
Contents

1	Block diagram
2	Pin configuration
3	Maximum ratings 5
4	Test circuits6
5	Electrical characteristics
6	Typical application
7	Schematic application
8	Package mechanical data
9	Revision history

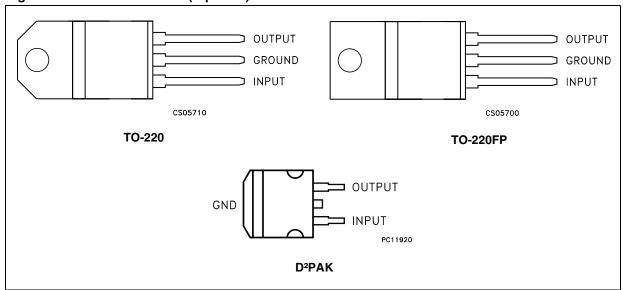

1 Block diagram

Figure 1. Block diagram

2 Pin configuration

Figure 2. Pin connections (top view)

Downloaded from Arrow.com.

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Parameter		
VI	Forward input voltage		30	V
		$V_{O} = 5V, R_{O} = 100\Omega$	-15	V
V	Reverse input voltage	$V_O = 8.5V, R_O = 180\Omega$	-15	V
V_{IR}		$V_0 = 10V, R_0 = 200\Omega$	-15	V
		$V_0 = 12V, R_0 = 240\Omega$	-15	V
I _O	Output current	•	Internally Limited	mA
P _D	Power dissipation		Internally Limited	mW
T _{stg}	Storage temperature range		-40 to +150	°C
T _{op}	Operating junction temperature range		-40 to +150	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Thermal data

Symbol	Parameter	TO-220	TO-220FP	D ² PAK	Unit
R _{thJC}	Thermal resistance junction-case	3	5	3	°C/W
R _{thJA}			60	62.5	°C/W

4 Test circuits

Figure 3. DC parameters

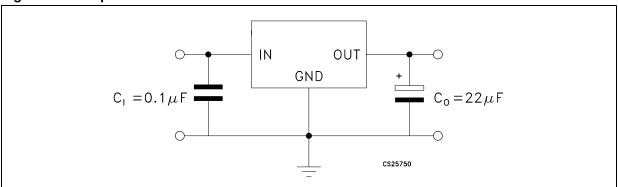


Figure 4. Load rejection

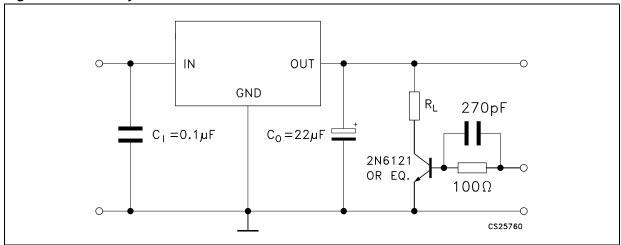
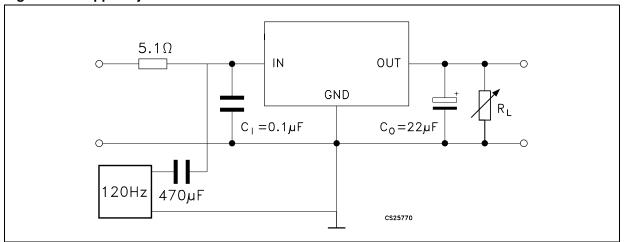



Figure 5. Ripple rejection

577

5 Electrical characteristics

Refer to test circuit, V_I = 7 V, C_I = 0.1 μ F, C_O = 22 μ F, T_J = 25°C, unless otherwise specified.

Table 4. Electrical characteristics of L4940XX5

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	I _O = 500 mA	4.9	5	5.1	V
Vo	Output voltage	$I_{O} = 5$ mA to 1.5A, $V_{I} = 6.5$ to 15 V	4.8	5	5.2	V
VI	Input voltage	I _O = 5 mA			17	V
ΔV _O	Line regulation	V _I = 6 to 17 V, I _O = 5 mA		4	10	mV
4)/	Load regulation	I _O = 5 mA to 1.5 A		8	25	mV
ΔV _O	Load regulation	I _O = 0.5 A to 1 A		5	15	mV
	Quiescent current	I _O = 5 mA		5	8	mA
I _q		I _O = 1.5 A, V _I = 6.5 V		30	50	mA
4.1	Quiescent current change	I _O = 5 mA			3	mA
Δl_q	Quiescent current change	I _O = 1.5 A, V _I = 6.5 to 16 V			15	mA
$\Delta V_{O}/\Delta T$	Output voltage drift			0.5		mV/°C
SVR	Supply voltage rejection	f = 120 Hz, I _O = 1 A	58	68		dB
W	Drangut valtage	I _O = 0.5 A		200	400	mV
V _d	Dropout voltage	I _O = 1.5 A		500	900	mV
	Short circuit current	V _I = 14 V		2	2.7	Α
I _{sc}	Short circuit current	V _I = 6.5 V		2.2	2.9	A

Refer to test circuit, V_I = 10.5 V, C_I = 0.1 $\mu F,\, C_O$ = 22 $\mu F,\, T_J$ = 25°C, unless otherwise specified.

Table 5. Electrical characteristics of L4940XX85

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	I _O = 500 mA	8.3	8.5	8.7	V
V _O	Output voltage	$I_O = 5$ mA to 1.5A, $V_I = 10.2$ to 15V	8.15	8.5	8.85	V
V _I	Input voltage	I _O = 5 mA			17	V
ΔV_{O}	Line regulation	$V_{I} = 9.5 \text{ to } 17V, I_{O} = 5 \text{ mA}$		4	9	mV
41/	Load regulation	I _O = 5mA to 1.5A		12	30	mV
ΔV_{O}	Load regulation	I _O = 0.5A to 1A		8	16	mV
ı	Quiescent current	I _O = 5 mA		4	8	mA
I _q	Quiescent current	I _O = 1.5A, V _I = 10.2V		30	50	mA
41	Quiescent current change	I _O = 5 mA			2.5	mA
Δl_{q}	Quiescent current change	I _O = 1.5A, V _I = 10.2 to 16V			15	mA
$\Delta V_{O}/\Delta T$	Output voltage drift			0.8		mV/°C
SVR	Supply voltage rejection	f = 120Hz, I _O = 1A	58	66		dB
V	Drangut valtage	I _O = 0.5A		200	400	mV
V_d	Dropout voltage	I _O = 1.5A		500	900	mV
-	Short circuit current	V _I = 14V		2	2.7	Α
Isc	I _{sc} Short circuit current	V _I = 10.2V		2.2	2.9] ^

Refer to test circuit, V_I = 12V, C_I = 0.1 μ F, C_O = 22 μ F, T_J = 25°C, unless otherwise specified.

Table 6. Electrical characteristics of L4940XX10

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	I _O = 500 mA	9.8	10	10.2	V
Vo	Output voltage	$I_O = 5 \text{ mA to } 1.5 \text{ A}, V_I = 11.7 \text{ to } 15 \text{ V}$	9.6	10	10.4	V
VI	Input voltage	I _O = 5 mA			17	V
ΔV _O	Line regulation	V _I = 11 to 17 V, I _O = 5 mA		3	8	mV
A\/	Load regulation	I _O = 5 mA to 1.5 A		15	35	mV
ΔV_{O}	Load regulation	I _O = 0.5 A to 1 A		10	20	mV
	Quiescent current	I _O = 5 mA		5	8	mA
Iq		I _O = 1.5 A, V _I = 11.7 V		30	50	mA
Al	Quiescent current change	I _O = 5 mA			2	mA
Δl_q	Quiescent current change	I _O = 1.5 A, V _I = 11.7 to 16 V			13	mA
$\Delta V_{O}/\Delta T$	Output voltage drift			1		mV/°C
SVR	Supply voltage rejection	f = 120 Hz, I _O = 1 A	56	62		dB
V	Dropout voltage	I _O = 0.5 A		200	400	mV
V_d	Diopout voltage	I _O = 1.5 A		500	900	mV
1	Short circuit current	V _I = 14 V		2	2.7	^
I _{sc}	Short circuit current	V _I = 11.7 V		2.2	2.9	A

Refer to test circuit, V_I = 14 V, C_I = 0.1 μ F, C_O = 22 μ F, T_J = 25°C, unless otherwise specified.

