise noted.

Table 2.

Parameter	Temperature	Min	Тур	Max	Unit
LOGIC INPUT (CS)					
Logic 1 Voltage	Full	1.2		VIO + 0.3	V
Logic 0 Voltage	Full			0.3	V
Input Resistance	25°C		15		kΩ
Input Capacitance	25°C		0.5		pF
LOGIC INPUTS (SDI, SCLK, RESET)					
Logic 1 Voltage	Full	1.2		VIO + 0.3	V
Logic 0 Voltage	Full	0		0.3	V
Input Resistance	25°C		2.5		kΩ
Input Capacitance	25°C		2		pF
Maximum SCLK Frequency				10	MHz
LOGIC OUTPUT (SDO)					
Logic 1 Voltage ($I_{OH} = 800 \mu A$)	Full	VIO - 0.3			V
Logic 0 Voltage ($I_{OL} = 50 \mu A$)	Full			0.3	٧

Rev. 0 | Page 4 of 21

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Electrical	
AVDD to EPAD	-0.3 V to +3.9 V
+INx, –INx, SCLK, SDI, SDO, \overline{CS} , VIO, RESET,	-0.3V to AVDD +
-OUTx, +OUTx to EPAD	0.3 V
ESD Ratings	
Human Body Model (HBM)	±4000 V
Charged Device Model (CDM)	±2000 V
Environmental	
Operating Temperature Range (Ambient)	-40°C to +125°C
Storage Temperature Range (Ambient)	−65°C to +150°C
Maximum Junction Temperature	150°C
Lead Temperature (Soldering, 10 sec)	300℃

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4. Thermal Resistance

Package Type	Ө ЈА	θις	Unit
32-Lead, 5 mm × 5 mm LFCSP	33.51	4.1	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

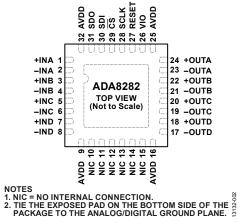


Figure 2. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
0	EPAD	Exposed Pad. Tie the exposed pad on the bottom side of the package to the analog/digital ground plane.
1	+INA	Positive LNA Analog Input for Channel A.
2	-INA	Negative LNA Analog Input for Channel A.
3	+INB	Positive LNA Analog Input for Channel B.
4	-INB	Negative LNA Analog Input for Channel B.
5	+INC	Positive LNA Analog Input for Channel C.
6	-INC	Negative LNA Analog Input for Channel C.
7	+IND	Positive LNA Analog Input for Channel D.
8	-IND	Negative LNA Analog Input for Channel D.
9	AVDD	3.3 V Analog Supply.
10	NIC	No Internal Connection. Leave this pin floating.
11	NIC	No Internal Connection. Leave this pin floating.
12	NIC	No Internal Connection. Leave this pin floating.
13	NIC	No Internal Connection. Leave this pin floating.
14	NIC	No Internal Connection. Leave this pin floating.
15	NIC	No Internal Connection. Leave this pin floating.
16	AVDD	3.3 V Analog Supply.
17	-OUTD	Negative Analog Output for Channel D.
18	+OUTD	Positive Analog Output for Channel D.
19	-OUTC	Negative Analog Output for Channel C.
20	+OUTC	Positive Analog Output for Channel C.
21	-OUTB	Negative Analog Output for Channel B.
22	+OUTB	Positive Analog Output for Channel B.
23	-OUTA	Negative Analog Output for Channel A.
24	+OUTA	Positive Analog Output for Channel A.
25	AVDD	3.3 V Analog Supply.
26	VIO	Digital Level Select for SPI and RESET. This pin can accept 1.8 V to 3.3 V.
27	RESET	Reset Input. RESET overrides the SPI and powers down the device and returns all settings back to default. RESET is pulled to ground by default. A logic high triggers the reset.
28	SCLK	Serial Clock.
29	<u>CS</u>	Chip Select Bar.
30	SDI	Serial Data Input.
31	SDO	Serial Data Output.
32	AVDD	3.3 V Analog Supply.

TYPICAL PERFORMANCE CHARACTERISTICS

AVDD = 3.3 V, LNA + PGA gain = 36 dB (LNA gain = 24 dB, PGA gain = 12 dB), T_A = 25°C, PGA_BIAS_SEL = b'10, LNA_BIAS_SEL = b'10, unless otherwise noted.

