
Table 1. SELECT INPUT DECODING FOR ASM5P2309A

S2	S1	Clock A1 – A4	Clock B1 – B4	CLKOUT (Note 1)	Output Source	PLL Shut-Down
0	0	Three-state	Three-state	Driven	PLL	N
0	1	Driven	Three-state	Driven	PLL	Ν
1	0	Driven	Driven	Driven	Reference	Y
1	1	Driven	Driven	Driven	PLL	Ν

1. This output is driven and has an internal feedback for the PLL. The load on this output can be adjusted to change the skew between the reference and the output.

Zero Delay and Skew Control

All outputs should be uniformly loaded to achieve Zero Delay between input and output. Since the CLKOUT pin is the internal feedback to the PLL, its relative loading can adjust the input–output delay. For applications requiring zero input-output delay, all outputs, including CLKOUT, must be equally loaded. Even if CLKOUT is not used, it must have a capacitive load equal to that on other outputs, for obtaining zero input-output delay.

Pin #	Pin Name	Description
1	REF (Note 2)	Input reference clock frequency, 5 V-tolerant input
2	CLK2 (Note 3)	Buffered clock output
3	CLK1 (Note 3)	Buffered clock output
4	GND	Ground
5	CLK3 (Note 3)	Buffered clock output
6	V _{DD}	3.3 V supply
7	CLK4 (Note 3)	Buffered clock output
8	CLKOUT (Note 3)	Buffered clock output, internal feedback on this pin

Table 2. PIN DESCRIPTION FOR ASM5P2305A

Table 3. PIN DESCRIPTION FOR ASM5P2309A

Pin #	Pin Name	Description
1	REF (Note 2)	Input reference clock frequency, 5 V tolerant input
2	CLKA1 (Note 3)	Buffered clock output, bank A
3	CLKA2 (Note 3)	Buffered clock output, bank A
4	V _{DD}	3.3 V supply
5	GND	Ground
6	CLKB1 (Note 3)	Buffered clock output, bank B
7	CLKB2 (Note 3)	Buffered clock output, bank B
8	S2 (Note 4)	Select input, bit 2
9	S1 (Note 4)	Select input, bit 1
10	CLKB3 (Note 3)	Buffered clock output, bank B
11	CLKB4 (Note 3)	Buffered clock output, bank B
12	GND	Ground
13	V _{DD}	3.3 V supply
14	CLKA3 (Note 3)	Buffered clock output, bank A
15	CLKA4 (Note 3)	Buffered clock output, bank A
16	CLKOUT (Note 3)	Buffered output, internal feedback on this pin

Weak pull-down.
Weak pull-down on all outputs.
Weak pull-up on these inputs.

Table 4. ABSOLUTE MAXIMUM RATINGS

Parameter	Min	Мах	Unit
Supply Voltage to Ground Potential	-0.5	+4.6	V
DC Input Voltage (Except REF)	-0.5	V _{DD} + 0.5	V
DC Input Voltage (REF)	-0.5	7	V
Storage Temperature	-65	+150	°C
Max. Soldering Temperature (10 sec)		260	°C
Junction Temperature		150	°C
Static Discharge Voltage (As per JEDEC STD22- A114-B)		2000	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 5. OPERATING CONDITIONS (for ASM5P2305A (-1, -1H) and ASM5P2309A (-1, -1H))

Parameter	Description		Min	Max	Unit
V _{DD}	Supply Voltage		3.0	3.6	V
T _A	Operating Temperature	Commercial temperature	0	70	°C
	(Ambient Temperature)	Industrial temperature	-40	85	
CL	Load Capacitance, below 100 MHz	Load Capacitance, below 100 MHz		30	pF
	Load Capacitance, from 100 MHz to 133 MHz			10	pF
C _{IN}	Input Capacitance			7	pF

Table 6. ELECTRICAL CHARACTERISTICS (for ASM5P2305A (-1, -1H) and ASM5P2309A (-1, -1H))

Parameter		Description	Test Conditions	Min	Тур	Max	Unit
V _{IL}	Input LOW	/ Voltage (Note 5)				0.8	V
VIH	Input HIGH	H Voltage (Note 5)		2.2			V
IIL	Input LOW	/ Current	V _{IN} = 0 V			50	¢ A
I _{IH}	Input HIGH Current		$V_{IN} = V_{DD}$			100	¢ A
V _{OL}	Output LO	W Voltage (Note 6)	I _{OL} = 8 mA (-1) I _{OL} = 12 mA (-1H)			0.4	V
V _{OH}	Output HIC	GH Voltage (Note 6)	I _{OH} = -8 mA (-1) I _{OH} = -12 mA (-1H)	2.4			V
I _{DD}	Supply	Commercial temp.	Unloaded outputs at 66.67 MHz,			30	mA
	Current Industrial temp.		SEL inputs at V _{DD}			32	