Table 7. Electrical characteristics of L4940XX12

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	I _O = 500 mA	11.75	12	12.25	V
V _O	Output voltage	$I_O = 5$ mA to 1.5 A, $V_I = 13.8$ to 15 V	11.5	12	12.5	V
V _I	Input voltage	I _O = 5 mA			17	V
ΔV_{O}	Line regulation	V _I = 13 to 17 V, I _O = 5 mA		3	7	mV
41/	Load regulation	I _O = 5 mA to 1.5 A		15	35	mV
ΔV_{O}	Load regulation	I _O = 0.5 A to 1 A		10	25	mV
- 1	Quiescent current	I _O = 5 mA		4	8	mA
I _q		I _O = 1.5 A, V _I = 13.8 V		30	50	mA
41	Quiescent current change	I _O = 5 mA			1.5	mA
ΔI_{q}	Quiescent current change	I _O = 1.5 A, V _I = 13.8 to 16 V			10	mA
$\Delta V_{O}/\Delta T$	Output voltage drift			1.2		mV/°C
SVR	Supply voltage rejection	f = 120 Hz, I _O = 1 A	55	61		dB
V	Drangut valtage	I _O = 0.5 A		200	400	mV
V_d	Dropout voltage	I _O = 1.5 A		500	900	mV
I _{sc}	Short circuit current	V _I = 14 V		2	2.7	Α
Z _O	Output impedance	f = 120 Hz, I _O = 0.5 A		40		mΩ

6 Typical application

Figure 6. Dropout voltage vs. output current Figure 7. Dropout voltage vs. temperature

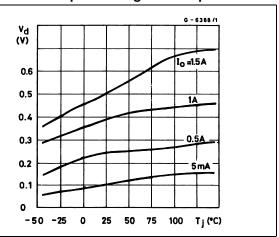
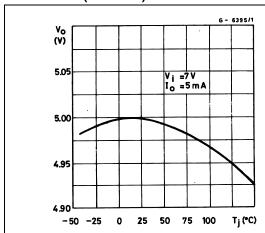



Figure 8. Output voltage vs. temperature (L4940V5)

Figure 9. Output voltage vs. temperature (L4940V85)

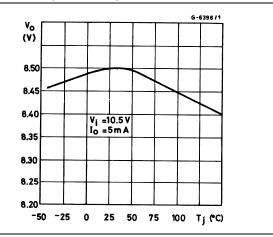
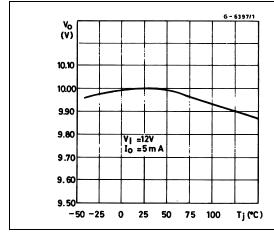
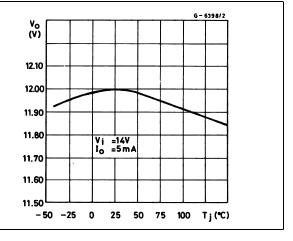
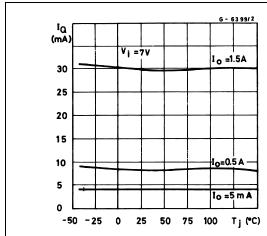




Figure 10. Output voltage vs. temperature (L4940V10)


Figure 11. Output voltage vs. temperature (L4940V12)

577

Figure 12. Quiescent current vs. temperature Figure 13. Quiescent current vs. input voltage (L4940V5) (L4940V5)

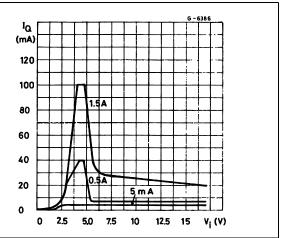
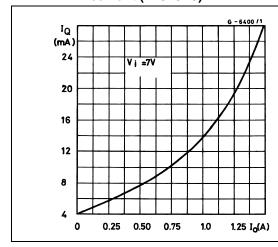



Figure 14. Quiescent current vs. output current (L4940V5)

Figure 15. Short circuit current vs. temperature (L4940V5)

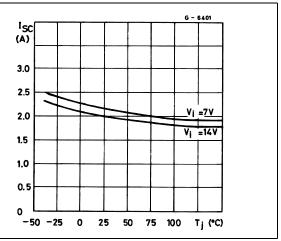
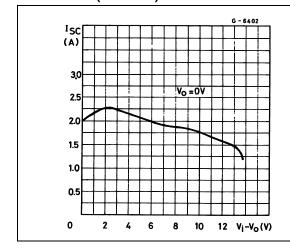



Figure 16. Peak output current vs. input/output differential voltage (L4940V5)

Figure 17. Low voltage behavior (L4940V5)

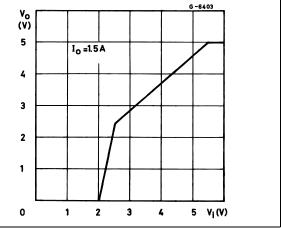
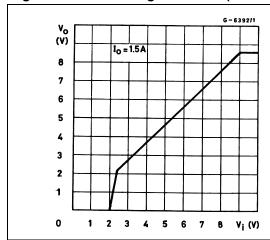



Figure 18. Low voltage behavior (L4940V85)

Figure 19. Low voltage behavior (L4940V10)

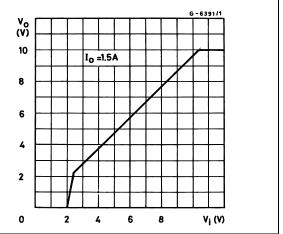
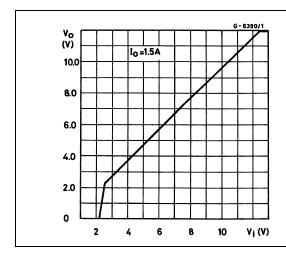
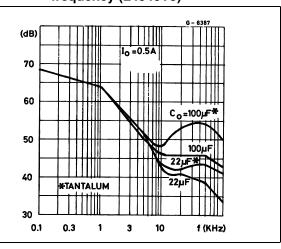
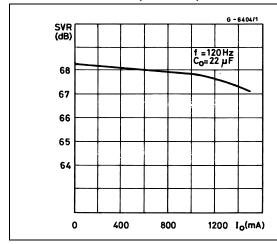
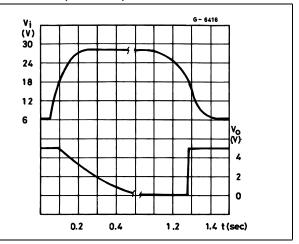
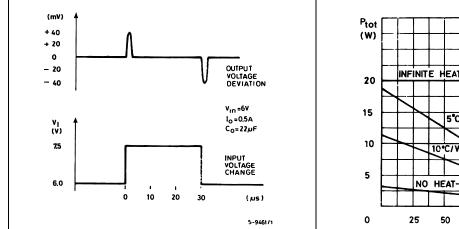



Figure 20. Low voltage behavior (L4940V12)

Figure 21. Supply voltage rejection vs. frequency (L4940V5)


Figure 22. Supply voltage rejection vs. output Figure 23. Lad dump characteristics current (L4940V5) (L4940V5)

