Contents STPA001

Contents

1	Ove	/iew		5
	1.1	Block diagram and	application circuit	5
2	Pin o	escription		7
	2.1	Pin connection		7
	2.2	Pin functions		8
3	Elec	rical specification	ıs	9
	3.1	Absolute maximum	ratings	9
	3.2	Thermal data		9
	3.3	Electrical character	istics	10
	3.4	Electrical character	ristics curves	12
4	Gen	ral information .		15
	4.1	Operation		15
	4.2	Battery variations .		15
		4.2.1 Low voltage	e operation	15
		4.2.2 Cranks		16
		4.2.3 Advanced b	pattery management (hybrid vehicles)	17
	4.3	Protections		18
		4.3.1 Short circui	ts and open circuit operation	18
		4.3.2 Over-voltag	e and load dump protection	18
		4.3.3 Thermal pro	otection	18
	4.4	Warnings		19
		4.4.1 DC offset d	etection (OD pin)	19
		4.4.2 Clipping de	tection and diagnostics (CD-DIAG pin)	19
	4.5	Heat sink definition		20
5	Pack	age information .		21
6	Revi	sion history		25

STPA001 List of tables

List of tables

	Device summary
Table 2.	Pin functions
Table 3.	Absolute maximum ratings
Table 4.	Thermal data9
Table 5.	Electrical characteristics
Table 6.	Document revision history

List of figures STPA001

List of figures

Figure 1.	Block diagram	5
Figure 2.	Application circuit (STPA001)	6
Figure 3.	Application circuit (STPA001A & STPA001H)	6
Figure 4.	Pin connection (top view)	7
Figure 5.	Quiescent current vs. supply voltage	12
Figure 6.	Output power vs. supply voltage (4 Ω)	12
Figure 7.	Output power vs. supply voltage (2 Ω)	12
Figure 8.	Distortion vs. output power (4 Ω)	12
Figure 9.	Distortion vs. frequency (4 Ω)	12
Figure 10.	Distortion vs. output power (4 Ω , Vs = 6 V)	12
Figure 11.	Distortion vs. output power (2 Ω)	13
Figure 12.	Distortion vs. frequency (2 Ω)	13
Figure 13.	Distortion vs. output power (2 Ω , Vs = 6 V)	13
Figure 14.	Supply voltage rejection vs. frequency	13
Figure 15.	Crosstalk vs. frequency	13
Figure 16.	Total power dissipation & efficiency vs. Po (4 Ω , Sine)	13
Figure 17.	Power dissipation vs. average output power (4 Ω , audio program simulation)	14
Figure 18.	Power dissipation vs. average output power (2 Ω , audio program simulation)	14
Figure 19.	ITU R-ARM frequency response, weighting filter for transient pop	14
Figure 20.	SVR charge diagram	15
Figure 21.	Battery cranking curve example 1	16
Figure 22.	Battery cranking curve example 2	16
Figure 23.	Upwards fast battery transitions diagram	17
Figure 24.	Load dump protection diagram	18
Figure 25.	Thermal protection diagram	18
Figure 26.	Audio section waveforms	19
Figure 27.	Flexiwatt27 (vertical) mechanical data and package dimensions	21
Figure 28.	Flexiwatt27 (horizontal) mechanical data and package dimensions	22
Figure 29.	Flexiwatt25 vertical mechanical data and package dimensions	23
Figure 30	Fleviwatt25 (horizontal) mechanical data and package dimensions	24