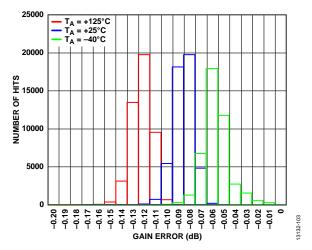


Figure 3. Gain Accuracy Distribution

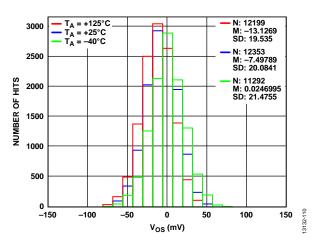


Figure 4. Output Offset Voltage Distribution

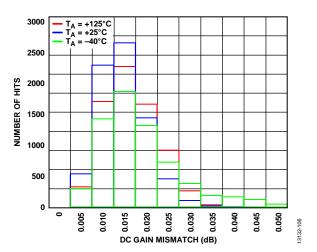


Figure 5. Distribution of Channel to Channel Gain Matching

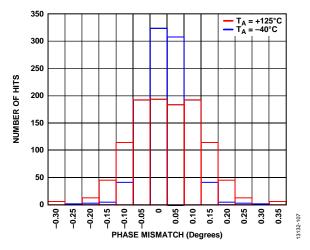


Figure 6. Distribution of Channel to Channel Phase Matching

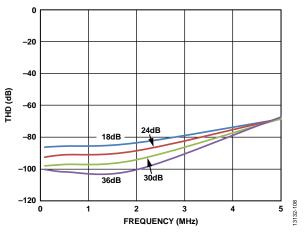


Figure 7. Total Harmonic Distortion (THD) vs. Frequency for Various Gains, $V_{OUT} = -10 \text{ dBm}$

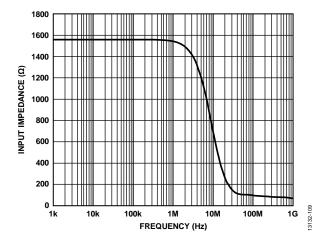


Figure 8. Input Impedance vs. Frequency

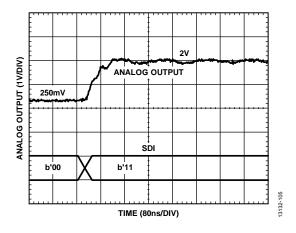


Figure 9. Gain Step Transient Response

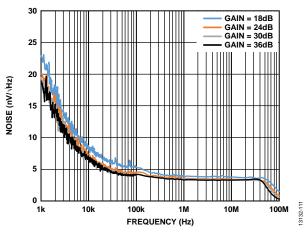


Figure 10. Input Referred Noise vs. Frequency

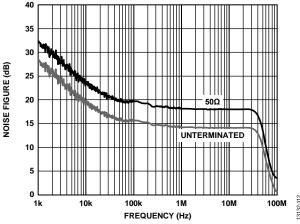


Figure 11. Noise Figure vs. Frequency

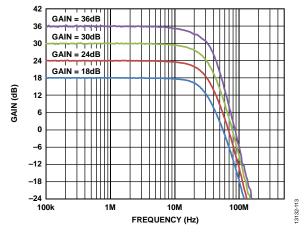


Figure 12. Frequency Response at All Gains (Bias Mode 0)

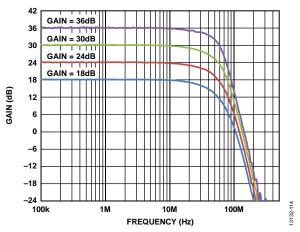


Figure 13. Frequency Response at All Gains (Bias Mode 2)

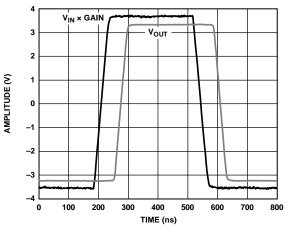


Figure 14. Overdrive Recovery

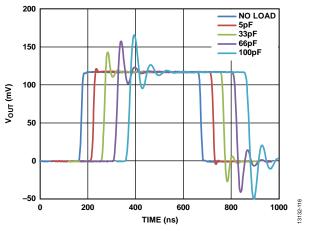


Figure 15. Pulse Response at Various Output Capacitive Loads

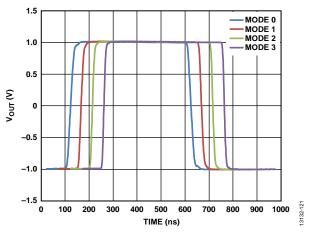


Figure 16. Large Signal Pulse Response for Various LNA and PGA Bias Modes

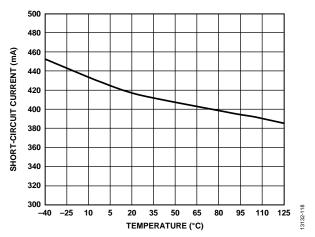


Figure 17. Short-Circuit Current vs. Temperature Per Channel

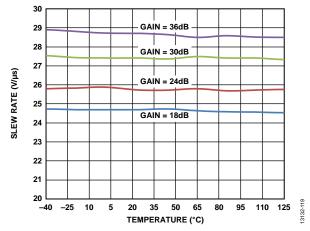


Figure 18. Output Slew Rate vs. Temperature

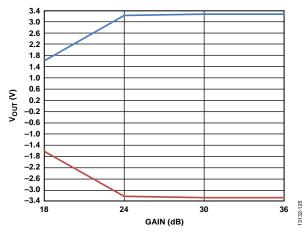


Figure 19. Maximum and Minimum Differential Vou vs. Gain

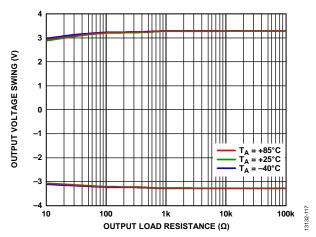


Figure 20. Differential Output Voltage Swing vs. Output Load Resistance

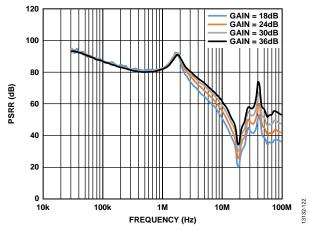


Figure 21. PSRR vs. Frequency at Various Gains

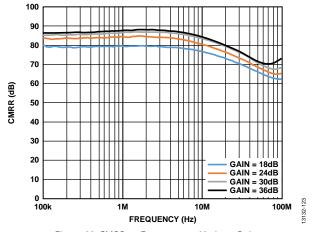


Figure 22. CMRR vs. Frequency at Various Gains

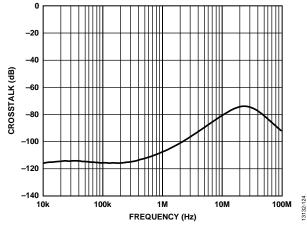


Figure 23. Crosstalk vs. Frequency

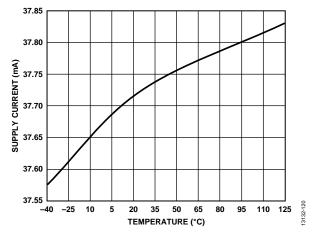


Figure 24. Quiescent Supply Current vs. Temperature

THEORY OF OPERATION RADAR RECEIVE PATH AFE

The primary application for the ADA8282 is a high speed ramp, frequency modulated, continuous wave radar (HSR-FMCW radar). Figure 25 shows a simplified block diagram of an HSR-FMCW radar system. The signal chain requires multiple channels, each including an LNA and a PGA. The ADA8282 provides these key components in a single 5 mm \times 5 mm LFCSP.

The performance of each component is designed to meet the demands of an HSR-FMCW radar system. Some examples of these performance metrics are the LNA noise, PGA gain range, and signal chain bandwidth and power. The ADA8282 also has adjustable power modes to adjust the power and performance level to accommodate a wide variety of applications.

The ADA8282 is programmable via the SPI. Channel gain, power mode, and offset voltage can be adjusted using the SPI port.

DEFAULT SPI SETTINGS

When initially powered, the ADA8282 defaults to a setting of 0x00 in Register 0x17, which disables all channels. The device is enabled by writing 0x0F to Register 0x17.

INPUT IMPEDANCE

The input impedance to the ADA8282 is set by an internal 785 Ω resistance at each input, biased to midsupply by an internal voltage buffer. Both the positive and negative inputs are biased with the same network, creating a differential input impedance of 1.57 k Ω .

The input to the ADA8282 is typically ac-coupled. The ac coupling capacitors operate with the input impedance of the ADA8282 to create a high-pass filter with a pole at $1/(2\pi 2RC)$, where $R = 785 \Omega$ with a typical tolerance of $\pm 15\%$.

POWER MODES

The ADA8282 has four power modes that can be controlled through Register 0x14 (BIAS_SEL). The power modes allow a user to adjust the power and performance tradeoffs to suit the end application. Use the low power mode when power savings are in demand, and use the high power mode in applications that require increased bandwidth and low noise.

Table 6 shows the power performance trade-offs of the various SPI settings.

Table 6. Power Mode Trade-Offs

Mode Setting	Power per Channel (mW)	Input Referred Noise at 2 MHz (nV/√Hz)	Typical Bandwidth (MHz), Gain = 36 dB
b'00	18.3	4.5	20.5
b'01	26.5	3.8	34.2
b′10	34.8	3.6	42.3
b′11	54.8	3.4	52.3

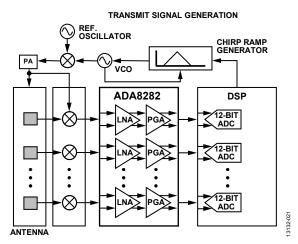


Figure 25. Typical Signal Chain Overview

PROGRAMMABLE GAIN RANGE

The ADA8282 has a programmable gain to allow adjusting of the output amplitudes of signals to accommodate a variety of applications. The gain of the ADA8282 is programmable in 6 dB increments from 18 dB to 36 dB. The gain is controlled using Register 0x15. The same register controls all four channels, but each channel can be independently controlled by utilizing the appropriate bits in the register. Channel A is controlled with the two LSBs of Register 0x15 (Bits[1:0]), Channel B uses Bits[3:2], Channel C uses Bits[5:4], and Channel D uses the two MSBs, Bits[7:6].

The gain setting and gains are listed in Table 7.

Table 7. Gain Settings

Register 0x15 Setting	Gain (dB)	Gain (V/V)
b'00	18	7.9
b'01	24	15.9
b'10	30	31.6
b′11	36	63.1

OUTPUT SWING VARIATION WITH GAIN

The ADA8282 gain is implemented using two internal gain stages. The first stage is an LNA with a gain of 24 dB, and the second stage is a PGA with a gain that varies from -6 dB to +12 dB. The output of the LNA has a fixed output swing range, and is the limiting factor when the channel gain is 18 dB. Because of the limitations of the LNA swing range, the ADA8282 has an output swing that is dependent on gain, as shown in Table 8.

Table 8. Output Swing at Various Gains

Gain (dB)	Output Swing (V p-p)
18	3.1
24	6.3
30	6.3
36	6.3

OFFSET VOLTAGE ADJUSTMENTS

Register 0x10 through Register 0x13 adjust the dc offset voltage of each channel. The default value of 0x20 is intended to be the setting for the offset closest to 0 V, but adjustments can be made as required by the application.

The default setting (0x20) applies a zero offset, 0x00 applies the maximum negative offset, and 0x3F applies the maximum positive offset.

The range and resolution of the LNA_OFFSETx adjustments are dependent on the LNA bias mode as described in Table 9.

Table 9. Offset Voltage Adjustments

	LNA_BIAS_SEL Setting	Referred to Input (RTI) Offset Resolution (μV)	RTI Offset Range (mV)
	b'00	113	±4
	b'01	186	±6
	b′10	250	±8
	b'11	440	±14

VIO Pin

The VIO pin sets the voltage levels used by the SPI interface. If the VIO pin is tied to the 3.3 V supply, the SPI port functions on 3.3 V logic.

SINGLE-ENDED OR DIFFERENTIAL INPUT

The ADA8282 operates with either a differential or single-ended signal source. The maximum input voltage swing is the same in either configuration. When using a single-ended signal source, connect the unused input to ground with a capacitor. Matching the ac coupling capacitor to the ac grounding capacitor optimizes CMRR performance.

SHORT-CIRCUIT CURRENTS

The ADA8282 typically has a 205 mA short-circuit current per output pin. The thermal implications of this current during unintended shorting of these outputs must be taken into account when designing boards with this device.

SPI INTERFACE

The ADA8282 SPI interface uses a 4-wire interface to deliver a 16-bit instruction header, followed by 8 bits of data. The first bit is a read/write bit. W1 and W0 determine how many bytes are transferred, and must both be zeros for the ADA8282 to write to a single register. Then, a 13-bit address and an 8-bit data byte follow.

The SPI port operates at SCLK frequencies of up to 10 MHz. For additional SPI timing information, see the AN-877 Application Note.

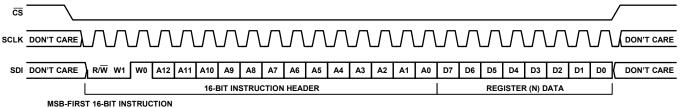


Figure 26. Serial Instruction Details

CHANNEL TO CHANNEL PHASE MATCHING

In a multichannel radar application, matching the ac performance between channels improves the distance and angle resolution of a detected object, particularly the phase matching in the band of interest for the application. The ADA8282 layout and design are optimized to increase phase matching. The ADA8282 also has sufficient bandwidth to minimize any channel to channel phase variation for up to 5 MHz input signals.

The phase mismatch between channels can be calibrated at a single temperature. However, any variation in phase matching over temperature can still degrade system performance. The ADA8282 is characterized to capture the maximum channel to channel phase mismatch as the temperature varies from a calibration temperature of 25°C.