5. REF input has a threshold voltage of V_{DD} /2.

6. Parameter is guaranteed by design and characterization. Not 100% tested in production.

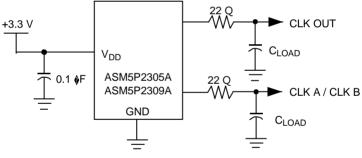
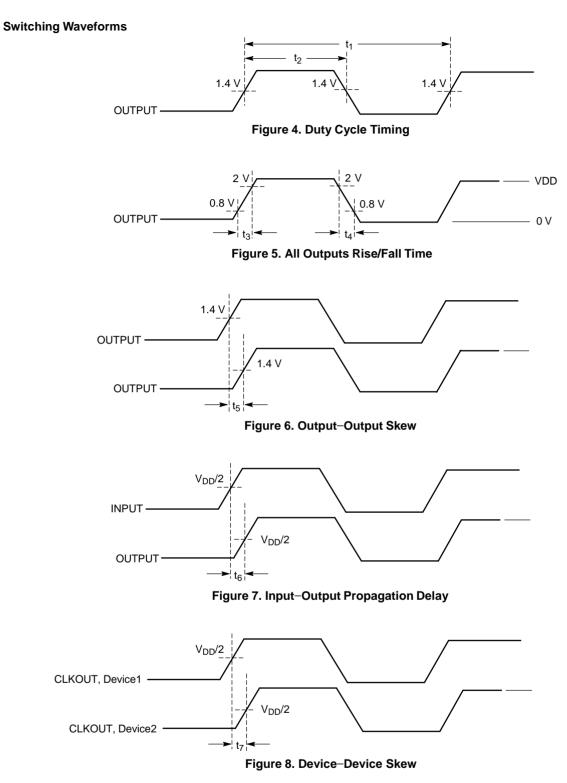

Parameter	Test Conditions		Min	Тур	Мах	Unit
Output Frequency	30 pF load		10		100	MHz
	10 pF load		10		133	
Duty Cycle (Note 9)	Measured at 1.4 V, F _{OUT} > 50 M	1Hz	40	50	60	%
	Measured at V_{DD} /2, $F_{OUT} \le 50 \text{ MHz}$			50	55	
Output Rise Time (Note 9) Measured between 0.8 V and 2.0		(-1)			2.25	nS
		(–1H)		1.5	2	
Output Fall Time (Note 9)	Measured between 2.0 V and 0.8 V	(-1)			2.25	nS
		(–1H)		1.5	2	
Output-to-output skew (Note 9)	All outputs equally loaded				200	pS
Delay, REF Rising Edge to CLKOUT Rising Edge (Note 9)	Measured at V _{DD} /2			0	±350	pS
Device-to-Device Skew (Note 9)	Measured at $V_{\mbox{\scriptsize DD}}/2$ on the CLKOUT pins of the device			0	700	pS
Cycle-to-cycle Jitter (Note 9)	Measured at 66.67 MHz, loaded outputs				200	pS
PLL Lock Time (Note 9)	Stable power supply, valid clock presente	d on REF pin			1.0	mS

Table 7. SWITCHING CHARACTERISTICS (for ASM5P2305A (-1, -1H) and ASM5P2309A (-1, -1H) (Notes 7, 8)


For all measurements use Test Circuit #1.
All parameters are specified with loaded outputs.

9. Parameter is guaranteed by design and characterization. Not 100% tested in production.

TEST CIRCUIT #1

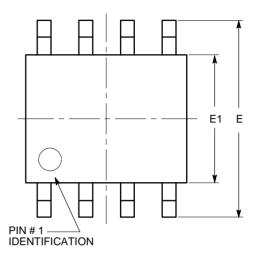
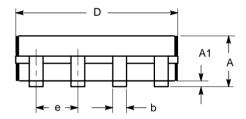


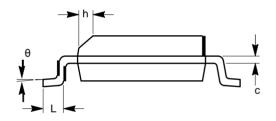
Figure 3. Test Circuit


PACKAGE DIMENSIONS

SOIC 8, 150 mils CASE 751BD-01 ISSUE O

SYMBOL	MIN	NOM	MAX
А	1.35		1.75
A1	0.10		0.25
b	0.33		0.51
с	0.19		0.25
D	4.80		5.00
E	5.80		6.20
E1	3.80		4.00
е		1.27 BSC	
h	0.25		0.50
L	0.40		1.27
θ	0°		8º

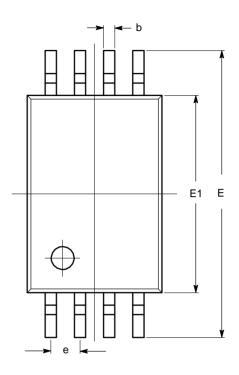
TOP VIEW



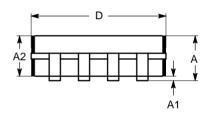
SIDE VIEW

Notes:

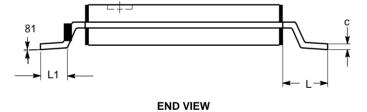
(1) All dimensions are in millimeters. Angles in degrees.


(2) Complies with JEDEC MS-012.

END VIEW


PACKAGE DIMENSIONS

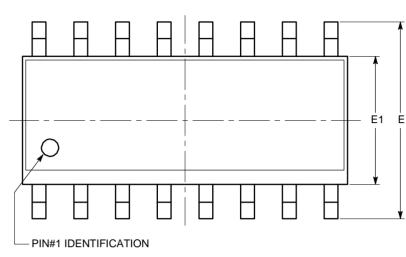
TSSOP8, 4.4x3 CASE 948AL-01 ISSUE O



SYMBOL	MIN	NOM	MAX
А			1.20
A1	0.05		0.15
A2	0.80	0.90	1.05
b	0.19		0.30
С	0.09		0.20
D	2.90	3.00	3.10
Е	6.30	6.40	6.50
E1	4.30	4.40	4.50
е		0.65 BSC	
L	1.00 REF		
L1	0.50	0.60	0.75
θ	0°		8º

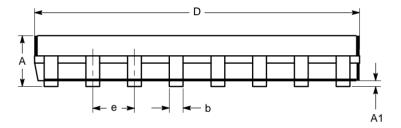
TOP VIEW

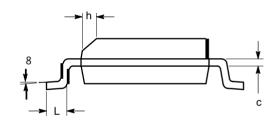
SIDE VIEW


Notes:

(1) All dimensions are in millimeters. Angles in degrees.

(2) Complies with JEDEC MO-153.


PACKAGE DIMENSIONS

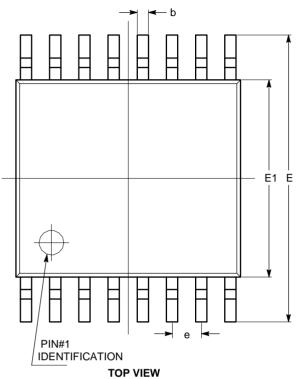

SOIC-16, 150 mils CASE 751BG-01 ISSUE O

SYMBOL	MIN	NOM	MAX
А	1.35		1.75
A1	0.10		0.25
b	0.33		0.51
С	0.19		0.25
D	9.80	9.90	10.00
Е	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27 BSC	
h	0.25		0.50
L	0.40		1.27
θ	0°		8º

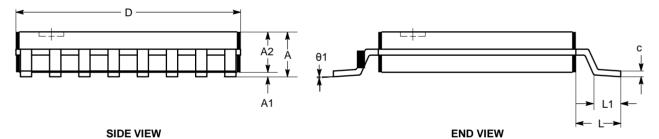
TOP VIEW

SIDE VIEW

END VIEW


Notes:

(1) All dimensions are in millimeters. Angles in degrees.


(2) Complies with JEDEC MS-012.

PACKAGE DIMENSIONS

TSSOP16, 4.4x5 CASE 948AN-01 ISSUE O

SYMBOL	MIN	NOM	MAX
А			1.10
A1	0.05		0.15
A2	0.85		0.95
b	0.19		0.30
с	0.13		0.20
D	4.90		5.10
E	6.30		6.50
E1	4.30		4.50
е		0.65 BSC	
L		1.00 REF	
L1	0.45		0.75
θ	0°		8º

Notes:

All dimensions are in millimeters. Angles in degrees.
Complies with JEDEC MO-153.

Table 8. ORDERING INFORMATION

Part Number	Marking	Package Type	Temperature
P5P2309AF-1-16ST	5P2309AF-1	16-pin 150-mil SOIC-TUBE,Pb Free	Commercial
P5I2309AF-1-16ST	5I2309AF-1	16-pin 150-mil SOIC- TUBE,Pb Free	Industrial
P5P2309AF-116SR	5P2309AF-1	16-pin 150-mil SOIC-TAPE & REEL,Pb Free	Commercial
P5I2309AF-116SR	5I2309AF-1	16-pin 150-mil SOIC-TAPE & REEL,Pb Free	Industrial
P5P2309AF-1-16TT	5P2309AF-1	16-pin 4.4-mm TSSOP - TUBE,Pb Free	Commercial
ASM5I2309AF-1-16-TT	5I2309AF-1	16-pin 4.4-mm TSSOP - TUBE,Pb Free	Industrial
P5P2309AF-1-16TR	5P2309AF-1	16-pin 4.4-mm TSSOP - TAPE & REEL,Pb Free	Commercial
ASM5I2309AF-1-16-TR	5I2309AF-1	16- pin 4.4-mm TSSOP - TAPE & REEL,Pb Free	Industrial
P5P2309AF-1H16ST	5P2309AF-1H	16-pin 150-mil SOIC-TUBE,Pb Free	Commercial
ASM5I2309AF-1H-16-ST	5I2309AF-1H	16-pin 150-mil SOIC- TUBE,Pb Free	Industrial
P5P2309AF-1H16SR	5P2309AF-1H	16-pin 150-mil SOIC-TAPE & REEL,Pb Free	Commercial
ASM5I2309AF-1H-16-SR	5I2309AF-1H	16-pin 150-mil SOIC-TAPE & REEL,Pb Free	Industrial
ASM5P2309AF-1H-16-TT	5P2309AF-1H	16-pin 4.4-mm TSSOP - TUBE,Pb Free	Commercial
ASM5I2309AF-1H-16-TT	5I2309AF-1H	16-pin 4.4-mm TSSOP - TUBE,Pb Free	Industrial
P5P2309AF-1H16TR	5P2309AF-1H	16-pin 4.4-mm TSSOP - TAPE & REEL,Pb Free	Commercial
ASM5I2309AF-1H-16-TR	5I2309AF-1H	16-pin 4.4-mm TSSOP - TAPE & REEL,Pb Free	Industrial
P5P2305AF-1-08ST	5P2305AF-1	8-pin 150-mil SOIC-TUBE,Pb Free	Commercial
P5I2305AF-108ST	5I2305AF-1	8-pin 150-mil SOIC- TUBE,Pb Free	Industrial
P5P2305AF-1-08SR	5P2305AF-1	8-pin 150-mil SOIC-TAPE & REEL,Pb Free	Commercial
ASM5I2305AF-1-08-SR	5I2305AF-1	8-pin 150-mil SOIC-TAPE & REEL,Pb Free	Industrial
ASM5P2305AF-1-08-TT	5P2305AF-1	8-pin 4.4-mm TSSOP - TUBE,Pb Free	Commercial
ASM5I2305AF-1-08-TT	5I2305AF-1	8-pin 4.4-mm TSSOP - TUBE,Pb Free	Industrial
ASM5P2305AF-1-08-TR	5P2305AF-1	8-pin 4.4-mm TSSOP - TAPE & REEL,Pb Free	Commercial
ASM5I2305AF-1-08-TR	5I2305AF-1	8-pin 4.4-mm TSSOP - TAPE & REEL,Pb Free	Industrial
ASM5P2305AF-1H-08-ST	5P2305AF-1H	8-pin 150-mil SOIC-TUBE,Pb Free	Commercial
P5I2305AF-1H08ST	5I2305AF-1H	8-pin 150-mil SOIC- TUBE,Pb Free	Industrial
P5P2305AF-1H08SR	5P2305AF-1H	8-pin 150-mil SOIC-TAPE & REEL,Pb Free	Commercial
P5I2305AF-1H08SR	5I2305AF-1H	8-pin 150-mil SOIC-TAPE & REEL,Pb Free	Industrial
ASM5P2305AF-1H-08-TT	5P2305AF-1H	8-pin 4.4-mm TSSOP - TUBE,Pb Free	Commercial
ASM5I2305AF-1H-08-TT	5I2305AF-1H	8-pin 4.4-mm TSSOP - TUBE,Pb Free	Industrial
P5P2305AF-1H08TR	5P2305AF-1H	8-pin 4.4-mm TSSOP - TAPE & REEL,Pb Free	Commercial
P5I2305AF-1H08TR	5I2305AF-1H	8-pin 4.4-mm TSSOP - TAPE & REEL,Pb Free	Industrial

Pentium is a registered trademark of Intel Corporation.

ON Semiconductor and with are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death socue, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative