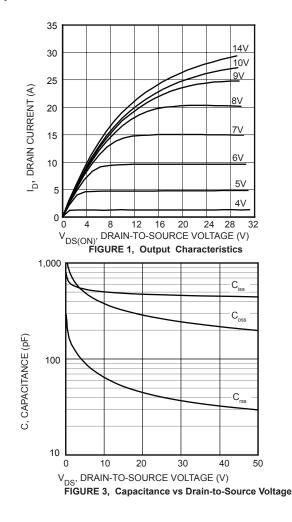
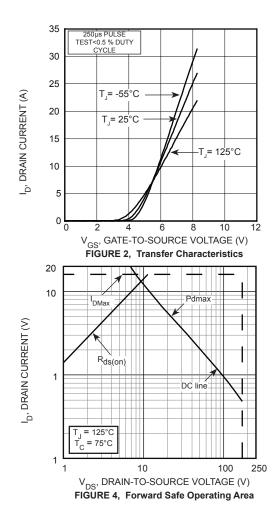
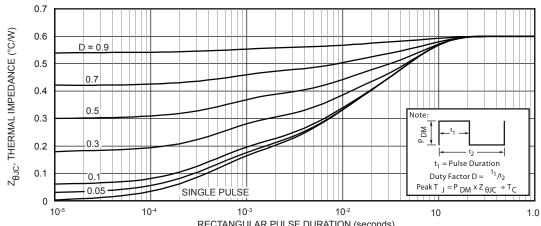
Symbol	mbol Parameter Test Conditions		Min	Тур	Max	Unit
C _{ISS}	Input Capacitance	V _{GS} = 0V		420		
C _{oss} Output Capacitance		V _{DS} = 50V		210		pF
C _{rss} Reverse Transfer Capacitance		f = 1MHz		35		

Functional Characteristics

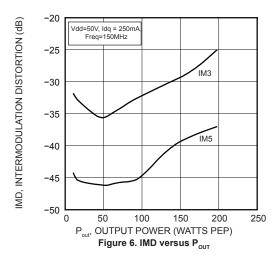
Symbol	Parameter	Min	Тур	Max	Unit
G _{PS}	$f_1 = 30MHz, f_2 = 30.001MHz, V_{DD} = 50V, I_{DQ} = 250mA, P_{out} = 150W_{PEP}^{-1}$		18		dB
G_{PS}	f = 150MHz, V _{DD} = 50V, I _{DQ} = 250mA, P _{out} = 150W	11 dB		иь	
$\eta_{\scriptscriptstyle D}$	$f_1 = 30MHz, f_2 = 30.001MHz, V_{DD} = 50V, I_{DQ} = 250mA, P_{out} = 150W_{PEP}^{-1}$		50		%
IMD _(d3)	$f_1 = 30MHz, f_2 = 30.001MHz, V_{DD} = 50V, I_{DQ} = 250mA, P_{out} = 150W_{PEP}^{-1}$		-32		dBc
Ψ	f_1 = 30MHz, V_{DD} = 50V, I_{DQ} = 250mA, P_{out} = 150W CW 70:1 VSWR - All Phase Angles, 0.2mSec X 20% Duty Factor	No Degradation in Output Power		Power	

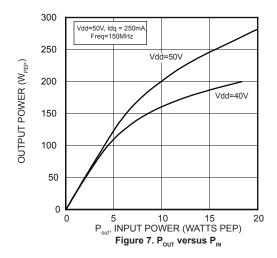

Class A Characteristics

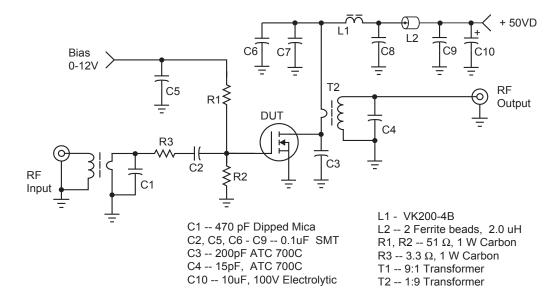

	Symbol	Test Conditions	Min	Тур	Max	Unit
Γ	G_{PS}			20		
	$IMD_{(d3)}$	$V_{DD} = 50V$, $I_{DQ} = 3A$, $P_{out} = 150W_{PEP}$, $f1 = 30MHz$, $f2 = 30.001MHz$		-50		dB
	IMD _(d9-d13)			-75		


^{1.} To MIL-STD-1311 Version A, test method 2204B, Two Tone, Reference Each Tone

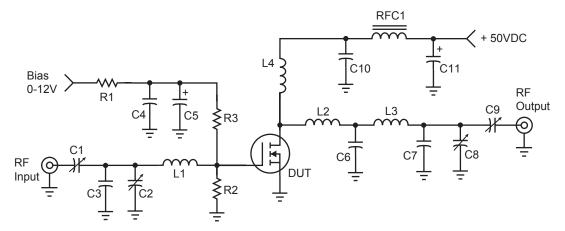
Microsemi reserves the right to change, without notice, the specifications and information contained herein.


Typical Performance Curves





RECTANGULAR PULSE DURATION (seconds)
Figure 5. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration



30 MHz test Circuit

150 MHz test Circuit

C1, C2, C8 -- Arco 463 or equivalent

C3 -- 25pF, Unelco

C4 -- 0.1uF, Ceramic

C5 -- 1.0 uF, 15 WV Tantalum C6 -- 250pF, Unelco J101

C7-- 25pF, Unelco J101

C9 -- Arco 262 or equivalent

C10 -- 0.05uF, Ceramic

C11 -- 15uF, 60WV Electrolytic

L1 -- 3/4", #18 into Hairpin

L2 -- Printed Line, 0.200" W x 0.500" L

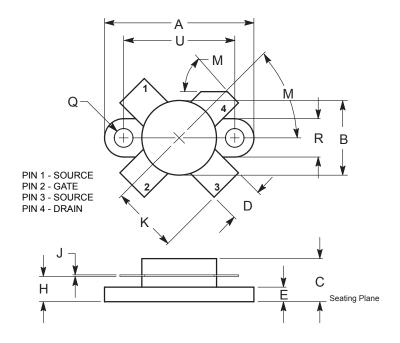
L3 -- 1", #16 into Hairpin approx 16nH

L4 -- 2 turns #16, 5/16" ID

RFC1 - VK200-4B

R1 -- 150 Ω, 1/2W Carbon

R2 -- 10k Ω, 1/2W Carbon


R3 -- 120 Ω, 1/2W Carbon

Adding MP at the end of P/N specifies a matched pair where $V_{\text{GS(TH)}}$ is matched between the two parts. V_{TH} values are marked on the devices per the following table.

Code	Vth Range	Code 2	Vth Range
А	2.900 - 2.975	М	3.650 - 3.725
В	2.975 - 3.050	N	3.725 - 3.800
С	3.050 - 3.125	Р	3.800 - 3.875
D	3.125 - 3.200	R	3.875 - 3.950
Е	3.200 - 3.275	S	3.950 - 4.025
F	3.275 - 3.350	Т	4.025 - 4.100
G	3.350 - 3.425	W	4.100 - 4.175
Н	3.425 - 3.500	Х	4.175 - 4.250
J	3.500 - 3.575	Υ	4.250 - 4.325
K	3.575 - 3.650	Z	4.325 - 4.400

 $[{]m V}_{_{
m TH}}$ values are based on Microsemi measurements at datasheet conditions with an accuracy of 1.0%.

.5" SOE Package Outline All Dimensions are ± .005

DIM	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX		
Α	0.096	0.990	24.39	25.14		
В	0.465	0.510	11.82	12.95		
С	0.229	0.275	5.82	6.98		
D	0.216	0.235	5.49	5.96		
E	0.084	0.110	2.14	2.79		
Н	0.144	0.178	3.66	4.52		
J	0.003	0.007	0.08	0.17		
К	0.435		11.0			
М	45° NOM		45° l	5° NOM		
Q	0.115	0.130	2.93	3.30		
R	0.246	0.255	6.25	6.47		
U	0.720	0.730	18.29	18.54		

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDEN-TIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp