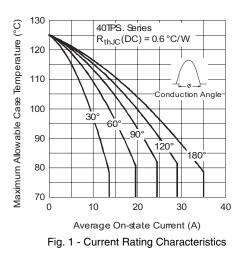
Vishay High Power Products Phase Control SCR, 35 A

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum average on-state current	I _{T(AV)}	$T_{\rm C}$ = 79 °C, 180° conduction half sine w	35		
Maximum continuous RMS on-state current as AC switch	I _{T(RMS)}		55	A	
Maximum peak, one-cycle	I _{TSM}	10 ms sine pulse, rated $V_{\ensuremath{RRM}}$ applied	500		
non-repetitive surge current		10 ms sine pulse, no voltage reapplied	Initial T _{.1} =	600	
Maximum 12t for fusing	l ² t	10 ms sine pulse, rated V_{RRM} applied	1250	A ² s	
Maximum I ² t for fusing	1-1	10 ms sine pulse, no voltage reapplied	1760		
Maximum I ² √t for fusing	l²√t	t = 0.1 to 10 ms, no voltage reapplied	12 500	A²√s	
Low level value of threshold voltage	V _{T(TO)1}		1.02	V	
High level value of threshold voltage	V _{T(TO)2}		1.23		
Low level value of on-state slope resistance	r _{t1}	T _J = 125 °C	9.74	mΩ	
High level value of on-state slope resistance	r _{t2}		7.50		
Maximum peak on-state voltage	V _{TM}	110 A, T _J = 25 °C	1.85	V	
Maximum rate of rise of turned-on current	dl/dt	T _J = 25 °C	100	A/µs	
Maximum holding current	Ι _Η			150	
Maximum latching current	١ _L		300		
	1 /1	$T_J = 25 \ ^{\circ}C$	1	0.5	mA
Maximum reverse and direct leakage current	I _{RRM} /I _{DRM}	$T_J = 125 \text{ °C}$ $V_R = \text{Rated } V_{RRM}/V_R$	10		
Maximum rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum, linear to 80 % V_{DRM} ,	1000	V/µs	

TRIGGERING						
PARAMETER	SYMBOL	TI	VALUES	UNITS		
Maximum peak gate power	P _{GM}			10	W	
Maximum average gate power	P _{G(AV)}					
Maximum peak gate current	I _{GM}			2.5	А	
Maximum peak negative gate voltage	- V _{GM}			10		
		T _J = - 40 °C		4.0	v	
Maximum required DC gate voltage to trigger	V_{GT}	T _J = 25 °C	Anode supply = 6 V resistive load	2.5		
voltage to trigger		T _J = 125 °C		1.7		
	I _{GT}	T _J = - 40 °C		270		
Maximum required DC gate surrent to trigger		T _J = 25 °C		150		
Maximum required DC gate current to trigger		T _J = 125 °C		80	mA	
		$T_{\rm J} = 25 ^{\circ}{\rm C}$, for 40	40			
Maximum DC gate voltage not to trigger	V_{GD}	T = 125 °C V	0.25	V		
Maximum DC gate current not to trigger	I _{GD}	- T _J = 125 °C, V _{DRN}	6	mA		



Phase Control SCR, 35 A Vishay High Power Products

THERMAL AND MECHANICAL SPECIFICATIONS								
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum junction and storage temperature range		T _J , T _{Stg}		- 40 to 125	°C			
Maximum thermal resistance, junction to case		R _{thJC}	DC operation	0.6				
Maximum thermal resistance, junction to ambient		R _{thJA}		40	°C/W			
Maximum thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.2				
Approximate weight				6	g			
				0.21	oz.			
Mounting torque	minimum			6 (5)	kgf ⋅ cm			
Mounting torque	maximum			12 (10)	$(lbf \cdot in)$			
Marking device			Case style TO-247AC	40TF	PS16			

Vishay High Power Products Phase Control SCR, 35 A

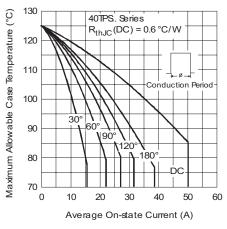


Fig. 2 - Current Rating Characteristics

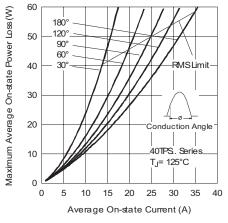


Fig. 3 - On-State Power Loss Characteristics

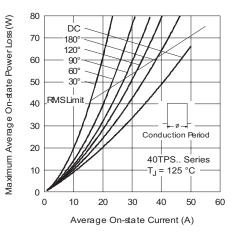


Fig. 4 - On-State Power Loss Characteristics

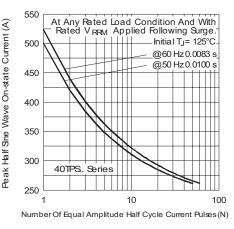
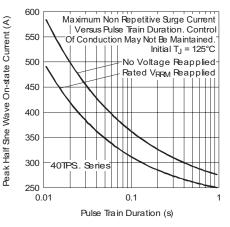
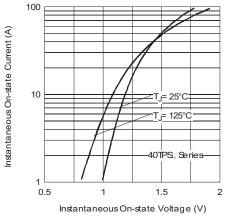
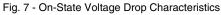
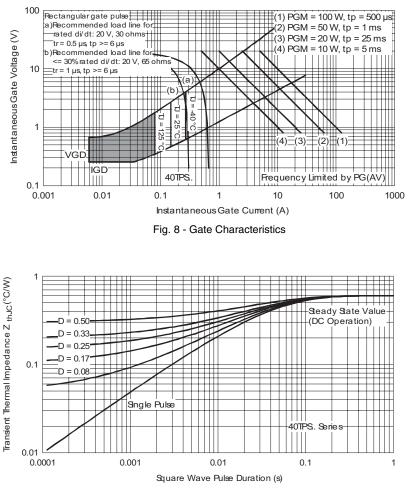
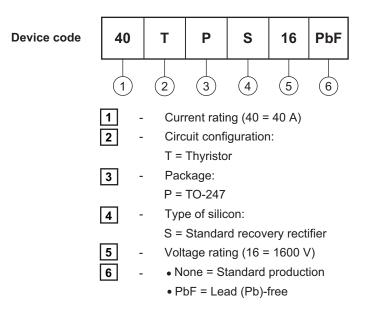


Fig. 5 - Maximum Non-Repetitive Surge Current

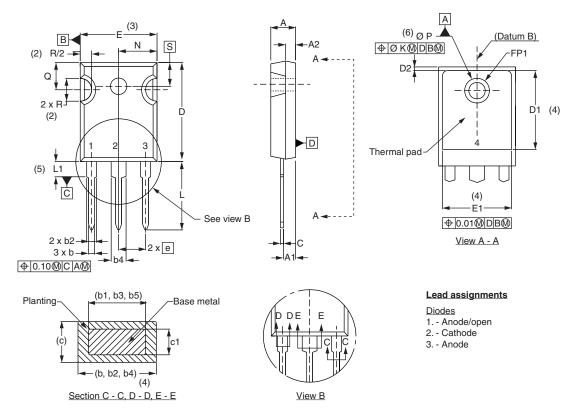

Fig. 6 - Maximum Non-Repetitive Surge Current

Phase Control SCR, 35 A Vishay High Power Products



Vishay High Power Products Phase Control SCR, 35 A

ORDERING INFORMATION TABLE


LINKS TO RELATED DOCUMENTS						
Dimensions	http://www.vishay.com/doc?95024					
Part marking information	http://www.vishay.com/doc?95226					

Outline Dimensions

DIMENSIONS in millimeters and inches

SYMBOL	MILLIM	IETERS	INC	HES	NOTES		SYMBOL	MILLIMETERS		INCHES		NOTES
STWIDOL	MIN.	MAX.	MIN.	MAX.	NOTES		STIVIDOL	MIN.	MAX.	MIN.	MAX.	NUTES
А	4.65	5.31	0.183	0.209			D2	0.51	1.30	0.020	0.051	
A1	2.21	2.59	0.087	0.102			E	15.29	15.87	0.602	0.625	3
A2	1.50	2.49	0.059	0.098			E1	13.72	-	0.540	-	
b	0.99	1.40	0.039	0.055			е	5.46	BSC	0.215	5 BSC	
b1	0.99	1.35	0.039	0.053			FK	2.54		0.010		
b2	1.65	2.39	0.065	0.094			L	14.20	16.10	0.559	0.634	
b3	1.65	2.37	0.065	0.094			L1	3.71	4.29	0.146	0.169	
b4	2.59	3.43	0.102	0.135			N	7.62	BSC	0.3		
b5	2.59	3.38	0.102	0.133			ΦP	3.56	3.66	0.14	0.144	
С	0.38	0.86	0.015	0.034			Φ P1	-	6.98	-	0.275	
c1	0.38	0.76	0.015	0.030			Q	5.31	5.69	0.209	0.224	
D	19.71	20.70	0.776	0.815	3		R	4.52	5.49	1.78	0.216	
D1	13.08	-	0.515	-	4		S	5.51	BSC	0.217	' BSC	

Notes

- ⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- ⁽⁴⁾ Thermal pad contour optional with dimensions D1 and E1
- ⁽⁵⁾ Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- ⁽⁷⁾ Outline conforms to JEDEC outline TO-247 with exception of dimension c

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.