Figure 27 shows a distribution of channel to channel phase mismatch for signal frequencies up to 5 MHz. When the initial phase mismatch between channels is normalized to 0° at +25°C, the 6σ mismatch is 0.43° at -40° C and 0.6° at +125°C.

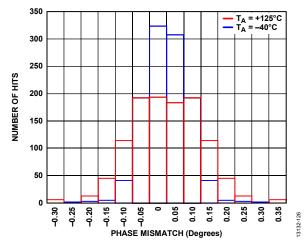


Figure 27. Channel to Channel Phase Mismatch, Normalized to 0° at 25°C, LNA_BIAS_SEL = PGA_BIAS_SEL = b'00, PGA_GAIN = b'11

The amount of channel to channel phase mismatch varies with the power mode. Table 10 shows the 6σ phase mismatch up to 5 MHz over the full temperature range for all gain settings in different power modes, when normalized to 0° at 25° C in each power mode.

Table 10. Maximum Channel to Channel Phase Mismatch over Temperature After 25°C Calibration

PGA_BIAS_SEL	LNA_BIAS_SEL	6σ Channel to Channel Phase Mismatch over Temperature (Degrees)	Maximum Channel to Channel Phase Mismatch (Degrees)
b'00	b'00	0.60	±1
b'01	b'01	0.41	±1
b'10	b′10	0.33	±1
b′11	b′11	0.60	±1

APPLICATIONS INFORMATION

INCREASED GAIN USING TWO ADA8282 DEVICES IN SERIES

For applications that require gains greater than 36 dB, two ADA8282 devices can be used in series with each other. To optimize the signal swing for the path, increment the gains according to Table 11.

Table 11. Gain Settings for Two Devices in Series

Total Gain (dB)	A1 (Input Side ADA8282) Gain (dB)	A2 (Output Side ADA8282) Gain (dB)
36	18	18
42	18	24
48	24	24
54	30	24
60	30	30
66	36	30
72	36	36

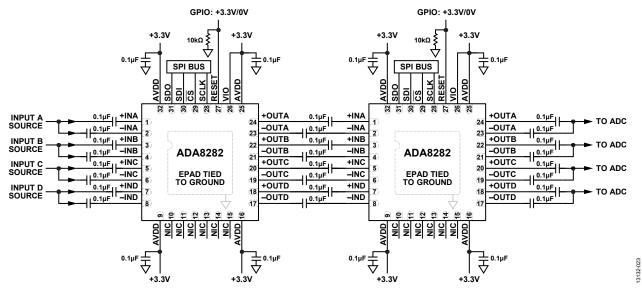


Figure 28. Using Two ADA8282 Devices in Series to Increase Gain

MULTIPLEXING INPUTS USING MULTIPLE ADA8282 DEVICES

It is possible to multiplex eight differential inputs down to four differential outputs by using two ADA8282 devices. The devices can be connected such that the outputs are connected (see

Figure 29) as long as only one device is enabled at a time. When an ADA8282 is disabled, the outputs present a 6 $k\Omega$ load on the output bus.

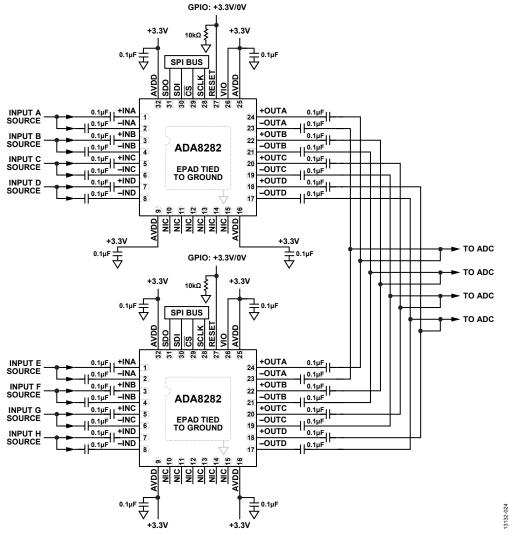


Figure 29. Multiplexing by Connecting Two ADA8282 Outputs to One Output Bus

BASIC CONNECTIONS FOR A TYPICAL APPLICATION

The ADA8282 is typically configured to operate with a nominal 3.3 V power supply, using the EPAD as the analog ground connection. Place the bypass capacitors as close as possible to the power supply pins to minimize the length of metal traces in

series with the bypassing paths. AC couple the inputs and outputs for each channel as shown in Figure 30. Pull the RESET pin low with a 10 k Ω resistor and drive it with 3.3 V GPIO logic. The SPI pins can be directly connected to the SPI bus.