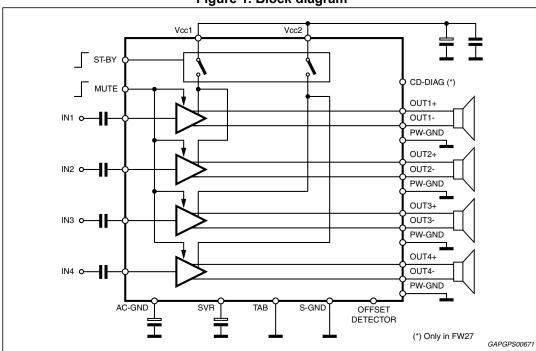
STPA001 Overview

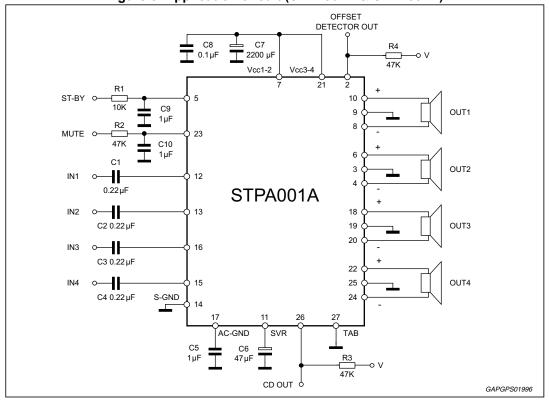
1 Overview

The STPA001 is a complementary quad audio power amplifier. It is available in three different packages, Flexiwatt25 (vertical), Flexiwatt25 (horizontal) and Flexiwatt27. It embeds four independent amplifiers working in class AB, a standby and a mute pin, a clipping detector and diagnostics output and, only for the Flexiwatt27 package, an offset detector pin. The amplifier is fully operational down to a battery voltage of 6 V, without producing pop noise and continuing to play during battery transitions.

The STPA001 can drive 2 Ω loads and has a very high immunity to disturbs without need of external components or compensation. It is protected against any kind of short or open circuit, over-voltage and over-temperature.

1.1 Block diagram and application circuit




Figure 1. Block diagram

Overview STPA001

DETECTOR OUT C8 C7 0.1µF 2200 µF Vcc1-2 Vcc3-4 25 20 ST-BY 4 C9 OUT1 1µF R2 22 MUTE o 47K C10 1µF C1 OUT2 \dashv IN1 11 STPA001 $\bigcirc \blacksquare$ IN2 17 C2 0.22µF 18 OUT3 19 \circ IN3 15 C3 0.22µF 21 \circ IN4 OUT4 14 24 C4 0.22µF S-GND 23 13 AC-GND SVR TAB C6 1µF 47µF GAPGPS00672

Figure 2. Application circuit (STPA001)

Figure 3. Application circuit (STPA001A & STPA001H)

77

STPA001 Pin description

2 Pin description

2.1 Pin connection

Figure 4. Pin connection (top view) Flexiwatt27 OFF DET

PW-GND2

OUT2
ST-BY

OUT1
PW-GND1

OUT1+

SVB

IN1

IN2

S-GND

IN4

IN4

IN4

PW-GND3
OUT3+

OUT3+

PW-GND4

PW-GND4

PW-GND4

CO-DIAG

CD-DIAG Flexiwatt25 PW-GND3 | COUT3+ COUT3- COUT3- COUT4+ COUT4+ COUT4+ COUT4- COUT4- COUT4- COUT4- COUT4- COUT4- COUT4- COUT4- COUT4- COUT3- COUT3-PW-GND1 | COUT1+ | CO GAPGPS00713

Pin description STPA001

2.2 Pin functions

Table 2. Pin functions

Pin number FW27	Pin number FW25	Pin name	Description
1	1	TAB	-
2	25	OD	Offset detector output
3	2	PW-GND2	Channel 2, output power ground
4	3	OUT2-	Channel 2, negative output
5	4	ST-BY	Stand-by
6	5	OUT2+	Channel 2, positive output
7	6	VCC	Supply voltage
8	7	OUT1-	Channel 1, negative output
9	8	PW-GND1	Channel 1, output power ground
10	9	OUT1+	Channel 1, positive output
11	10	SVR	Supply voltage rejection pin
12	11	IN1	Channel 1, input
13	12	IN2	Channel 2, input
14	13	S-GND	Signal ground
15	14	IN4	Channel 4, input
16	15	IN3	Channel 3, input
17	16	AC-GND	AC ground
18	17	OUT3+	Channel 3, positive output
19	18	PW-GND3	Channel 3, output power ground
20	19	OUT3-	Channel 3, negative output
21	20	VCC	Supply voltage
22	21	OUT4+	Channel 4, positive output
23	22	MUTE	Mute pin
24	23	OUT4-	Channel 4, negative output
25	24	PW-GND4	Channel 4, output power ground
26	n.a	CD-DIAG	Clipping detector and diagnostics output
27	n.a	TAB	-

3 Electrical specifications

3.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _S	Operating supply voltage	18	V
V _{S (DC)}	DC supply voltage	28	V
V _{S (pk)}	Peak supply voltage (for t = 50 ms)	50	V
I _O	Output peak current Non repetitive (t = 100 µs) Repetitive (duty cycle 10 % at f = 10 Hz)	10 9	A A
P _{tot}	Power dissipation T _{case} = 70 °C	85	W
Tj	Junction temperature	150	°C
T _{stg}	Storage temperature	-55 to 150	°C
GND _{max}	Ground pin voltage	-0.3 to 0.3	V
V _{in max}	Input pin max voltage	-0.3 to 8	V
V _{SB max}	ST-BY pin max voltage	-0.3 to V _{s (pk)}	V
V _{mute max}	Mute pin max voltage	-0.3 to 6	V

3.2 Thermal data

Table 4. Thermal data

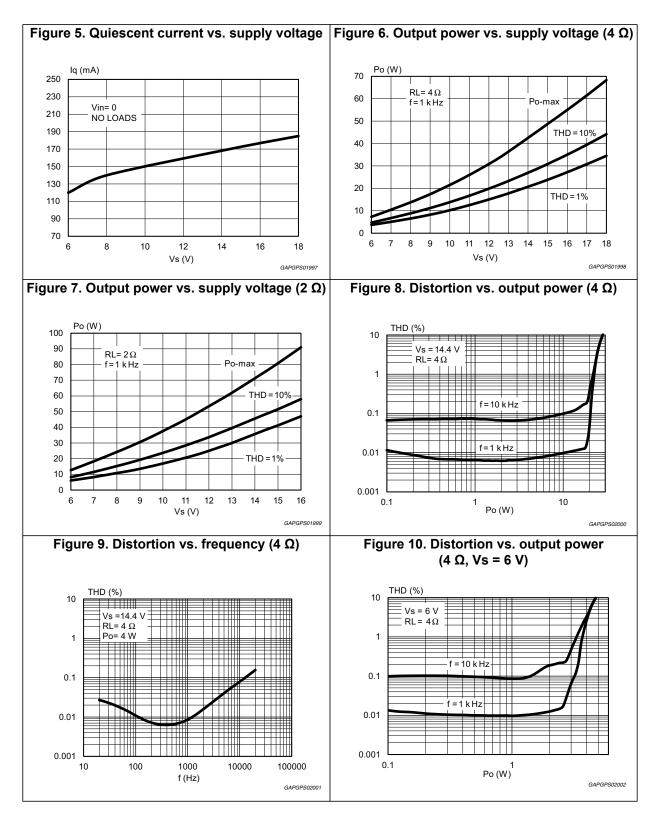
Symbol	Parameter		Value	Unit
R _{th j-case}	Thermal resistance junction-to-case	Max	1	°C/W

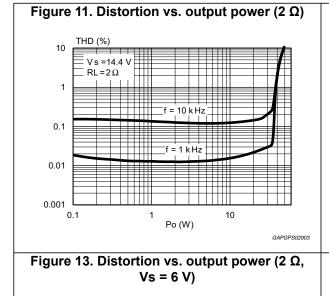
3.3 Electrical characteristics

Refer to the test and application diagram, V_s = 14.4 V; R_L = 4 Ω ; R_g = 600 Ω ; f = 1 kHz; T_{amb} = 25 °C; unless otherwise specified.

Table 5. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
General c	haracteristics		•	•		•
V _S	Supply voltage range	-	6	-	18	V
I _{q1}	Quiescent current	R _L = ∞	100	200	300	mA
V _{OS}	Output offset voltage	Play mode / Mute mode	-90	-	+90	mV
d\/	During mute ON/OFF output offset voltage	ITU R-ARM weighted	-10	-	+10	mV
dV _{OS}	During standby ON/OFF output offset voltage	TTO R-ARW Weighted	-15	-	+15	mV
R _i	Input impedance	-	40	55	70	kΩ
1.	Standby current consumption	V _{St-by} = 1.2 V	-	-	20	μA
I _{SB}	Standby current consumption	$V_{\text{St-by}} = 0$	-	-	10	μA
Audio per	formances					
		THD = 10 %	26	28	-	W
Po	Output power	THD = 1 %	20	22	-	W
' 0	Output power	THD = 10 %, 2 Ω THD = 1 %, 2 Ω	43 34	48 38	- -	W W
P _{o max.}	Max. output power	Square wave input (2 Vrms) $R_L = 4 \Omega$ $R_L = 2 \Omega$ $V_S = 15.2 \text{ V}; R_L = 4 \Omega$	41 68 46	45 75 50	- -	W W W
THD	Distortion	P _o = 4 W	-	0.007	0.05	%
G _v	Voltage gain	-	25	26	27	dB
dG _v	Channel gain unbalance	-	-1	-	+1	dB
e _{No}	Output Noise	"A" Weighted Bw = 20 Hz to 20 kHz		35 50	- 100	μV μV
SVR	Supply voltage rejection	f = 100 Hz; V _r = 1 Vrms	50	70	-	dB
f _{ch}	High cut-off frequency	P _O = 0.5 W	100	300	-	kHz
C _T	Cross talk	f = 1 kHz P _O = 4 W f = 10 kHz P _O = 4 W	60	75 60	-	dB dB
A _M	Mute attenuation	P _{Oref} = 4 W	80	90	-	dB
	in characteristics	ı	l	1	1	ı
I _{pin5}	Standby pin current	V _{St-by} = 1.2 V to 2.6 V	-	-	1	μA
V _{SB out}	Standby out threshold voltage	(Amp: ON)	2.6	-	-	V




Table 5. Electrical characteristics (continued)

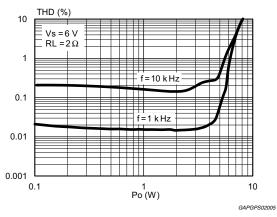
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit		
$V_{SB\ in}$	Standby in threshold voltage	(Amp: OFF)	-	-	1.2	V		
V _{M out}	Mute out threshold voltage	(Amp: Play)	2.6	-	-	V		
V _{M in}	Mute in threshold voltage	(Amp: Mute)	-	-	1.2	V		
$V_{AM\ in}$	V _S automute threshold	(Amp: Mute) Att \geq 80 dB; P_{Oref} = 4 W (Amp: Play) Att < 0.1 dB; P_{O} = 0.5 W	4.5	5	5.5 6	V		
lpin23	Muting pin current	V _{MUTE} = 1.2 V (Sourced current)	5	8	12	μA		
Offset det	ector							
V _{OFF}	Detected differential output offset	V _{St-by} = 5 V	±1	±2	±3	V		
V _{OFF_SAT}	Off detector saturation voltage	V _o > ±3 V, I _{off Det} = 1 mA 0 V < V _{off Det} < 18 V	-	0.1	0.2	V		
V _{OFF_LK}	Off detector leakage current	V ₀ < ±1 V	-	0	15	μA		
Clipping detector								
CD _{LK}	Clip detector high leakage current	Cd off	-	0	1	μA		
CD _{SAT}	Clip detector saturation voltage	DC On; I _{CD} = 1 mA	-	0.1	0.2	V		
CD _{THD}	Clip detector THD level	V _{CC} > 6.5 V	-	1	-	%		

3.4 Electrical characteristics curves

THD (%)

Vs = 14.4 V

RL = 2Ω


Po = 8 W

0.01

0.001

10 100 1000 10000 100000
f (Hz)

Figure 12. Distortion vs. frequency (2 Ω)

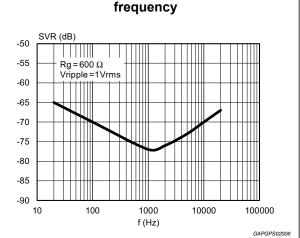
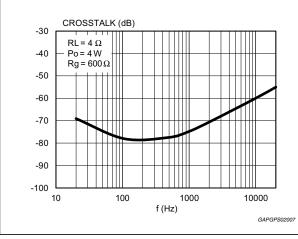
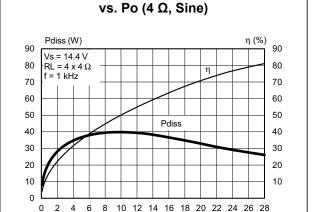




Figure 14. Supply voltage rejection vs.

Figure 15. Crosstalk vs. frequency

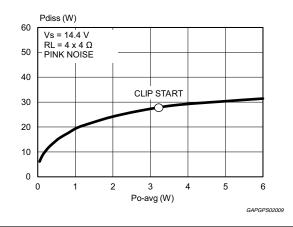

Po (W)

Figure 16. Total power dissipation & efficiency

577

GAPGPS02008

Figure 17. Power dissipation vs. average output | Figure 18. Power dissipation vs. average output power (4 Ω, audio program simulation)

power (2 Ω, audio program simulation)

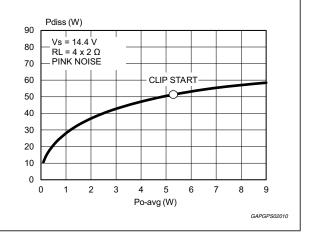
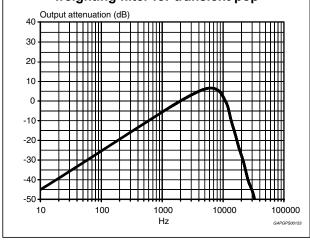



Figure 19. ITU R-ARM frequency response, weighting filter for transient pop

DocID023043 Rev 7 14/26

STPA001 General information

4 General information

4.1 Operation

The STPA001's inputs are ground-compatible. If the standard value for the input capacitors (0.22 μ F) is adopted, the low frequency cut-off will amount to 16 Hz. The input capacitors should be 1/4 of the capacitor connected to AC-GND pin for optimum pop performances (see *Figure 2: Application circuit (STPA001)*).

Standby and mute pins are both CMOS compatible.

RC cells at both mute and stand-by pins have always to be used in order to smooth the transitions for preventing any audible transient noise.

In case muting and stand-by functions are not used, they could steadily be connected to V_S , but a 470 k Ω resistance should be present between the power supply and the pins.

The capacitance on SVR sets the start-up and shut-down times and helps to have pop-noise free transitions. Its minimum recommended value is 10 μF . However, to have a fast start-up time, the internal resistor on SVR pin, used to set the time constant, is reduced from 50 k Ω to 3 k Ω till voltage on SVR reaches VCC/4 -2VBE and then released. In this way the capacitor on SVR is charged very quickly to VCC/4, as shown in the following figure. The time constant to be assigned to the standby pin in order to obtain a virtually pop-free transition has to be slower than 2.5 V/ms.

V_{CC}/4 - 2V_{BE} Time

Figure 20. SVR charge diagram

SVR pin accomplishes multiple functions:

- it is used as a reference voltage for input pins (VCC/4)
- the capacitor connected to SVR helps the supply voltage ripple rejection
- it is used as a reference to generate the half supply voltage for the output

When the amplifier goes in standby mode or goes out from this condition, it is suggested to put the amplifier in mute to ensure the absence of audible noise. Then the stand-by pin can be set to the appropriate value (ground or > 2.6 V) and the capacitance on SVR pin is discharged or charged consequently.

4.2 Battery variations

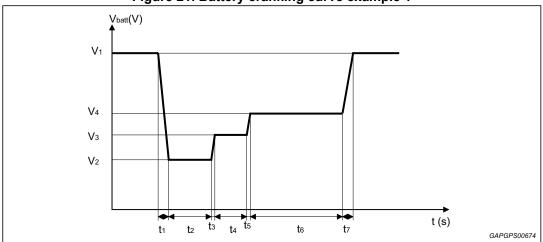
4.2.1 Low voltage operation

The most recent OEM specifications are require automatic stop of car engine at traffic lights, in order to reduce emissions of polluting substances. The STPA001, thanks to its innovating

DocID023043 Rev 7 15/26

General information STPA001

> design, allows a continuous operation when battery falls down. At 6 V it is still fully operational, only the maximum output power is reduced accordingly to the available voltage supply.


> If the battery voltage drops below the minimum operating voltage of 6V the amplifier is fast muted, the capacitor on SVR is discharged and the amplifier restarts when the battery voltage returns to the correct voltage.

4.2.2 **Cranks**

STPA001 can sustain worst case cranks from 16 V to 6 V, continuing to play and without producing any pop noise.

Examples of battery cranking curves are shown below, indicating the shape and duration of allowed battery transitions.

Figure 21. Battery cranking curve example 1

V1 = 16 V; V2 = 6 V; V3 = 7 V; V4 = 8 V

t1 = 2 ms; t2 = 50 ms; t3 = 5 ms; t4 = 300 ms; t5 = 10 ms; t6 = 1 s; t7 = 2 ms

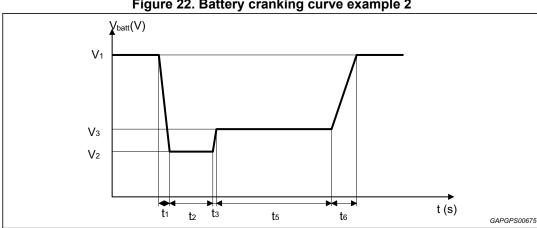


Figure 22. Battery cranking curve example 2

V1 = 16 V; V2 = 6 V; V3 = 7 V

t1 = 2 ms; t2 = 5 ms; t3 = 15 ms; t5 = 1 s; t6 = 50 ms

DocID023043 Rev 7

16/26

STPA001 General information

Advanced battery management (hybrid vehicles) 4.2.3

In addition to compatibility with low Vbatt, the STPA001 is able to sustain upwards fast battery transitions without causing unwanted audible effects, like pop noise, and without any sound interruption thanks to the innovative circuit topology. In fact, in hybrid vehicles, the engine ignition causes a fast increase of battery voltage which can reach 16 V in less than 10 ms.

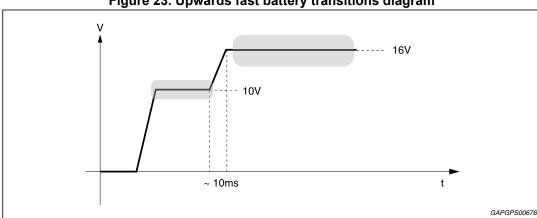


Figure 23. Upwards fast battery transitions diagram

General information STPA001

4.3 Protections

4.3.1 Short circuits and open circuit operation

When the IC detects a short circuit to ground, to Vs or across the load, the output of the amplifier is put in three-state (high impedance condition). The power stage remains in this condition until the short is removed.

In case of short circuit to ground or Vcc, the amplifier exits from the three-state condition only when the output returns inside the limits imposed by an internal voltage comparator.

When a short across the load is present, the power stage sees an over-current and is brought in protection mode for 100 μ s. After this time, if the short circuit condition is removed the amplifier returns to play, otherwise the high impedance state is maintained and the check is repeated every 100 μ s.

Disconnection of load (open load condition) doesn't damage the amplifier, which continues to play.

4.3.2 Over-voltage and load dump protection

When the battery voltage is higher than 19 V, the amplifier is switched to a high impedance state. It stops to playing till the supply voltage returns in the permitted range.

The amplifier is protected against load dump surges having amplitude as high as 50 V and a rising time lower than 5 ms (see *Figure 24*).

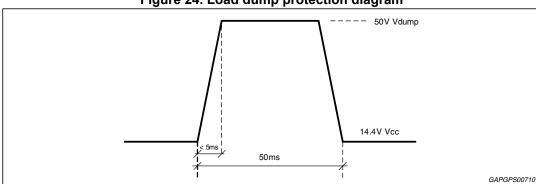


Figure 24. Load dump protection diagram

4.3.3 Thermal protection

If the junction temperature of the IC reaches T_j = 150 °C, a smooth mute is applied to reduce output power and limit power dissipation. If this is not enough and the junction temperature continues to increase, the amplifier is switched off when reaches the maximum temperature of 170 °C.

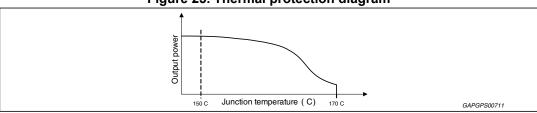


Figure 25. Thermal protection diagram

STPA001 General information

4.4 Warnings

4.4.1 DC offset detection (OD pin)

The STPA001 integrates a DC offset detector to avoid that an anomalous input DC offset is multiplied by the amplifier gain producing a dangerous large offset at the output. In fact an output offset may lead to speakers damage for overheating. The detector works with the amplifier un-muted and no signal at the inputs.

When the differential output voltage is out of a window comparator with thresholds \pm 2V (typ), the OD pin is pulled down.

4.4.2 Clipping detection and diagnostics (CD-DIAG pin)

When clipping occurs, the output signal is distorted. If the signal distortion on one of the output channels exceeds 1%, the CD-DIAG pin is pulled down. This information can be sent to an audio processor in order to reduce the input signal of the amplifier and reduce the clipping. Thanks to a particular internal circuitry, the clip detector is always functional till 6.5 V.

A short to ground and short to Vcc is pointed out by CD-DIAG. This pin is pulled down to 0 V till these shorts are present to inform the user a protection occurred.

CD-DIAG acts also as thermal warning. In fact every time T_j exceeds 140 °C, it is pulled down to notify this occurrence.

Figure 26. Audio section waveforms

DocID023043 Rev 7

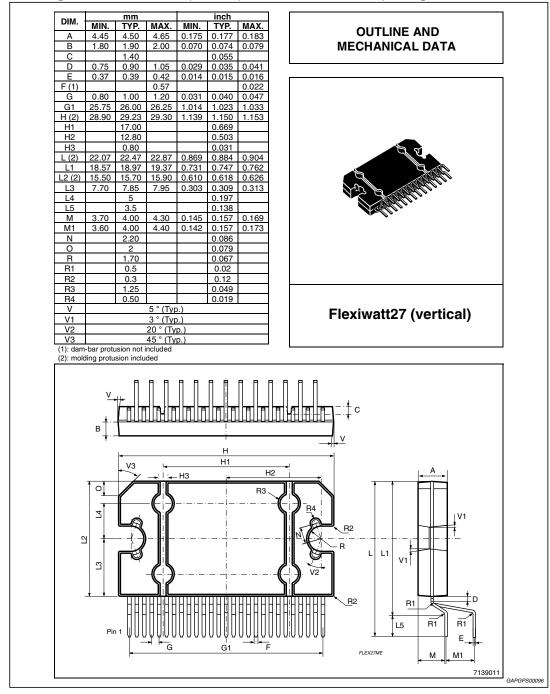
19/26

General information STPA001

4.5 Heat sink definition

Assuming we have a maximum dissipated power of 26 W (e.g. in the worst case situation of frequent clipping occurrence), considering T_j max is 150°C and assuming ambient temperature is 70 °C, the available temperature gap for a correct dissipation is 80 °C. This means the thermal resistance of the system R_{Th} has to be 80 °C/26 W = 3 °C/W.

The junction to case thermal resistance is 1 °C/W. So the heat sink thermal resistance should be approximately 2 °C/W. This would avoid any thermal shutdown occurrence even after long-term and full-volume operation.


STPA001 Package information

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

Figure 27. Flexiwatt27 (vertical) mechanical data and package dimensions

DocID023043 Rev 7

21/26

Package information STPA001

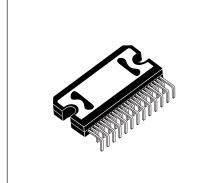
Figure 28. Flexiwatt27 (horizontal) mechanical data and package dimensions

DIM.	NAIN!	mm	MAY	inch MIN TVD MAY		BAAY	
Α	MIN. 4.45	TYP. 4.50	MAX. 4.65	MIN. 0.175	TYP. 0.177	MAX. 0.183	OUTLINE AND
В	1.80	1.90	2.00	0.173	0.177	0.103	MECHANICAL DATA
C	1.00	1.40	2.00	0.070	0.055	0.070	WECHANICAL DATA
D		2.00			0.079		
Е	0.37	0.39	0.42	0.014	0.015	0.016	
F (1)			0.57			0.022	
G	0.75	1.00	1.25	0.0295		0.0492	
G1	25.70	26.00	26.30	1.0118		1.0354	
H (2)	28.90		29.30	1.139		1.153	
H1		17.00			0.669		_
H2 H3		12.80 0.80	-		0.503		
L (2)	21.64	22.04	22.44	0.852	0.868	0.883	
L1	10.15	10.5	10.85	0.40	0.413	0.427	
L2 (2)	15.50	15.70	15.90	0.610			
L3	7.70	7.85	7.95	0.303			
L4		5			0.197		
L5	5.15	5.45	5.85	0.203	0.214	0.23	
L6	1.80	1.95	2.10	0.070		0.083	U U U U U U U U U
M	2.75	3.00	3.50	0.108		0.138	
M1 M2		4.73	-		0.186	\vdash	
M2 N		5.61 2.20		-	0.220	\vdash	
P	3.20	3.50	3.80	0.126	0.080	0.15	
R	0.20	1.70	0.00	0.120	0.130	0.10	
R1		0.50			0.02		
R2		0.30			0.12		
R3		1.25			0.049		
R4		0.50			0.02		Flexiwatt27
V				Гур.)			
V1 V2				Гур.)			(Horizontal)
V2 V3			20° (тур.) Тур.)			
L2 L4 L9 B			— H3			H2	
F7					1		

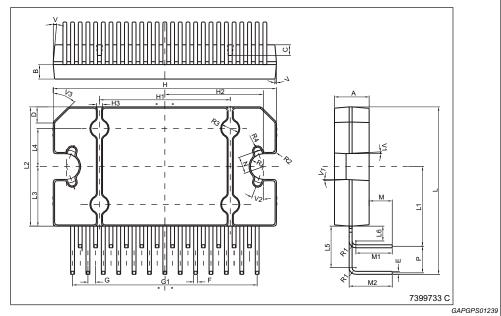
STPA001 Package information

Figure 29. Flexiwatt25 vertical mechanical data and package dimensions

DIM.	MINI	mm	MAY	BAINI	inch	MAY	
Α	MIN. 4.45	TYP. 4.50	MAX. 4.65	MIN. 0.175	TYP. 0.177	MAX. 0.183	OUTLINE AND
В	1.80	1.90	2.00	0.070	0.074	0.079	MECHANICAL DATA
С		1.40			0.055		MECHANICAL DATA
D	0.75	0.90	1.05	0.029	0.035		
Е	0.37	0.39	0.42	0.014	0.015	0.016	
F (1)	0.00	1.00	0.57	0.004	0.040	0.022	
G G1	0.80 23.75	1.00	1.20 24.25	0.031	0.040 0.945	0.047 0.955	
H (2)	28.90	29.23	29.30	1.139	1.150	1.153	
H1	20.00	17.00	20.00		0.669		_
H2		12.80			0.503		
H3		0.80			0.031		
L (2)	22.07	22.47	22.87	0.869	0.884		
L1 L2 (2)	18.57 15.50	18.97 15.70	19.37 15.90	0.731 0.610	0.747	0.762 0.626	
L2 (2)	7.70	7.85	7.95	0.303	0.309	0.313	
L4		5			0.197		
L5		3.5			0.138		
M	3.70	4.00	4.30	0.145	0.157	0.169	
M1 N	3.60	4.00 2.20	4.40	0.142	0.157	0.173	
O		2.20			0.086		
R		1.70			0.067		
R1		0.5			0.02		
R2		0.3			0.12		
R3 R4		1.25 0.50			0.049		
V N4		0.50	5° (Typ.)	0.019	l .	Flexiwatt25 (vertical)
V1			3° (Typ.)			riexiwalizo (vertical)
V2				Тур.)			
V3				Тур.)			
(1): dam-t (2): moldi	oar protus ng protus	ion not in ion includ	ciuaea ed				
77	B	V3 -		H3	H1 H1 H1	H R3	R2 L1 V1 PD
	Piı	n 1	G G		G1		L5 R1 R1 E T T T T T T T T T T T T T T T T T T



STPA001 Package information


Figure 30. Flexiwatt25 (horizontal) mechanical data and package dimensions

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.45	4.50	4.65	0.175	0.177	0.183
В	1.80	1.90	2.00	0.070	0.074	0.079
C		1.40			0.055	
D		2.00			0.079	
E	0.37	0.39	0.42	0.014	0.015	0.016
F (1)			0.57			0.022
G	0.75	1.00	1.25	0.029	0.040	0.049
G1	23.70	24.00	24.30	0.933	0.945	0.957
H (2)	28.90	29.23	29.30	1.139	1.150	1.153
H1		17.00			0.669	
H2		12.80			0.503	
H3		0.80			0.031	
L (2)	21.64	22.04	22.44	0.852	0.868	0.883
L1	10.15	10.5	10.85	0.40	0.413	0.427
L2 (2)	15.50	15.70	15.90	0.610	0.618	0.626
L3	7.70	7.85	7.95	0.303	0.309	0.313
L4		5			0.197	
L5	5.15	5.45	5.85	0.203	0.214	0.23
L6	1.80	1.95	2.10	0.070	0.077	0.083
M	2.75	3.00	3.50	0.108	0.118	0.138
M1		4.73			0.186	
M2		5.61			0.220	
N		2.20			0.086	
Р	3.20	3.50	3.80	0.126	0.138	0.15
R		1.70			0.067	
R1		0.50			0.02	
R2		0.30			0.12	
R3		1.25			0.049	
R4		0.50			0.02	
V			5° (Гур.)		
V1			3° (Гур.)		
V2			20° (Typ.)		
V3				Typ.)		
): Dam-	bar protus	sion not in	icluded;	(2): Moldi	ing protus	ion inclu
	⊻∩	0000	0000	0000	m n n n	000

OUTLINE AND MECHANICAL DATA

Flexiwatt25 (Horizontal)

STPA001 Revision history

6 Revision history

Table 6. Document revision history

Date	Revision	Changes
03-Apr-2012	1	Initial release.
10-Sep-2012	2	Updated Table 3: Absolute maximum ratings on page 9.
14-Nov-2012	3	Updated: Features on page 1; Section 1.1: Block diagram and application circuit; Section 3.3: Electrical characteristics; Section 4.4.2: Clipping detection and diagnostics (CD-DIAG pin) on page 19; Added Section 3.4: Electrical characteristics curves.
05-Sep-2013	4	Updated Figure 17 & 18.
18-Sep-2013	5	Updated Disclaimer.
05-Sep-2014	6	Updated Table 1: Device summary on page 1. Added Figure 30: Flexiwatt25 (horizontal) mechanical data and package dimensions on page 24.
27-Oct-2014	7	Updated Table 1: Device summary on page 1. Added Figure 28: Flexiwatt27 (horizontal) mechanical data and package dimensions on page 22

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

47/