577

Figure 24. Line transient response (L4940V5) Figure 25. Total power dissipation

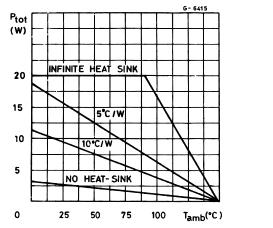
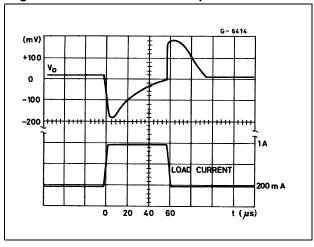



Figure 26. Load transient response

7 Schematic application

Figure 27. Distributed supply with on-card L4940 and L4941 low drop regulator

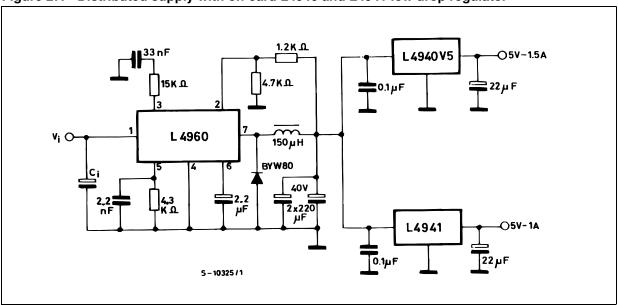
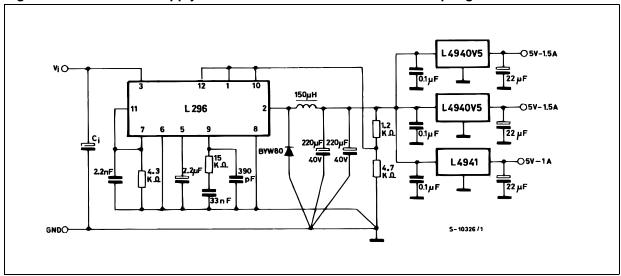



Figure 28. Distributed supply with on-card L4940 and L4941 low drop regulator

Note: Advantages of these application are:

On card regulation with short-circuit and thermal protection on each output.

Very high total system efficiency due to the switching pre-regulation and very low-drop post-regulation.

Figure 29. Distributed supply with on-card L4940 and L4941 low drop regulator

Note:

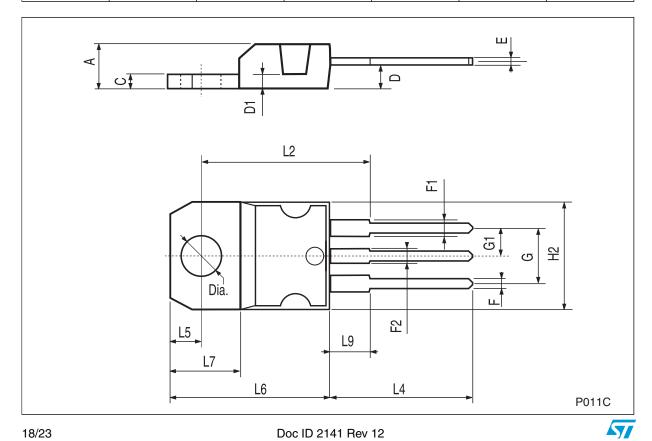
Advantages of this configuration are:

Very high regulation (line and load on both the output voltage.

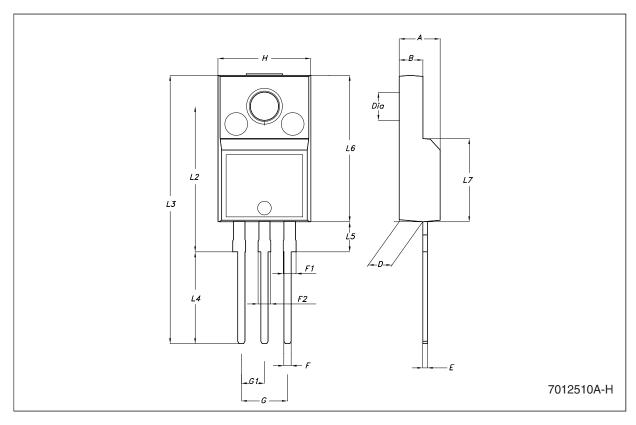
12 V output short circuit and thermally protected.

Very high efficiency on the 12 V output due to the low drop regulator.

5


8 Package mechanical data

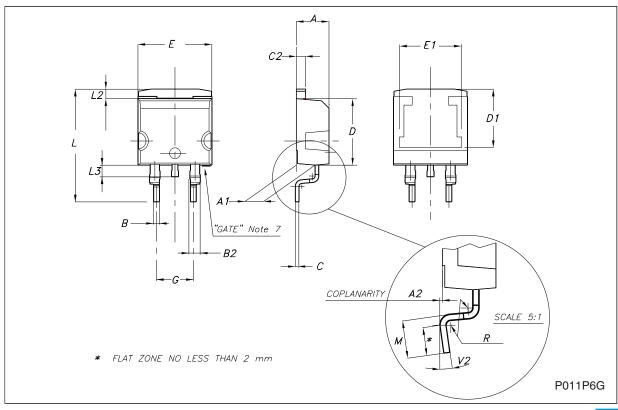
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.


TO-220 mechanical data

Dim		mm.			inch.	
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

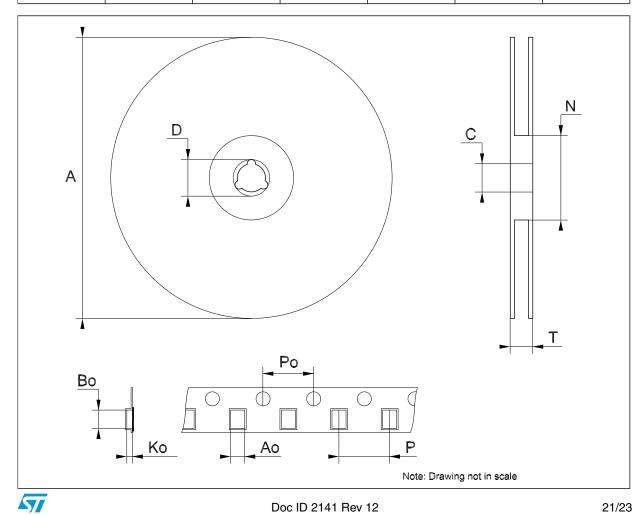
TO-220FP mechanical data

Dim		mm.			inch.	
Dim.	Min.	Тур	Max.	Min.	Тур.	Max.
Α	4.40		4.60	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.70	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.50	0.045		0.059
F2	1.15		1.50	0.045		0.059
G	4.95		5.2	0.194		0.204
G1	2.4		2.7	0.094		0.106
Н	10.0		10.40	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L5	2.9		3.6	0.114		0.142
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
DIA.	3		3.2	0.118		0.126



577

Doc ID 2141 Rev 12


D²PAK mechanical data

Dim		mm.			inch.	
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
E	10		10.4	0.393		0.409
E1		8.5			0.335	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.624
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
М	2.4		3.2	0.094		0.126
R		0.4			0.016	
V2	0°		8°	0°		8°

Tape & reel D²PAK-P²PAK-D²PAK/A-P²PAK/A mechanical data

Dim.		mm.			inch.	
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	10.50	10.6	10.70	0.413	0.417	0.421
Во	15.70	15.80	15.90	0.618	0.622	0.626
Ko	4.80	4.90	5.00	0.189	0.193	0.197
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	11.9	12.0	12.1	0.468	0.472	0.476

9 Revision history

Table 8. Document revision history

Date	Revision	Changes
04-Feb-2005	6	Add new package D ² PAK/A.
18-Sep-2006	7	Order codes has been updated and new template.
31-May-2007	8	Order codes has been updated.
19-Sep-2007	9	Add Table 1 in cover page.
20-Feb-2008	10	Modified: Table 1 on page 1.
29-Jul-2009	11	Modified: Table 1 on page 1.
16-Dec-2009	12	Modified: Table 7 on page 10.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577

Doc ID 2141 Rev 12