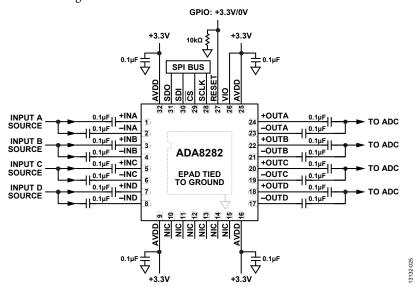


Figure 30. Typical Component Connections

REGISTER MAP

REGISTER SUMMARY

Table 12. Register Summary

Reg.	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x00	INTF_CONFA	[7:0]	INTF_C	CONFA2	LSBFIRST1	LSBFIRST1 INTF_CONFA1 LSBFIRST0 INTF_CC			CONFA0	0x00	RW	
0x01	SOFT_RESET	[7:0]		Unused SOFT_RI						SOFT_RESET	0x00	R
0x04	CHIP_ID1	[7:0]				(CHIP_IDLOW				0x82	R
0x05	CHIP_ID2	[7:0]				CHIP_IDHI						R
0x06	Revision	[7:0]				Revision					0x00	R
0x10	LNA_OFFSET0	[7:0]	Uni	used			LN	A_OFFSET0			0x20	RW
0x11	LNA_OFFSET1	[7:0]	Uni	used			LN	A_OFFSET1			0x20	RW
0x12	LNA_OFFSET2	[7:0]	Uni	used			LN	A_OFFSET2			0x20	RW
0x13	LNA_OFFSET3	[7:0]	Uni	used			LN	A_OFFSET3			0x20	RW
0x14	BIAS_SEL	[7:0]		Ur	nused		PGA_E	BIAS_SEL	LNA_E	BIAS_SEL	0x0A	RW
0x15	PGA_GAIN	[7:0]	PGA_	GAIN3	PGA_	GAIN2	PGA_	_GAIN1	PGA_	_GAIN0	0x00	RW
0x17	EN_CHAN	[7:0]		Ur	nused		EN_ CHANNEL3	EN_ CHANNEL2	EN_ CHANNEL1	EN_ CHANNEL0	0x00	RW
0x18	EN_BIAS_GEN	[7:0]		Unused EN						EN_BIAS_GEN	0x00	RW
0x1D	SPAREWR0	[7:0]			Unused GPIO_WRITE GPIO_W MODE					GPIO_WR_ MODE	0x00	RW
0x1E	SPARERD0	[7:0]		-		Unuse	ed			GPIO_READ	0x00	R

REGISTER DETAILS

Register 0x00: Interface Configuration Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTF_C	ONFA2	LSBFIRST1	INTF_C	ONFA1	LSBFIRST0	INTF_CONFA0	

The INTF_CONFA configuration register is symmetric, as it is the first register written and sets the data direction (LSB first or MSB first).

Table 13. INTF_CONFA Configuration Register Bit Descriptions

Bits	Bit Name	Description	Reset	Access
[7:0]	INTF_CONFA2	INTF_CONFA2 must remain b'00.	0x00	RW
5	LSBFIRST1	LSBFIRST1 must be set to b'1 for LSB first operation and to b'0 for MSB first operation.	0x00	RW
[4:3]	INTF_CONFA1	INTF_CONFA1 must remain b'00.	0x00	RW
2	LSBFIRST0	LSBFIRSTO must be set to b'1 for LSB first operation and to b'0 for MSB first operation.	0x00	RW
[1:0]	INTF_CONFA0	INTF_CONFA0 must remain b'00.	0x00	RW

Register 0x01: Soft Reset Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			Unused				SOFT_RESET

Table 14. SOFT_RESET Configuration Register Bit Descriptions

Bits	Bit Name	Description	Reset	Access
0	SOFT_RESET	The SOFT_RESET bit resets all registers to their default values when SOFT_RESET is set to b'1.	0x00	RW

Register 0x04: Chip ID Low Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				CHIP_IDLOW			

Table 15. CHIP_IDLOW Configuration Register Bit Descriptions

Bits	Bit Name	Description	Reset	Access
[7:0]	CHIP_IDLOW	The CHIP_ID1 and CHIP_ID2 registers identify the ADA8282.	0x82	R

Register 0x05: Chip ID High Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				CHIP_IDHI			

Table 16. CHIP_IDHI Configuration Register Bit Descriptions

Bits	Bit Name	Description	Reset	Access
[7:0]	CHIP_IDHI	The CHIP_ID1 and CHIP_ID2 registers identify the ADA8282.	0x82	R

Register 0x06: Revision Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				Revision			

Table 17. Revision Configuration Register Bit Descriptions

Bits	Bit Name	t Name Description		Access
[7:0]	Revision	The revision register identifies the silicon revision of the current die.	0x00	R

Register 0x10: LNA Offset 0 Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused				LN	NA_OFFSET0		

$Table~18.~LNA_OFFSET0~Configuration~Register~Bit~Descriptions$

Bits	Bit Name	Description	Reset	Access
[5:0]	LNA_OFFSET0	LNA_OFFSET0 controls the offset of Channel A. The default setting (0x20) applies the minimum offset, 0x00 applies the maximum negative offset, and 0x3F applies the maximum positive offset.	0x20	RW
		The resolution of the offset varies with the LNA bias mode as follows:		
		LNA Bias Mode 0: 113 μV RTI offset resolution, ±4 mV range.		
		LNA Bias Mode 1: 186 μV RTI offset resolution, ±6 mV range.		
		LNA Bias Mode 2: 250 μV RTI offset resolution, ±8 mV range.		
		LNA Bias Mode 3: 440 μV RTI offset resolution, ±14 mV range.		

Register 0x11: LNA Offset 1 Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unu	sed			LN	IA_OFFSET1		

Table 19. LNA_OFFSET1 Configuration Register Bit Descriptions

Bits	Bit Name	Description	Reset	Access
[5:0]	LNA_OFFSET1	LNA_OFFSET0 controls the offset of Channel B. The default setting (0x20) applies the minimum offset, 0x00 applies the maximum negative offset, and 0x3F applies the maximum positive offset. The resolution of the offset varies with the LNA bias mode as follows:	0x20	RW
		LNA Bias Mode 0: 113 μ V RTI offset resolution, ±4 mV range.		
		LNA Bias Mode 1: 186 μV RTI offset resolution, ±6 mV range.		
		LNA Bias Mode 2: 250 μ V RTI offset resolution, ± 8 mV range.		
		LNA Bias Mode 3: 440 μ V RTI offset resolution, ± 14 mV range.		

Register 0x12: LNA Offset 2 Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused				LN	NA_OFFSET2		

Table 20. LNA_OFFSET2 Configuration Register Bit Descriptions

Bits	Bit Name	Description	Reset	Access
[5:0]	LNA_OFFSET2	LNA_OFFSET0 controls the offset of Channel C. The default setting (0x20) applies the minimum offset, 0x00 applies the maximum negative offset, and 0x3F applies the maximum positive offset.	0x20	RW
		The resolution of the offset varies with the LNA bias mode as follows:		
		LNA Bias Mode 0: 113 μV RTI offset resolution, ±4 mV range.		
		LNA Bias Mode 1: 186 μV RTI offset resolution, ±6 mV range.		
		LNA Bias Mode 2: 250 μV RTI offset resolution, ±8 mV range.		
		LNA Bias Mode 3: 440 μV RTI offset resolution, ±14 mV range.		

Register 0x13: LNA Offset 3 Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unu	sed			LN	IA_OFFSET3		

Table 21. LNA_OFFSET3 Configuration Register Bit Descriptions

Bits	Bit Name	Description	Reset	Access
[5:0]	LNA_OFFSET3	LNA_OFFSET0 controls the offset of Channel D. The default setting (0x20) applies the minimum offset, 0x00 applies the maximum negative offset, and 0x3F applies the maximum positive offset. The resolution of the offset varies with the LNA bias mode as follows: LNA Bias Mode 0: 113 μ V RTI offset resolution, ± 4 mV range. LNA Bias Mode 1: 186 μ V RTI offset resolution, ± 6 mV range. LNA Bias Mode 2: 250 μ V RTI offset resolution, ± 8 mV range. LNA Bias Mode 3: 440 μ V RTI offset resolution, ± 14 mV range.	0x20	RW

Register 0x14: PGA Bias Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused			PGA_B	IAS_SEL	LNA_B	BIAS_SEL	

The PGA bias select register allows the user to trade off power and performance (for example, bandwidth and noise).

Table 22. BIAS_SEL Configuration Register Bit Descriptions

Bits	Bit Name	Description	Reset	Access
[3:2]	PGA_BIAS_SEL	Set PGA_BIAS_SEL to b'00 for the minimum PGA bias and to b'11 for the maximum PGA bias.	0x00	RW
[1:0]	LNA_BIAS_SEL	Set LNA_BIAS_SEL to b'00 for the minimum LNA bias and to b'11 for the maximum LNA bias.	0x00	RW

Register 0x15: PGA Gain Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PGA_0	GAIN3	PGA_0	GAIN2	PGA_	_GAIN1	PGA_	_GAIN0

The PGA gain register allows independent gain settings for each channel.

Table 23. PGA_GAIN Configuration Register Bit Descriptions

Bits	Bit Name	Description	Reset	Access
[7:6]	PGA_GAIN3	Set PGA_GAIN3 to b'00 for 18 dB gain, to b'01 for 24 dB gain, to b'10 for 30 dB gain, and to b'11 for 36 dB gain for Channel D	0x00	RW
[5:4]	PGA_GAIN2	Set PGA_GAIN2 to b'00 for 18 dB gain, to b'01 for 24 dB gain, to b'10 for 30 dB gain, and to b'11 for 36 dB gain for Channel C	0x00	RW
[3:2]	PGA_GAIN1	Set PGA_GAIN1 to b'00 for 18 dB gain, to b'01 for 24 dB gain, to b'10 for 30 dB gain, and to b'11 for 36 dB gain for Channel B	0x00	RW
[1:0]	PGA_GAIN0	Set PGA_GAIN0 to b'00 for 18 dB gain, to b'01 for 24 dB gain, to b'10 for 30 dB gain, and to b'11 for 36 dB gain for Channel A	0x00	RW

Register 0x17: Enable Channel Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused				EN_CHANNEL3	EN_CHANNEL2	EN_CHANNEL1	EN_CHANNEL0

The enable channel register allows individual channels to be enabled or disabled. The default mode for the channel is disabled. Write 0x0F to the EN_CHAN register to enable all channels.

When a channel is disabled but the bias generator is still enabled, the channel's current consumption is $<100 \mu A$. When a channel is disabled, its output pins are high-Z. The enable channel register resets at AVDD power-on to 0x00 to avoid inrush current for fast supply ramps.

Table 24. EN_CHAN Register Bit Descriptions

Bits	Bit Name	Description	Reset	Access
3	EN_CHANNEL3	Set to b'1 to enable Channel D, and set to b'0 to disable Channel D	0x00	RW
2	EN_CHANNEL2	Set to b'1 to enable Channel C, and set to b'0 to disable Channel C	0x00	RW
1	EN_CHANNEL1	Set to b'1 to enable Channel B, and set to b'0 to disable Channel B	0x00	RW
0	EN_CHANNEL0	Set to b'1 to enable Channel A, and set to b'0 to disable Channel A	0x00	RW

Register 0x18: Enable Bias Generator Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused							EN_BIAS_GEN

When any channel is enabled, the bias generator is automatically enabled. The EN_BIAS_GEN register controls whether the bias generator stays active, even when all channels are disabled. Leaving the bias generator active decreases the enable time of the device.

Table 25. EN_BIAS_GEN Register Bit Descriptions

Bits	Bit Name	Description	Reset	Access
0	EN_BIAS_GEN	Setting EN_BIAS_GEN to 1 keeps the bias generator active, providing a faster enable time (~2 μs).	0x00	RW

Register 0x1D: GPIO Write Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused						GPIO_WRITE	GPIO_WR_MODE

The GPIO_WR_MODE bit reconfigures the SDO pin to a general-purpose input/output (GPIO) port that can be written by the GPIO_WRITE register or read by the GPIO_READ register.

Table 26. SPAREWR0 Configuration Register Bit Descriptions

Bits	Bit Name	Description	Reset	Access
1	GPIO_WRITE	Data bit is put onto the SDO pin when GPIO write mode is active.	0x00	RW
0	GPIO_WR_MODE	Write b'1 to this register to activate GPIO write mode.	0x00	RW

Register 0x1E: GPIO Read Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused						GPIO_READ	

Table 27. SPARERD0 Configuration Register Bit Descriptions

Bits	Bit Name	Description	Reset	Access
0	GPIO_READ	This register reflects the logic level placed on SDO when a b'0 is written to GPIO_WR_MODE.	0x00	R

OUTLINE DIMENSIONS

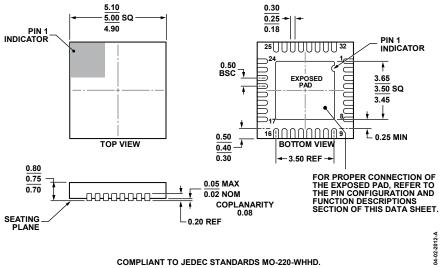


Figure 31. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 5 mm × 5 mm Body, Very Very Thin Quad (CP-32-11) Dimensions shown in millimeters

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Package Option
ADA8282WBCPZ-R7	-40°C to +125°C	32-Lead LFCSP_WQ, 7" Tape and Reel	CP-32-11
ADA8282WBCPZ	-40°C to +125°C	32-Lead LFCSP_WQ	CP-32-11
ADA8282CP-EBZ		Evaluation Board	

¹ Z = RoHS Compliant Part.

AUTOMOTIVE PRODUCTS

The ADA8282W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

www.analog.com

² W = Qualified for Automotive Applications.